Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

“Simple” performance modeling:
The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

R.W. Hockney and 1.J. Curington: f,,: A parameter to characterize memory and communication bottlenecks.
Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schonauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers.
Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD

thesis (2008)

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

Analytic white-box performance models

An analytic white-box performance model is a simplified
mathematical description of the hardware and its interaction
with software. It is able to predict the runtime/performance of

code from “first principles.”

Roofline Model (c) NHR@FAU 2024

A simple performance model for loops

Simplistic view of the hardware: Simplistic view of the software:

Execution units

max. performance ! may be multiple levels

do i = 1,<sufficient>
<complicated stuff doing

causing
transfer>

Data path,
bandwidth bg
- Unit: byte/s

Computational intensity I =
—> Unit: flop/byte

Data source/sink

Roofline Model (c) NHR@FAU 2024

Naive Roofline Model

How fast can tasks be processed? P [flop/s]

The bottleneck is either

The execution of work: Ppeak [flop/s]
The data path: I bg [flop/byte x byte/s]
©
g Ppeak
This is the “Naive Roofline Model” Q

High intensity: P limited by execution
Low intensity: P limited by data transfer \
"Knee” at P,oqx = I - bs:
Best use of resources

0%

Roofline is an “optimistic” model
(think “light speed”)

— 5
_ Intensify

Roofline Model (c) NHR@FAU 2024

The Roofline Model in computing — Basics

Apply the naive Roofline model in practice

-
Machine parameter #1.: Peak performance: Ppeak H
. *1 > Machine model
Machine parameter #2: Memory bandwidth: bg H
_/
Code characteristic: Computational intensity: I E] } Application model
8 - |
Machine properties: P
e .
P = 2.5GF/s
P =4E z LT ; double s=0, a[];
peak S < . for (i=0; i<N; ++i) {
2 L N i s =s + a[i] * a[i];}
GB £ |
bs=10°7 gl a :
| — 2F _ F
| | | i: | |

(R

Application property: [/ 64 132 1716 18 a1 1

Computational intensity / [F/B]

Roofline Model (c) NHR@FAU 2024

Prerequisites for the Roofline Model

Data transfer and core execution overlap perfectly!
Either the limit is core execution or it is data transfer

Slowest limiting factor “wins”; all others are assumed
to have no impact

If two bottlenecks are “close,” no interaction is assumed

Achievable bandwidth is the limit

Data access latency is ignored, i.e. perfect streaming mode .

Chip must be able to saturate the bandwidth bottleneck(s)
Always model the full chip

Roofline Model (c) NHR@FAU 2024

Roofline for architecture and code comparison

With Roofline, we can
Compare capabilities of different machines

Compare performance expectations for
different loops

Roofline always provides upper bound — but is
It realistic?
Simple case: Loop kernel has loop-carried
dependencies - cannot achieve peak

Other bandwidth bottlenecks may apply

Performance limit P [Gflop/s]

Tensor core peak

"
~ 1
e

L]

10000

No tensor cores

aloywllana
punoq Alowaw

" Dense MVM DP

1000

~ SparseMVMDP
compute bound
everywhere

27pt stencil SP

|
|
|
|
|
|
|
|
[
|
[
[
[
1
1
[
[
1
1
[
[
1
1
[

100

3D

o — 2x Inte:él Ice Lake 36¢ 2.4 GHz
[| — NVIDIA A100

l%.l 1 10

Computational Intensity /

100

Roofline Model

(c) NHR@FAU 2024

A refined Roofline Model

P..ax = Applicable peak performance of a loop, assuming that data comes from the
level 1 cache (this Is not necessarily P,)
- e.0.,, P =176 GFlop/s

bs = Applicable (saturated) peak bandwidth of the slowest data path utilized
- e.g., bg = 56 GByte/s

| = Computational intensity (“work™ per byte transferred) over the slowest data path
utilized (code balance B. =1 1)
- e.g., 1 =0.167 Flop/Byte -> B = 6 Byte/Flop

[Byte/s]

Performance limit; P =min(Pyax, I - bg) = min| Pyax, —
BC/ [Byte/Flop]

Roofline Model (c) NHR@FAU 2024

“Flop” is not the only
useful unit of work!

Full Roofline for the sum reduction from the Intro

Example: do i=1,N; s=s+a(i); enddo
in single precision on an 8-core 2.2 GHz Sandy Bridge socket @ “large” N

Performance [GFlop/s|

P = min(Pyax, I * bs)

256
128

1 1
282 GF/s

P

/8 114 12 1 2 4&

Operational Intensity [Flops/Byte]

1/32 Ylﬁ

P (worst loop code)

\ ADD peak

~——
~——

Machine peak
(ADD+MULT)

Out of reach for this
code

\

(best possible

code)
See

no SIMD architecture
intro

3-cycle latency
per ADD if not
unrolled

/

| = 1 flop / 4 byte (SP!)

Roofline Model

(c) NHR@FAU 2024

Complexities of in-core execution (P,,..)

Multiple bottlenecks:

1.5k entry yOP-Cache 5-way Decoder Micro-code Sequencer
yE J ; Front End

6 UOPs 5 UOPs 4 UOPs Max 6 HOPs
Decode/retirement throughput Register file e ey) ReOrder Buffer (224 Entries) Seheduler
Port contention L
(direct or indirect) §
Arithmetic pipeline stalls
(dependencies) Execution Units
Overall pipeline stalls (branching) [used ol
L1 Dcache bandwidth A oI SHOPS oo goeme oeme
(LD/ST throughput)
Scalar vs. SIMD execution Skylake

L1 Icache (LD/ST) bandwidth
Alignment issues

Tool for P,,,, analysis: OSACA
http://tiny.cc/OSACA

DOI: 10.1109/PMBS49563.2019.00006
DOI: 10.1109/PMBS.2018.8641578

Roofline Model (c) NHR@FAU 2024

http://tiny.cc/OSACA
https://doi.org/10.1109/PMBS49563.2019.00006
https://dx.doi.org/10.1109/PMBS.2018.8641578

Hardware features of (some) Intel Xeon processors

Microarchitecture lvy Bridge EP Broadwell EP Cascade Lake SP Ice Lake SP

Introduced 09/2013 03/2016 04/2019 06/2021 3
Cores <12 <22 <28 <40 %
LD/ST throughput per cy: T\E
AVX(2), AVX512 1LD +% ST §
e TR 2LD+1ST 2LD+1ST 2LD+1ST %

ADD throughput 1/cy 1/cy 2/cy 21/cy 3
MUL throughput 1/cy 2/cy 21/cy 21/cy %
FMA throughput N/A 2/cy 21/cy 21/cy E
L1-L2 data bus 32 Blcy 64 Blcy 64 Blcy 64 Blcy é
L2-L3 data bus 32 Blcy 32 Blcy 16+16 B/cy 16+16 B/cy %
L1/L2 per core 32 KiB / 256 KiB 32 KiB / 256 KiB 32 KiB/1 MiB 48 KiB / 1.25 MiB g
LLC 2.5.MiB./core 2.5_ MiB_/core 1.375 I.\/IiB./c.ore 1.5 MiB/gqre §
inclusive inclusive exclusive/victim exclusive/victim =

Memory 4ch DDR3 4ch DDR3 6ch DDR4 8ch DDR4] @
Memory BW (meas.) ~ 48 GB/s ~ 62 GB/s ~ 115 GBI/s ~ 160 GB/s ;g) ‘E(g

Roofline Model (c) NHR@FAU 2024

ntel-64-and-ia-32-architectures-optimization-reference-

manual.html

[
w

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html

Code balance: more examples

N
double a[l, bll; B. =24B/ 1F = 24 BIF
for (i=0; i<N; ++i)
a[i] = a[i] + b[i]; | =0.042 F/B
double a[], b[]; B. =24B/2F =12 B/F
for (i=0; i<N; ++i
St 2 HN 1= 0083 FrB
Scalar — can be kept in register Streammg’ perfect spatlal_
float s=0, a[]: B = 4B/ 9F = 2 BIF > locality, no temporal locality
for (i=0; i<N; ++i) c - simple
s =(s) + ali] * a[il; |=0.5F/B
Scalar — can be kept in register And what about this?
float s=0, , b[]l; — —
foza(i=cs)- i<;!]++i)[] B =8B8/2F=4B/F float s=0, all, bll;
=(A [i1 - int idx[];
s =(s)+ a[i] * b[i]; | =0.25 F/B for (100 <N ++i)
Scalar — can be kept in register D s = s + a[i]
£1 0, a[l, bI] - * b[idx[i]];
oat s=0, al], ; —
for (i=0; i<N; ++i) Bc =168/ 2F or .
for (j=0; J<N; ++3j) S D G e 277 Possible cache
b[i] [j] = a[il[]] reuse - tricky!
+ al[i-1][3] 20B/ 2F , .
+ a[i+1][j]; ~ We'll get to it!

Roofline Model (c) NHR@FAU 2024 14

Is there anything to ease the construction of the model?

Code balance B

= Close inspection and hard thinking
= Simplifying assumptions

= “What is the minimum possible amount of
traffic?”

= “What is the worst case?”

= Tools

= Kerncraft
https://github.com/RRZE-HPC/kerncraft

In-core P .«

= |nspection of assembly code and
manual modeling

= Simplifying assumptions

= “What is the required minimum number of
arithmetic/load/store instructions?”

* Prnax peak

= Tools

= OSACA
https://qithub.com/RRZE-HPC/OSACA

Roofline Model

(c) NHR@FAU 2024

https://github.com/RRZE-HPC/kerncraft
https://github.com/RRZE-HPC/OSACA

Refined Roofline model: graphical representation

Multiple ceilings may apply

= Different bandwidths / data paths
—> different inclined ceilings
—> possibly different I for one kernel

= Different P,
—> different flat ceilings

In fact, P, ., should always come from
code analysis; generic ceilings are
usually impossible to attain

Performance P [Gflop/s]

10

—
()
R

—k
()

1 |I\||||

P = mini,j ({Pmax,i}' {Ij ' b]})

1 I/IIIIII

peak

10"

10° 10"

Computational intensity / [flop/byte]

Roofline Model

(c) NHR@FAU 2024

16

Tracking code optimizations in the Roofline Model

Hit the BW bottleneck by
good serial code

Increase intensity to make
better use of BW bottleneck

Increase intensity and go from
memory bound to core bound

Hit the core bottleneck by
good serial code

10

—
o
no

Performance P [Gflop/s]

—
o

peak

10" 10° 10’
Computational intensity / [flop/byte]

Roofline Model

(c) NHR@FAU 2024

17

Roofline: How can it “fail’?

... assuming that you did the math right?

t#
Co |
= | oad imbalance = /%/
- May be impossible to saturate memory bandwidth &2 E%i%
= This includes serial code c3 7

peak |

= “Slow code”

= “Invisible” performance ceiling due to inefficient
Instructions or inefficient execution 2,7

o

= Erratic memory access patternsS gor(int i=0; i<N; ++i)
= Latency rains on your parade e = 5 Y leneeR)l g

Roofline Model (c) NHR@FAU 2024

Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Diagnostic / phenomenological Roofline modeling

Diagnostic modeling

= What if we cannot predict the intensity/balance? _ 4
= Code very complicated
= Code not available

Performance

= Parameters unknown
= Doubts about correctness of analysis

= Measure data volume V... (and work N,,...<)

= Hardware performance counters

= Tools: likwid-perfctr, PAPI, Intel Vtune,...
* Insights + benefits
= Compare analytic model and measurement - validate model

= Can be applied (semi-)automatically
= Useful in performance monitoring of user jobs on clusters

Intensi

d\%

Roofline Model (c) NHR@FAU 2024

21

Roofline and performance monitoring of clusters

Two cluster jobs...

12 5 1020 50100000 5001 2k Sk
12 5 1020 50100000 5001 2k Sk

Qo Qo
S S
5 5
o o . ™ .
E E .
3 3 &t
[]
[]
]
. &
L a L
0.01 0.1 1 10 100 1k 001 * * 0r Te L ude B@el0 " T 0 . 00 1k
Intensity [FLOPS/byte] e oW, e % '.‘ e ping§ LOPS Ayte]
Time: 0OOOOOOO (XY XXX (XXX X nseeeeeese (Y Y XX (XXX X

Which of them is
“good” and which is
“bad”?

Roofline Model (c) NHR@FAU 2024

22

Diagnostic modeling of a complex code (3 kernels)

Multiple bandwidth bottlenecks
- need I for each one (Ly,em, 113,112, -..)

A
)
(@]
C
©
£
O
g
I:)peak, SIMD
/ I:)peak, scalar
A A
N
y2
Y o o
QD\$ I:)max
\ib [
N
2
)
Q
@Qz
ILZ IL3 Imem -
Intensity

Kernell @

= Performance close to memory BW ceiling but far
away from others
- indicates memory bound

Kernel2 A

= Performance not near any BW celiling

= Performance close to scalar peak celiling
- indicates scalar core-bound peak code

Kernel3 B

= Performance not anywhere near any ceiling
- There must be an (as yet) unknown in-core
performance limit P«

Roofline Model

(c) NHR@FAU 2024 23

Roofline conclusion

* Roofline = simple first-principle model for upper performance limit of data-
streaming loops

= Machine model (B4, bs,...) + application model (I,;,om,---)
= Conditions apply, extensions exist

= Two modes of operation; per kernel:
= Predictive: Calculate I;, calculate upper limit, validate model, optimize, iterate

= Diagnostic: Measure I; and P, compare with ceilings

= Challenge of predictive modeling: Getting B,,,,, and I right

Roofline Model (c) NHR@FAU 2024

24

