
“Simple” performance modeling:

The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks.

Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers.

Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD

thesis (2008)

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

Analytic white-box performance models

An analytic white-box performance model is a simplified

mathematical description of the hardware and its interaction

with software. It is able to predict the runtime/performance of

code from “first principles.”

(c) NHR@FAU 2024Roofline Model 2

(c) NHR@FAU 2024 3Roofline Model

A simple performance model for loops

Simplistic view of the hardware:

! may be multiple levels

do i = 1,<sufficient>

<complicated stuff doing

N flops causing

V bytes of data transfer>

enddo

Execution units

max. performance

𝑷𝒑𝒆𝒂𝒌

Data source/sink

Data path,

bandwidth 𝒃𝑺
→ Unit: byte/s

Simplistic view of the software:

Computational intensity 𝑰 =
𝑵

𝑽

→ Unit: flop/byte

(c) NHR@FAU 2024 4Roofline Model

Naïve Roofline Model

How fast can tasks be processed? 𝑷 [flop/s]

The bottleneck is either

▪ The execution of work: 𝑃peak [flop/s]

▪ The data path: 𝐼 ∙ 𝑏𝑆 [flop/byte x byte/s]

This is the “Naïve Roofline Model”

▪ High intensity: P limited by execution

▪ Low intensity: P limited by data transfer

▪ “Knee” at 𝑃𝑝𝑒𝑎𝑘 = 𝐼 ∙ 𝑏𝑆:

Best use of resources

▪ Roofline is an “optimistic” model

(think “light speed”)

𝑃 = min(𝑃peak, 𝐼 ∙ 𝑏𝑆)

Intensity

P
e

rf
o

rm
a

n
c
e

Ppeak

(c) NHR@FAU 2024 5Roofline Model

The Roofline Model in computing – Basics

Machine properties:

𝑷𝒑𝒆𝒂𝒌 = 4
GF

s

𝒃𝑺 = 10
GB

s

Application property: I

double s=0, a[];

for(i=0; i<N; ++i) {

s = s + a[i] * a[i];}

𝑃 = 2.5 GF/s

𝐼 =
2 𝐹

8 𝐵
= 0.25 Τ𝐹 𝐵

Apply the naive Roofline model in practice

▪ Machine parameter #1: Peak performance: 𝑃𝑝𝑒𝑎𝑘
𝐹

𝑠

▪ Machine parameter #2: Memory bandwidth: 𝑏𝑆
𝐵

𝑠

▪ Code characteristic: Computational intensity: 𝐼
𝐹

𝐵

Machine model

Application model

(c) NHR@FAU 2024 6Roofline Model

Prerequisites for the Roofline Model

▪ Data transfer and core execution overlap perfectly!

▪ Either the limit is core execution or it is data transfer

▪ Slowest limiting factor “wins”; all others are assumed

to have no impact

▪ If two bottlenecks are “close,” no interaction is assumed

▪ Data access latency is ignored, i.e. perfect streaming mode

▪ Achievable bandwidth is the limit

▪ Chip must be able to saturate the bandwidth bottleneck(s)

▪ Always model the full chip

(c) NHR@FAU 2024 7Roofline Model

Roofline for architecture and code comparison

With Roofline, we can

▪ Compare capabilities of different machines

▪ Compare performance expectations for

different loops

▪ Roofline always provides upper bound – but is

it realistic?

▪ Simple case: Loop kernel has loop-carried

dependencies → cannot achieve peak

▪ Other bandwidth bottlenecks may apply

3
D

 2
7

p
t
s
te

n
c
il

S
P

D
e
n

s
e

 M
V

M
 D

P

S
p

a
rs

e
 M

V
M

 D
P

Tensor core peak

No tensor cores

c
o

m
p

u
te

 b
o

u
n

d

e
v
e

ry
w

h
e

re

m
e

m
o

ry
 b

o
u

n
d

e
v
e

ry
w

h
e

re

(c) NHR@FAU 2024 8Roofline Model

A refined Roofline Model

1. Pmax = Applicable peak performance of a loop, assuming that data comes from the

level 1 cache (this is not necessarily Ppeak)

→ e.g., Pmax = 176 GFlop/s

2. bS = Applicable (saturated) peak bandwidth of the slowest data path utilized

→ e.g., bS = 56 GByte/s

3. I = Computational intensity (“work” per byte transferred) over the slowest data path

utilized (code balance BC = I -1)

→ e.g., I = 0.167 Flop/Byte → BC = 6 Byte/Flop

Performance limit: 𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 𝑃max,
𝑏𝑆
𝐵𝐶

[Byte/s]

[Byte/Flop]

“F
lo

p
”

is
 n

o
t
th

e
 o

n
ly

u
s
e
fu

l
u
n
it
 o

f
w

o
rk

!

(c) NHR@FAU 2024 9Roofline Model

Full Roofline for the sum reduction from the intro

Example: do i=1,N; s=s+a(i); enddo

in single precision on an 8-core 2.2 GHz Sandy Bridge socket @ “large” N

ADD peak

(best possible

code)

no SIMD

3-cycle latency

per ADD if not

unrolled

P (worst loop code)

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

See

architecture

intro

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak

(ADD+MULT)

Out of reach for this

code

P
(better loop code)

(c) NHR@FAU 2024 12Roofline Model

Complexities of in-core execution (Pmax)

Multiple bottlenecks:

▪ Decode/retirement throughput

▪ Port contention

(direct or indirect)

▪ Arithmetic pipeline stalls

(dependencies)

▪ Overall pipeline stalls (branching)

▪ L1 Dcache bandwidth

(LD/ST throughput)

▪ Scalar vs. SIMD execution

▪ L1 Icache (LD/ST) bandwidth

▪ Alignment issues

▪ …

C
O

R
E

Scheduler

Execution Units

Front End

Port 0

Register file Integer: 16 (180 physical)

Vector: 32 (168 physical)

1.5k entry µOP-Cache 5-way Decoder Micro-code Sequencer

6 µOPs

ReOrder Buffer (224 Entries)

5 µOPs 4 µOPs Max 6 µOPs

µOP

INT

Branch

FP DIV

FP FMA

INT

Bit Scan

FP FMA

INT

VShuffle

LEA

INT

Branch

Load

AGU

Load

AGU

Store AGU

27 units total

Load Buffer (72 Entries) Store Buffer (56 Entries)

64 B/cy 64 B/cy64 B/cy

Port 1

µOP

Port 5

µOP

Port 6

µOP

Port 2

µOP

Port 3

µOP

Port 4

µOP

Port 7

µOP

L1 Cache

FP FMA

Fused AVX512

Maximum throughput 4 µOPs/cy

Skylake

Tool for Pmax analysis: OSACA
http://tiny.cc/OSACA

DOI: 10.1109/PMBS49563.2019.00006

DOI: 10.1109/PMBS.2018.8641578

http://tiny.cc/OSACA
https://doi.org/10.1109/PMBS49563.2019.00006
https://dx.doi.org/10.1109/PMBS.2018.8641578

(c) NHR@FAU 2024 13Roofline Model

Hardware features of (some) Intel Xeon processors

Microarchitecture Ivy Bridge EP Broadwell EP Cascade Lake SP Ice Lake SP

Introduced 09/2013 03/2016 04/2019 06/2021

Cores ≤ 12 ≤ 22 ≤ 28 ≤ 40

LD/ST throughput per cy:

AVX(2), AVX512 1 LD + ½ ST
2 LD + 1 ST 2 LD + 1 ST 2 LD + 1 ST

SSE/scalar 2 LD || 1 LD & 1 ST

ADD throughput 1 / cy 1 / cy 2 / cy 2 / cy

MUL throughput 1 / cy 2 / cy 2 / cy 2 / cy

FMA throughput N/A 2 / cy 2 / cy 2 / cy

L1-L2 data bus 32 B/cy 64 B/cy 64 B/cy 64 B/cy

L2-L3 data bus 32 B/cy 32 B/cy 16+16 B/cy 16+16 B/cy

L1/L2 per core 32 KiB / 256 KiB 32 KiB / 256 KiB 32 KiB / 1 MiB 48 KiB / 1.25 MiB

LLC 2.5 MiB/core
inclusive

2.5 MiB/core
inclusive

1.375 MiB/core
exclusive/victim

1.5 MiB/core
exclusive/victim

Memory 4ch DDR3 4ch DDR3 6ch DDR4 8ch DDR4

Memory BW (meas.) ~ 48 GB/s ~ 62 GB/s ~ 115 GB/s ~ 160 GB/s

S
o

u
rc

e
:

h
tt

p
s
:/
/s

o
ft
w

a
re

.i
n
te

l.
c
o

m
/c

o
n
te

n
t/
w

w
w

/u
s
/e

n
/d

e
v
e

lo
p

/d
o
w

n
lo

a
d

/i

n
te

l-
6
4
-a

n
d
-i
a
-3

2
-a

rc
h

it
e

c
tu

re
s
-o

p
ti
m

iz
a
ti
o
n

-r
e

fe
re

n
c
e
-

m
a

n
u

a
l.
h

tm
l

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html

(c) NHR@FAU 2024 14Roofline Model

Code balance: more examples

double a[], b[];

for(i=0; i<N; ++i)

a[i] = a[i] + b[i];

BC = 24B / 1F = 24 B/F

I = 0.042 F/B

double a[], b[];

for(i=0; i<N; ++i)

a[i] = a[i]+ s * b[i];

BC = 24B / 2F = 12 B/F

I = 0.083 F/B

Scalar – can be kept in register

float s=0, a[];

for(i=0; i<N; ++i)

s = s + a[i] * a[i];

BC = 4B / 2F = 2 B/F

I = 0.5 F/B

Scalar – can be kept in register

float s=0, a[], b[];

for(i=0; i<N; ++i)

s = s + a[i] * b[i];

BC = 8B / 2F = 4 B/F

I = 0.25 F/B

Scalar – can be kept in register

float s=0, a[], b[];

for(i=0; i<N; ++i)

for(j=0; j<N; ++j)

b[i][j] = a[i][j]

+ a[i-1][j]

+ a[i+1][j];

BC = 16B / 2F or

8B / 2F or even

20 B / 2F

???

Streaming, perfect spatial

locality, no temporal locality

→ simple

Possible cache

reuse → tricky!

float s=0, a[], b[];

int idx[];

for(i=0; i<N; ++i)

s = s + a[i]

* b[idx[i]];

And what about this?

We’ll get to it!

(c) NHR@FAU 2024 15Roofline Model

Is there anything to ease the construction of the model?

Code balance 𝐵𝐶
▪ Close inspection and hard thinking

▪ Simplifying assumptions

▪ “What is the minimum possible amount of

traffic?”

▪ “What is the worst case?”

▪ Tools

▪ Kerncraft

https://github.com/RRZE-HPC/kerncraft

In-core 𝑃max

▪ Inspection of assembly code and

manual modeling

▪ Simplifying assumptions

▪ “What is the required minimum number of

arithmetic/load/store instructions?”

▪ 𝑃max = 𝑃𝑝𝑒𝑎𝑘

▪ Tools

▪ OSACA

https://github.com/RRZE-HPC/OSACA

https://github.com/RRZE-HPC/kerncraft
https://github.com/RRZE-HPC/OSACA

(c) NHR@FAU 2024 16Roofline Model

Refined Roofline model: graphical representation

Multiple ceilings may apply

▪ Different bandwidths / data paths

→ different inclined ceilings

→ possibly different 𝐼 for one kernel

▪ Different Pmax

→ different flat ceilings

In fact, Pmax should always come from

code analysis; generic ceilings are

usually impossible to attain

𝑃 = min𝑖,𝑗 {𝑃max,𝑖}, {𝐼𝑗 ∙ 𝑏𝑗}

(c) NHR@FAU 2024 17Roofline Model

Tracking code optimizations in the Roofline Model

1. Hit the BW bottleneck by

good serial code
(e.g., Ninja C++ → Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., spatial loop blocking)

3. Increase intensity and go from

memory bound to core bound
(e.g., temporal blocking)

4. Hit the core bottleneck by

good serial code
(e.g., -fno-alias, SIMD intrinsics)

Core bound

(c) NHR@FAU 2024 18Roofline Model

Roofline: How can it “fail”?

… assuming that you did the math right?

▪ Load imbalance

▪ May be impossible to saturate memory bandwidth

▪ This includes serial code

▪ “Slow code”

▪ “Invisible” performance ceiling due to inefficient

instructions or inefficient execution

▪ Erratic memory access patterns

▪ Latency rains on your parade

for(int i=0; i<N; ++i)

a[i] = s * b[index[i]];

C0

C1

C2

C3

t

Diagnostic / phenomenological Roofline modeling

Diagnostic modeling

▪ What if we cannot predict the intensity/balance?

▪ Code very complicated

▪ Code not available

▪ Parameters unknown

▪ Doubts about correctness of analysis

▪ Measure data volume 𝑉𝑚𝑒𝑎𝑠 (and work 𝑁𝑚𝑒𝑎𝑠)

▪ Hardware performance counters

▪ Tools: likwid-perfctr, PAPI, Intel Vtune,…

▪ Insights + benefits

▪ Compare analytic model and measurement → validate model

▪ Can be applied (semi-)automatically

▪ Useful in performance monitoring of user jobs on clusters

Intensity

P
e

rf
o

rm
a

n
c
e

Pmax

𝑃𝑚𝑒𝑎𝑠

𝑁𝑚𝑒𝑎𝑠

𝑉𝑚𝑒𝑎𝑠

(c) NHR@FAU 2024Roofline Model 21

(c) NHR@FAU 2024 22Roofline Model

Roofline and performance monitoring of clusters

Two cluster jobs…

Which of them is

“good” and which is

“bad”?

(c) NHR@FAU 2024 23Roofline Model

Diagnostic modeling of a complex code (3 kernels)

Kernel 1

▪ Performance close to memory BW ceiling but far

away from others

→ indicates memory bound

Kernel 2

▪ Performance not near any BW ceiling

▪ Performance close to scalar peak ceiling

→ indicates scalar core-bound peak code

Kernel 3

▪ Performance not anywhere near any ceiling

→ There must be an (as yet) unknown in-core

performance limit 𝑃max

Intensity

P
e

rf
o

rm
a

n
c
e

Ppeak, SIMD

Ppeak, scalar

Pmax

Multiple bandwidth bottlenecks

→ need 𝐼 for each one (𝐼𝑚𝑒𝑚, 𝐼𝐿3, 𝐼𝐿2, …)

𝐼𝑚𝑒𝑚𝐼𝐿3𝐼𝐿2

(c) NHR@FAU 2024 24Roofline Model

Roofline conclusion

▪ Roofline = simple first-principle model for upper performance limit of data-

streaming loops

▪ Machine model (𝑃𝑚𝑎𝑥 , 𝑏𝑆,…) + application model (𝐼𝑚𝑒𝑚,…)

▪ Conditions apply, extensions exist

▪ Two modes of operation; per kernel:

▪ Predictive: Calculate 𝐼𝑗, calculate upper limit, validate model, optimize, iterate

▪ Diagnostic: Measure 𝐼𝑗 and 𝑃, compare with ceilings

▪ Challenge of predictive modeling: Getting 𝑃𝑚𝑎𝑥 and 𝐼 right

