

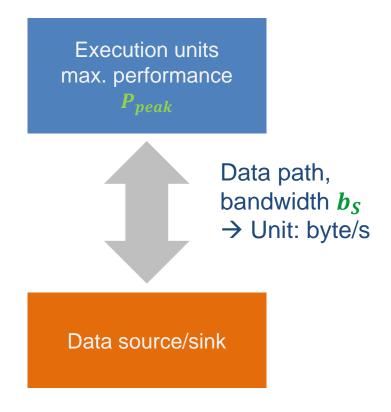
"Simple" performance modeling: The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

R.W. Hockney and I.J. Curington: $f_{1/2}$: A parameter to characterize memory and communication bottlenecks. Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: <u>Scientific Supercomputing</u>: <u>Architecture and Use of Shared and Distributed Memory Parallel Computers</u>. Self-edition (2000)

S. Williams: <u>Auto-tuning Performance on Multicore Computers</u>. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)



Analytic white-box performance models

An analytic white-box performance model is a simplified mathematical description of the hardware and its interaction with software. It is able to predict the runtime/performance of code from "first principles."

A simple performance model for loops

Simplistic view of the hardware:

Simplistic view of the software:

```
! may be multiple levels
do i = 1,<sufficient>
        <complicated stuff doing
        N flops causing
        V bytes of data transfer>
enddo
```

Computational intensity $I = \frac{N}{V}$ \rightarrow Unit: flop/byte

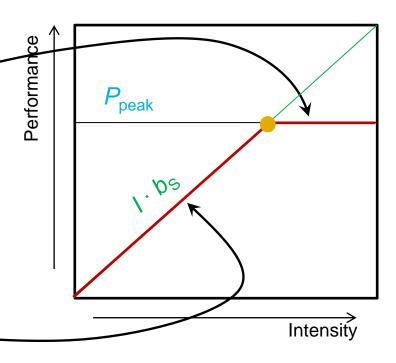
Naïve Roofline Model

How fast can tasks be processed? *P* [flop/s]

The bottleneck is either

The execution of work:

P_{peak} [flop/s]


The data path:

 $I \cdot b_S$ [flop/byte x byte/s]

 $P = \min(P_{\text{peak}}, I \cdot b_S)$

This is the "Naïve Roofline Model"

- High intensity: P limited by execution
- Low intensity: P limited by data transfer
- "Knee" at $P_{peak} = I \cdot b_S$: Best use of resources
- Roofline is an "optimistic" model (think "light speed")

The Roofline Model in computing – Basics

Apply the naive Roofline model in practice

Machine parameter #1:

Peak performance:

 $P_{peak} \left[\frac{F}{s} \right]$

Machine model

Machine parameter #2:

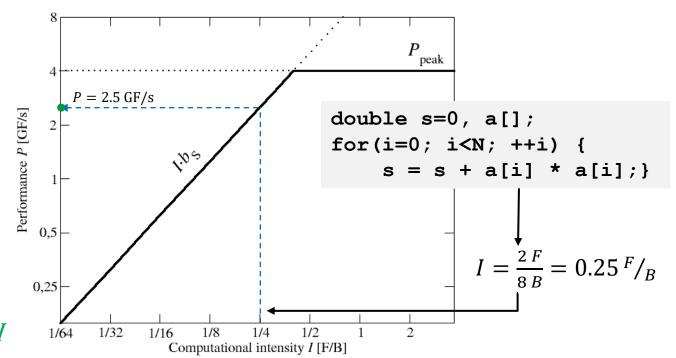
Memory bandwidth:

 $b_S\left[\frac{B}{s}\right]$

Application model

Code characteristic:

Computational intensity: I


 $\left[\frac{F}{B}\right]$

Machine properties:

$$P_{peak} = 4 \frac{GF}{S}$$

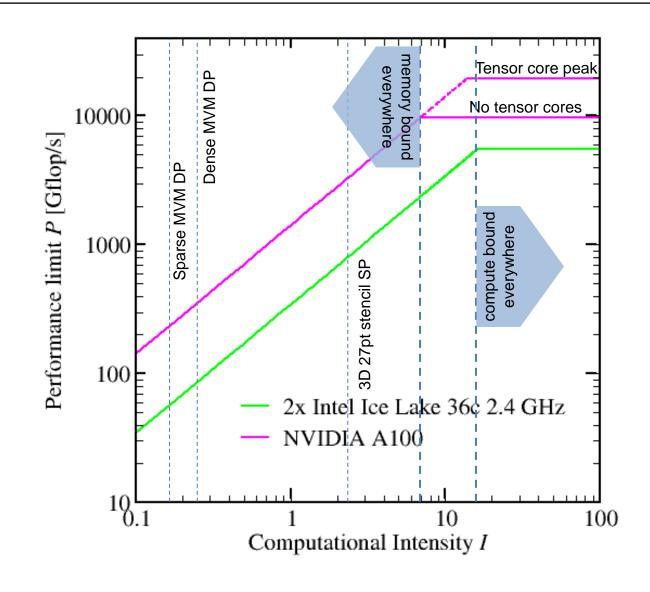
$$b_S = 10 \frac{\text{GB}}{\text{S}}$$

Application property: I

Prerequisites for the Roofline Model

- Data transfer and core execution overlap perfectly!
 - Either the limit is core execution or it is data transfer

- Slowest limiting factor "wins"; all others are assumed to have no impact
 - If two bottlenecks are "close," no interaction is assumed
- Data access latency is ignored, i.e. perfect streaming mode
 - Achievable bandwidth is the limit
- Chip must be able to saturate the bandwidth bottleneck(s)
 - Always model the full chip



Roofline for architecture and code comparison

With Roofline, we can

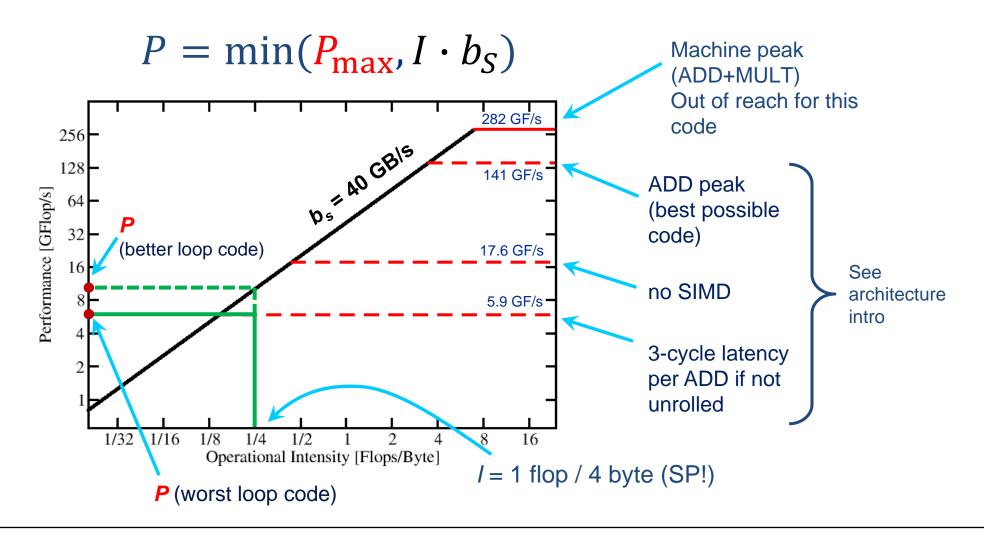
- Compare capabilities of different machines
- Compare performance expectations for different loops

- Roofline always provides upper bound but is it realistic?
 - Simple case: Loop kernel has loop-carried dependencies → cannot achieve peak
 - Other bandwidth bottlenecks may apply

[Byte/s]

- 1. P_{max} = Applicable peak performance of a loop, assuming that data comes from the level 1 cache (this is not necessarily P_{peak})
 - \rightarrow e.g., $P_{\text{max}} = 176 \text{ GFlop/s}$
- 2. b_S = Applicable (saturated) peak bandwidth of the slowest data path utilized \rightarrow e.g., b_S = 56 GByte/s
- 3. $I = \text{Computational intensity ("work" per byte transferred) over the slowest data path utilized (code balance <math>B_C = I^{-1}$)
 - \rightarrow e.g., I = 0.167 Flop/Byte $\rightarrow B_C = 6$ Byte/Flop

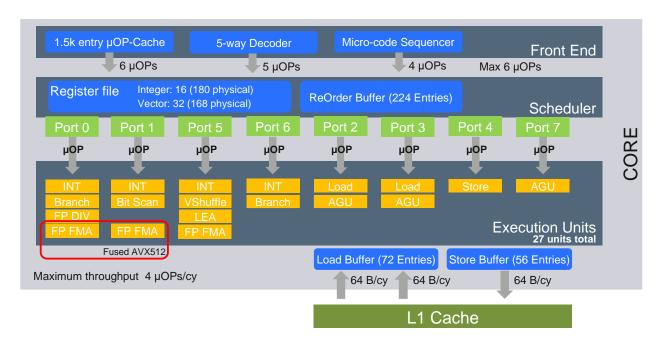
Performance limit:


$$P = \min(P_{\text{max}}, I \cdot b_S) = \min\left(P_{\text{max}}, \frac{b_S}{B_C}\right)$$
[Byte/Flop]

Roofline Model (c) NHR@FAU 2025

Full Roofline for the sum reduction from the intro

Example: do i=1,N; s=s+a(i); enddo


in single precision on an 8-core 2.2 GHz Sandy Bridge socket @ "large" N

Complexities of in-core execution (P_{max})

Multiple bottlenecks:

- Decode/retirement throughput
- Port contention (direct or indirect)
- Arithmetic pipeline stalls (dependencies)
- Overall pipeline stalls (branching)
- L1 Dcache bandwidth (LD/ST throughput)
- Scalar vs. SIMD execution
- L1 Icache (LD/ST) bandwidth
- Alignment issues
- ...

Skylake

Tool for P_{max} analysis: OSACA

http://tiny.cc/OSACA

DOI: <u>10.1109/PMBS49563.2019.00006</u>

DOI: 10.1109/PMBS.2018.8641578

Microarchitecture	Ivy Bridge EP	Broadwell EP	Cascade Lake SP	Ice Lake SP
Introduced	09/2013	03/2016	04/2019	06/2021
Cores	≤ 12	≤ 22	≤ 28	≤ 40
LD/ST throughput per cy:				
AVX(2), AVX512	1 LD + ½ ST	2 LD + 1 ST	2 LD + 1 ST	2 LD + 1 ST
SSE/scalar	2 LD 1 LD & 1 ST			
ADD throughput	1 / cy	1 / cy	2 / cy	2 / cy
MUL throughput	1 / cy	2 / cy	2 / cy	2 / cy
FMA throughput	N/A	2 / cy	2 / cy	2 / cy
L1-L2 data bus	32 B/cy	64 B/cy	64 B/cy	64 B/cy
L2-L3 data bus	32 B/cy	32 B/cy	16+16 B/cy	16+16 B/cy
L1/L2 per core	32 KiB / 256 KiB	32 KiB / 256 KiB	32 KiB / 1 MiB	48 KiB / 1.25 MiB
LLC	2.5 MiB/core inclusive	2.5 MiB/core inclusive	1.375 MiB/core exclusive/victim	1.5 MiB/core exclusive/victim
Memory	4ch DDR3	4ch DDR3	6ch DDR4	8ch DDR4
Memory BW (meas.)	~ 48 GB/s	~ 62 GB/s	~ 115 GB/s	~ 160 GB/s

https://software.intel.com/content/www/us/en/develop/download/i ntel-64-and-ia-32-architectures-optimization-referencemanual.html

Code balance: more examples

```
double a[], b[];
for(i=0; i<N; ++i)
    a[i] = a[i] + b[i];
double a[], b[];
for(i=0; i<N; ++i)
    a[i] = a[i] + (s) * b[i];
float s=0, a[];
for(i=0; i<N; ++i)
    s = (s) + a[i] * a[i];
float s=0, a[], b[];
for(i=0; i<N; ++i)
    s = (s) + a[i] * b[i];
```

```
B_{\rm C} = 24\,\rm B\,/\,1F = 24\,\,B/F
I = 0.042\,\,F/B

B_{\rm C} = 24\,\rm B\,/\,2F = 12\,\,B/F
I = 0.083\,\,F/B

Scalar – can be kept in register
B_{\rm C} = 4\,\rm B\,/\,2F = 2\,\,B/F
I = 0.5\,\,F/B

Scalar – can be kept in register
```

 $B_{\rm C} = 8 \, \text{B} / 2 \, \text{F} = 4 \, \, \text{B/F}$ $I = 0.25 \, \, \text{F/B}$

Scalar – can be kept in register

```
B_{\rm C} = 16 \, \text{B} / 2 \, \text{F} \text{ or}
8B / 2F or even ???
20 B / 2F
```

Streaming, perfect spatial locality, no temporal locality \rightarrow simple

And what about this?

```
float s=0, a[], b[];
int idx[];
for(i=0; i<N; ++i)
    s = s + a[i]
    * b[idx[i]];</pre>
```

Possible cache reuse → tricky!

We'll get to it!

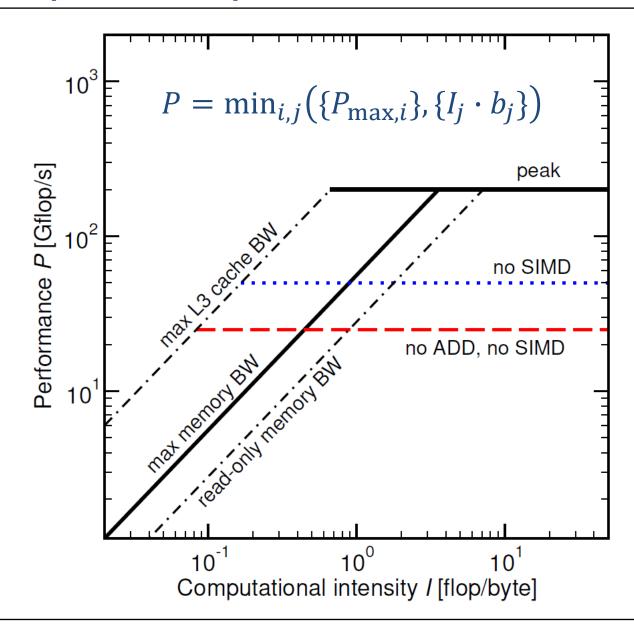
Is there anything to ease the construction of the model?

Code balance B_C

- Close inspection and hard thinking
- Simplifying assumptions
 - "What is the minimum possible amount of traffic?"
 - "What is the worst case?"

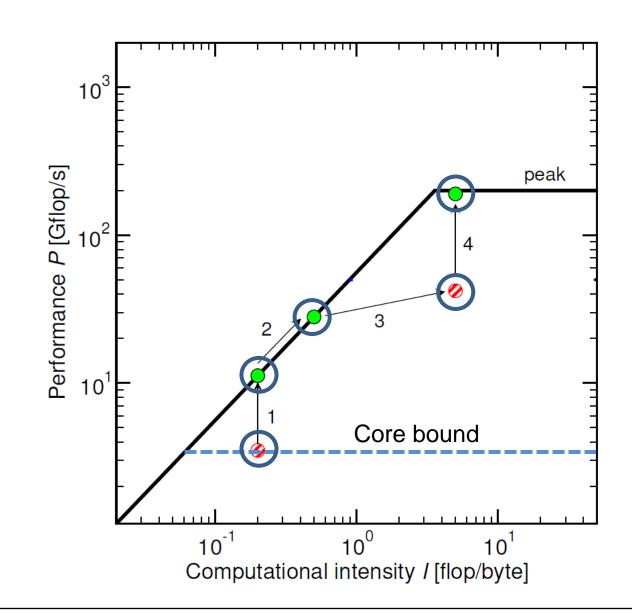
- Tools
 - Kerncraft https://github.com/RRZE-HPC/kerncraft

In-core P_{max}


- Inspection of assembly code and manual modeling
- Simplifying assumptions
 - "What is the required minimum number of arithmetic/load/store instructions?"
 - $P_{\text{max}} = P_{peak}$
- Tools
 - OSACA <u>https://github.com/RRZE-HPC/OSACA</u>

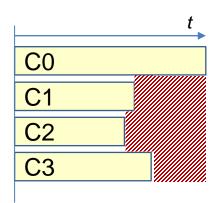
Refined Roofline model: graphical representation

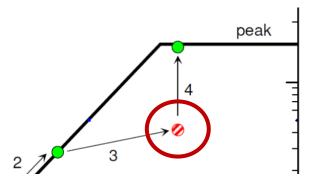
Multiple ceilings may apply


- Different bandwidths / data paths
 - → different inclined ceilings
 - → possibly different *I* for one kernel
- Different P_{max}
 - → different flat ceilings

In fact, P_{max} should always come from code analysis; generic ceilings are usually impossible to attain

Tracking code optimizations in the Roofline Model


- Hit the BW bottleneck by good serial code
 (e.g., Ninja C++ → Fortran)
- 2. Increase intensity to make better use of BW bottleneck (e.g., spatial loop blocking)
- 3. Increase intensity and go from memory bound to core bound (e.g., temporal blocking)
- 4. Hit the core bottleneck by good serial code (e.g., -fno-alias, SIMD intrinsics)



Roofline: How can it "fail"?

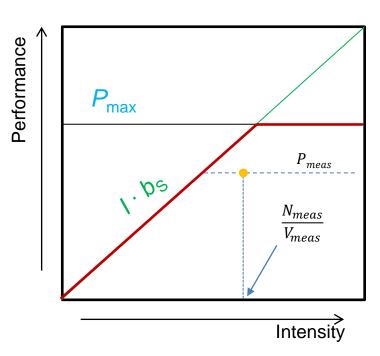
... assuming that you did the math right?

- Load imbalance
 - May be impossible to saturate memory bandwidth
 - This includes serial code
- "Slow code"
 - "Invisible" performance ceiling due to inefficient instructions or inefficient execution

- Erratic memory access patterns
 - Latency rains on your parade

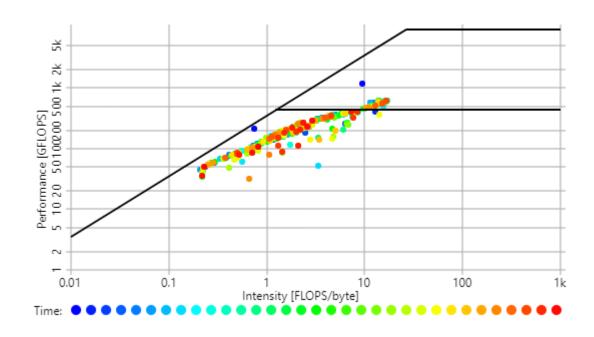
```
for(int i=0; i<N; ++i)
  a[i] = s * b[index[i]];</pre>
```

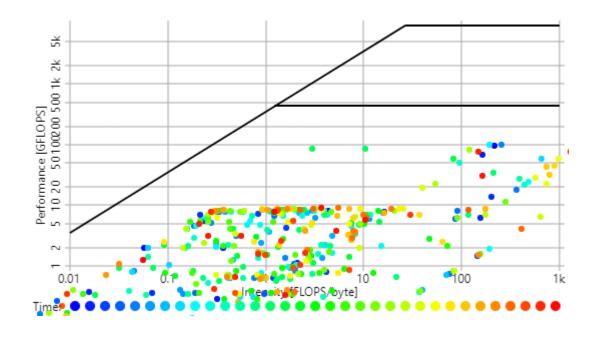

Diagnostic / phenomenological Roofline modeling



Diagnostic modeling

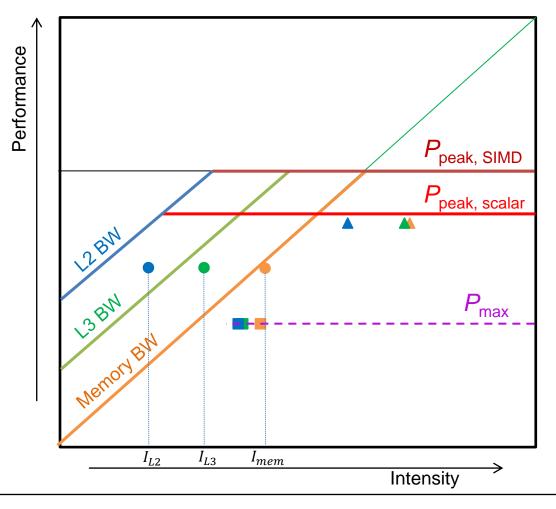
- What if we cannot predict the intensity/balance?
 - Code very complicated
 - Code not available
 - Parameters unknown
 - Doubts about correctness of analysis
- Measure data volume V_{meas} (and work N_{meas})
 - Hardware performance counters
 - Tools: likwid-perfctr, PAPI, Intel Vtune,...




- Compare analytic model and measurement → validate model
- Can be applied (semi-)automatically
- Useful in performance monitoring of user jobs on clusters

Roofline and performance monitoring of clusters

Two cluster jobs...


Which of them is "good" and which is "bad"?

Diagnostic modeling of a complex code (3 kernels)

Multiple bandwidth bottlenecks

 \rightarrow need I for each one $(I_{mem}, I_{L3}, I_{L2}, ...)$

Kernel 1

- Performance close to memory BW ceiling but far away from others
 - → indicates memory bound

Kernel 2

- Performance not near any BW ceiling
- Performance close to scalar peak ceiling
 - → indicates scalar core-bound peak code

Kernel 3

- Performance not anywhere near any ceiling
 - \rightarrow There must be an (as yet) unknown in-core performance limit P_{max}

Roofline conclusion

- Roofline = simple first-principle model for upper performance limit of datastreaming loops
 - Machine model $(P_{max}, b_S,...)$ + application model $(I_{mem},...)$
 - Conditions apply, extensions exist
- Two modes of operation; per kernel:
 - Predictive: Calculate I_i , calculate upper limit, validate model, optimize, iterate
 - Diagnostic: Measure I_j and P, compare with ceilings
- Challenge of predictive modeling: Getting P_{max} and I right