_ UNIVERSITAT GREIFSWALD FRIEDRICH-ALEXANDER
Wissen lockt. Seit 1456 R ANGEN-NURNBERG

Erlangen Regional
Computing Center

Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager

Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universitat Erlangen-Nurnberg
Institute of Physics, Universitat Greifswald

Lecture 2: Parallel computers

Outline of course

= Basics of parallel computer architecture

Parallel Programming 2020 2020-10-19

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

Single-core architecture

A very quick overview

At the core: the stored-program computer

Instructions

Control Unit

Input/Output

Main performance limitation:
Memory access!

Parallel Programming 2020 2020-10-19 4

Basic resources: Instruction execution and data movement

1.

Instruction execution

This is the primary resource of the processor. All efforts in hardware design are targeted
towards increasing the instruction throughput.

Instructions are the concept of “work” as seen by processor designers.
Not all instructions count as “work” as seen by application developers!

Example: Adding two arrays A(:) and B(:)

do i=1, N

A(i) = A(i) + B(i)

enddo

User work:
N Flops (ADDs)

Processor work:

LOAD rl = A(i)

LOAD r2 = B(1i)

ADD rl = rl + r2
STORE A(i) = rl
INCREMENT i
BRANCH - top if i<N

Parallel Programming 2020

2020-10-19

Basic resources: Instruction execution and data movement

2. Data transfer

Data transfers are a consequence of instruction execution and therefore a secondary
resource. Maximum bandwidth is determined by the request rate of executed instructions and
technical limitations (bus width, speed).

Example: Adding two arrays A(:) and B(:)

Data transfers:
/ 8 byte: LOAD rl = A(i)
. 8 byte: LOAD r2 = B(i)
do i=1l, N 8 byte: STORE A (i) = r2

A(i) = A(i) + B(1) Sum: 24 byte
enddo

Crucial question: What determines the runtime?
= Data transfer?

= Code execution?

= Something else?

Parallel Programming 2020 2020-10-19 6

From theory to reality: General-purpose (cache based) microprocessor core

Control
Unit

Measures to improve performance:
= |nstruction execution is pipelined

= |nstructions are executed out of program
order (semantics permitting)

= |nstructions can be inherently parallel
(SIMD)

= Caches store often used data for quick
reference

L1 lcache

-

Instruction Cache

Modern CPU

core

Reorder buffer / Register renaming

A

file

Register

Scheduler

Control flow

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
— — — — -
ALU ALU LOAD | |sToRE | ALU
ADD ADRS | | ADRS | | JMP
DIV I ‘ ‘ A A
A 4 A 4
Data Cache 1 l S Data flow
L1 Dcache <+> Memory control

— Pot. bottleneck

Parallel Programming 2020

2020-10-19

Important in-core features

Pipelining:
Instruction execution
in multiple steps

1 2 3 4 5 N N+ N+2 N+3 N+4
Cycle
Separate B(1) B(2)| |B(3)| |B(4) B(5) B(N)
mantiexp. | | (1) | @) |G| |c@)| | e Wind—down
Multiply B(l)| [B(2) |B(3) B(4) Bin-1)| [B(N)
mantissas c(1)| [€(2) c(3) c(4) cin- C(N)
Add B()| [B(2)| |B(3) . -] [Bov
exponents c(1)| [e(2)| | c(3) c(N)
Normalize a)| |a@) a a aAQ)
result (N (N-2)) | (N-1))
Insert Wind-up Al a|[a|[a
T R —— EXCOY NPT I et eeueti f Pt P R RO

Single Instruction Multiple Data:
Multiple operations per instruction

Superscalarity:
Multiple instructions
per cycle

Fetch Instruction 1
from L1I

Fetch Instruction 5

from L1l
Fetch Instruction 9
from L1l
Fetch Instruction 13
from L1I

Decode
Instruction 1

Decode

Decode
Instruction 9

Simultaneous Multi-Threading:
Multiple instruction sequences in parallel

A 7

Execution units

Parallel Programming 2020

2020-10-19

Pipelining of functional units

» |[dea:

- Split complex instruction into several simple / fast steps (stages)

- Each step takes the same amount of time, e.g., a single cycle

- Execute different steps on different instructions at the same time (in parallel)
» Benefits:

- Core can work on several independent instructions simultaneously

- One instruction finished each cycle after the pipeline is full
= Drawback:

- Pipeline must be filled; large number of independent instructions required

- Requires complex instruction scheduling by hardware (out-of-order execution)
or compiler (software pipelining)

= Pipelining is widely used in modern computer architectures

Parallel Programming 2020 2020-10-19

5-stage multiplication pipeline: A(i)=B (i) *C (1) i=1,...,N
1 2 3 4 5 N N+1 N+2 N+3 N+4
... -
Cycle
Separate B(1) | | B(2)| | B(3)| | B(4)| B(5) B(N) |« >|
mant./exp. C(1) C(2) C(3) C(4) C(5) C(N) Wind-down
Multiply B(1) B(2) B(3) B(4) B(N-1) | B(N)
mantissas c(l) | c(2)| | c(3)| | c(a) c(n-1) | C(N)
Add B(1) B(2) B(3) B(N-2)| | B(N-1) B (N)
exponents C(1) c(2) C(3) c(N-2) | c(N-1)| | C(N)
Normalize A A A
result A)) (a2 (N-3) | (N-2)| (n-1)| A
Insert L Wind-up o L A A a A
sign ~ = Al (N-4) | (N-3)| (N-2)| (n-1) | BN

First result is available after 5 cycles (=latency of pipeline)!

Wind-up/-down phases: Empty pipeline stages

Parallel Programming 2020

2020-10-19

10

Pipelining: The instruction pipeline

= Besides functional units, instruction execution itself is also pipelined with at least 3

steps:
Fetch Instruction Decode
from L1l instruction

Fetch Instruction 1
from L1l

Fetch Instruction 2 Decode
from L1I Instruction 1

Fetch Instruction 3 Decode
from L1l Instruction 2

Fetch Instruction 4 Decode

4 ’ from L1l Instruction 3

Branches can stall this pipeline! (speculative execution, predication)
Each unit is pipelined itself (e.g., execute = multiply pipeline)
Pipelines can be chained (e.g., LOAD/LOAD - MULT - STORE)

Parallel Programming 2020 2020-10-19

11

Instruction-level parallelism: Superscalar execution

Multiple units enable use of Instruction Level Parallelism (ILP):
Instruction stream is “parallelized” on the fly

e

F hI n 1 4-Way
etch Instruction ; .
“ ’ Example:
i superscalar p
t R L e e e . LOAD
Fetch Instruction 5 Decode
STORE
from L1l Instruction 1 /‘
| gl I_-&._..A&:,\:_. ~ MamaAla MULT
Fetch Instruction 9 Decode
from L1l Instruction 5 ADD
s \ Fetch Instruction 13 Decode
N from L1l Instruction 9

Issuing m concurrent instructions per cycle: m-way superscalar

Modern processors are 3- to 6-way superscalar &
can perform 2 floating point instructions per cycle

Parallel Programming 2020 2020-10-19

Simultaneous multi-threading (SMT)

T ! — T T —— = Pipelines often
2 (] _ LD | Registers T) underutilized due to
S m [l N C locache- | L Taf':he| i [TTT—— E dependencies,
= D < —'—E\:l:l:l:'_ o waiting times, etc.
T O - [T ! E - “Pipeline bubbles”
g] — ——[D% £§/ mean wasted
) M | cache |
emory | | | |=—={ control _:[D:l:'_ resources
f = SMT can improve
%). [y, A — lizati
— =, Yo AN _gj‘j%‘ﬁ}‘*,’f// (@ tk;eelfitrlllgzsatlon of
?) [] L] ¢ L2 cache _ cache A1l F—5s PIp _
- 7 [] i W% X c = It does not improve
7 = =T T+
T o %% 7 - /;/ 7 I E any other resources
~ - 70 | 7 L =~ [2 on the chip!
Z O Y & S
Memor // / 222 %hﬁ é Control - m = I\I’I]eeddto run mUltIple
_' threads
2020-10-19 13

Parallel Programming 2020

SIMD processing

256 bit

= Single Instruction Multiple Data (SIMD) A

instructions allow the execution of the
same operation on “wide” registers from
a single instruction

= x86 SIMD instruction sets:

= SSE: register width = 128 Bit - 2 double
precision floating point operands

= AVX(2): register width = 256 Bit 2> 4

GE}- ug v9
J
04

Td

B[O]

c[o] S

SIMD execution:

double precision floating point operands ggaéla/&ngeng(t;’%nlll - J/ VGL:DD oo
= AVX-512: ... you guessed it! Al Al Al AR B
= |t is not specified if these operations are o © © O
concurrent BO] Bl B B3
= They mostly are, though, on modern ---
standard CPUs col oy o o

Parallel Programming 2020 2020-10-19 14

Scalar (non-SIMD) execution

Scalar execution

double *A, *B, *C;
for (int j=0; j<size; j++) {
A[3] = B3] + C[j];

}

Register width:
= 1 operand (scalar)

Parallel Programming 2020

2020-10-19

15

Data-parallel execution (SIMD)

double *A, *B, *C;
for (int j=0; j<size; j++) {

A[3] = B[J] + C[3]; :
} SIMD execution

Register widths (double prec.):
« 1 operand ~_ N :

« 2 operands (SSE)

* 4 operands (AVX)

« 8 operands (AVX512)

Parallel Programming 2020 2020-10-19

16

SIMD by compiler

Steps (done by the compiler) for “SIMD processing”

for (int i=0; i<n;i++)

Cli]=A[i]+B[i]; j “Loop unrolling”

for (int i=0; i<n;i+=4) {
C[i] =A[i] +BI[i]:;
C[i+1l]=A[i+1]+B[i+1];
C[i+2]=A[i+2]+B[i+2];
C[i+3]=A[i+3]+B[i+3];}

//remainder loop handling j

Load 256 Bits starting from address of A[i] to LABEL1L :

This
should
not be
done
by
hand!

registerRO T ———> yLOAD RO € A[i]

VLOAD R1 € B[i]

Add the corresponding 64 Bit entries in RO and R1 / V64ADD[RO,R1] 9 R2
VSTORE R2 = CJ[i]

and store the 4 results to R2

i<i+d

i<(n-4)? JMP LABEL1

Store R2 (256 Bit) to address
starting at C[i]

//remainder loop handling

Parallel Programming 2020

2020-10-19

17

What is the peak performance of a core?

Peore = ngtlzper Ngma * Nsivp * f
S S S
Super- FMA SIMD Clock
scalarity factor factor Speed
: P
Gy o L Lo e e o i
Nehalem 1 Q1/2009 X5570 2.93 11.7
Westmere 2 1 2 Q1/2010 X5650 2.66 10.6
Sandy Bridge 2 1 4 Q1/2012 E5-2680 2.7 21.6
Ivy Bridge 2 1 4 Q3/2013 E5-2660 v2 2.2 17.6
Haswell 2 2 4 Q3/2014 E5-2695 v3 2.3 36.8
Broadwell 2 2 4 Q1/2016 E5-2699 v4 2.2 35.2
Skylake 2 2 8 Q3/2017 Gold 6148 24 76.8
AMD Zen 2 2 2 Q1/2017 Epyc 7451 2.3 18.4
AMD Zen2 2 2 4 Q4/2019 Epyc 7642 2.3 36.8
IBM POWERS 2 2 2 Q2/2014 S822LC 2.93 234
Parallel Programming 2020 2020-10-19 18

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

The memory hierarchy

Memory hierarchy

= Data transfers are the #1 limiting factor in
computing
= Main memory is too slow to keep up with the CPU’s
hunger for data

= You can either build a small and fast memory or a
large and slow memory
= Caches hold often-used data for fast reference
= Multiple levels (the larger the slower)

= Data transfers occur in “bursts” of single cache
lines (typically 64 bytes)

= The purpose of many optimizations is to avoid
slow data paths

Latency [s]

10°

108

107

104

Core

L1 Cache

L2 Cache

L3 Cache

Memory

Disk

Bandwidth
[bytes/s]

1012

1011

10°

Basic Node Architecture

(c) RRZE 2019

20

Characterization of data paths

. . 2 T 10‘9 o | PR 1012
= Basic model: Latency & bandwidth e 1w e — 256
Transfer time for message (N bytes) T O 1 P% T :8
N 200 4 407 __W Tt | 30
. - s i —1— 18
T—7l+b 2000 4— 406 | I <8
N — s
. @23GHz 105 ——--
A: latency (set-up time) [S] i e
. | [10Gbit Ethernet : @escnz
b: bandwidth of data path [byte/s] 104 =37 A il H
ke | M Solid state disk |
—
= Effective bandwidth of message . N e .
tranSfer LI Local hard disk I—/ l
B N N 10—1 == B
=—==— —[memet |————
eff T 1+ M i — 107
b Latency Bandwidth
[sec] [bytes/sec]
Parallel Programming 2020 2020-10-19 21

Single core: Summary

= Asingle CPU core is still a stored-program computer

= Multiple hardware optimizations to boost performance
= Pipelining

Out-of-order execution and superscalarity

Simultaneous multi-threading

SIMD (main driver of peak performance today)

Caches

= Parallelism is already built into the single core
= Mostly addressed by compiler
= Manual optimizations may still be useful sometimes

Parallel Programming 2020

2020-10-19

23

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Parallel computer architecture

Classification of parallel computers

= Parallel Computing: A number of compute elements solve a problem in a
cooperative way

= Parallel Computer: A number of compute elements connected in such a
way as to do parallel computing for a large set of applications

= Classification according to Flynn (1972) DOI: 10.1109/TC.1972.5009071

Simple stored
P . SISD
program
computer Single-instruction
Single-Data Shared
Vector memory
instructions in __}—=> SIMD MIMD </ o
the instruction Single Instruction Multiple Instruction | s Distributed
set (SSE, Multiple Data Multiple Data memory

AVX,....)

Parallel Programming 2020 2020-10-19

https://doi.org/10.1109/TC.1972.5009071

Shared memory: a single cache-coherent address space

£ BN { Kiowoy]
S e i i
;ﬁ%ﬂl&
Multi-core processor ‘“(--------------- | |
; Multiple CPU chips
per node

Parallel Programming 2020

2020-10-19 26

Distributed memory: no cache-coherent single address space

) =
EEEE =
I R | I %B
EEEE =
(e ;.%u
EEEE) =
I e e = g%
EEEE) =
[|

Cluster/
supercomputer

Modern supercomputers are
shared-/distributed-memory hybrids

Parallel Programming 2020

2020-10-19

27

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Shared-memory parallel computers

Shared memory

» Single address space for all

processors/cores
= Cache coherent, I.e., changes in one CPU cPU
cache will be communicated to all \
others for consistency Shared
Memory
CPU CPU

= Two basic variants: UMA and ccNUMA

Parallel Programming 2020 2020-10-19 29

UMA vs. ccNUMA

[cache-coherent]
Uniform Memory Access

All memory accessible by all

cache-coherent
Non-Uniform Memory Access

Latency and bandwidth vary

cores with equal latency and depending on mutual position of qqf‘.
bandwidth core and memory y°
{g(\
e“\
[e T o e [§ = e[l e e e [e RERERERERERE i
E L1D ﬂﬂ L1D L:; L:zD ﬂ] L1D LL12D i E L1D |.1n L:zD LL1:D LL12D -l L1D |.L|2|> i E L1D |.1n L:zD LL1:D LL12D L1D -. |.L|2|> i
—— ” = eyt e e m"i"—'
{ Me.mgry J [Memory] [.Memr)r_!.y'l]
Parallel Programming 2020 2020-10-19 30

Why ccNUMA?

= Many algorithms rely on high ﬁﬁg ﬁﬁg
Memory bandwidth: e T I i)
T — N T — ;
1% b b
b —_ [Memory J [Memory J
T

I/ data transferred over memory bus [byte]
T wallclock time [s]

= Advantage: Easier (cheaper) to build multiple domains with smaller
bandwidth than one UMA domain with high bandwidth

= Disadvantage: Adds “topology” (non-uniformity in memory access, need to
know where my threads are running)

Parallel Programming 2020 2020-10-19 31

Shared-memory parallel programming

= Many programming models exist

= Popular in scientific computing: OpenMP (https://openmp.orq)

= Source code directives interpreted by compiler (+ small API)

= Example:

OpenMP has
double s = 0.0, *a, *b, *c; = a directive sentinel
. .. // S ———n
#pragma omp for reduction (+:s)

for (int i=0; i<n; i++) {%. work-sharing directives
= clauses

a[i] = b[i] + c[1];

s = s + al[i]; = .. and much more

Parallel Programming 2020

2020-10-19 32

https://openmp.org/

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Distributed-memory parallel computers

Distributed-memory systems “back in the day”

“Pure” distributed-memory system: P P P P P
* Individual processors with exclusive local c c c c c
memory (M) and a network interface (NI) —— = — ~ ——
—> one “node” == one processor core l i M)| M M M |
= Dedicated communication network (N] [n] [w] [N [N
= Parallel program == one process per
node Communication network

= Data exchange via “message passing”
over the network

= This was a thing not so long ago...

Distributed-memory systems today

“Hybrid” distributed-/shared-memory
systems

= Cluster of networked
shared-memory nodes

= ccNUMA architecture per node il L o

= Multiple cores per ccNUMA
domain

| |
[EEEEELE
| | | e s s

TS
plelleieiekele
HE T
did|/d||d|d|d|d
COCCICOCOC

PllP|P[P|[PIP|P
i
i i o [
pilefeeiieielle

e e s [e
d|[d]/d][d|[dd]ld

]
d|[d]/d][d|[d]d][d

Communication network

= EXxpect strong topology effects in communication performance
= Intra-socket, inter-socket, inter-node, all have different 4 and b
= On top: Effects from network structure

Parallel Programming 2020 2020-10-19 35

Distributed-memory parallel programming

Many programming models exist

Dominant in scientific computing: MPI, the Message Passing Interface
(https://mpi-forum.orq)

Library standard, several open & commercial implementations (Intel,
OpenMPI,) include <mpi.h>

int main(int argc, char** argv) ({
int rank, size;

Processes communicating T 1od ,
. _Init(&argc, &argv);
via message transfers MPI_Comm_size (MPI_COMM WORLD, &size);

. MPI Comm rank (MPI_COMM WORLD, &rank);
Hundreds of functions
. . g printf (“Hello World! I am %d of %d\n”,
Significantly more complex rank, size) ;
than OpenMP

Can use MPI on shared memory! }

MPI Finalize();

Parallel Programming 2020 2020-10-19

36

https://mpi-forum.org/

Summary on parallel computer architecture

= Modern systems exhibit parallelism on multiple levels
= Multi-core, multi-NUMA-domain, multi-node

= Mixture of shared- and distributed-memory architecture
= Shared memory on the node, distributed between nodes

Programming models: There are ten a penny, but...:
= OpenMP

= Shared-memory programming

= Compiler directives, thread based
= Message Passing Interface (MPI)

= Distributed-memory programming

= Library calls, process based

Parallel Programming 2020 2020-10-19

37

