
Efficient parallel programming

on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

(c) NHR@FAU 2023 2ccNUMA

ccNUMA – The “other affinity”

▪ ccNUMA:

▪ Whole memory is transparently accessible by

all processors

▪ but physically distributed across multiple

locality domains (LDs)

▪ with varying bandwidth and latency

▪ and potential contention (shared memory

paths)

▪ How do we make sure that memory access is

always as "local" and "distributed" as

possible?

Note: Page placement is implemented in units of

OS pages (often 4 KiB, possibly more)

(c) NHR@FAU 2023 3ccNUMA

How much does nonlocal access cost?

Example: AMD “Naples” 2-socket system

(8 chips, 2 sockets, 48 cores):

STREAM Triad bandwidth measurements [Gbyte/s]

S
o
c
k
e
t

0
S

o
c
k
e
t

1

0 1 2 3 4 5 6 7

0 32.4 21.4 21.8 21.9 10.6 10.6 10.7 10.8

1 21.5 32.4 21.9 21.9 10.6 10.5 10.7 10.6

2 21.8 21.9 32.4 21.5 10.6 10.6 10.8 10.7

3 21.9 21.9 21.5 32.4 10.6 10.6 10.6 10.7

4 10.6 10.7 10.6 10.6 32.4 21.4 21.9 21.9

5 10.6 10.6 10.6 10.6 21.4 32.4 21.9 21.9

6 10.6 10.7 10.6 10.6 21.9 21.9 32.3 21.4

7 10.7 10.6 10.6 10.6 21.9 21.9 21.4 32.5

CPU node

MEM node

▪ numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>

--preferred=<node> a.out # map pages on <node>

and others if <node> is full

--interleave=<nodes> a.out # map pages round robin across

all <nodes>

▪ Examples:

for m in `seq 0 7`; do

for c in `seq 0 7`; do

env OMP_NUM_THREADS=6 \

numactl --membind=$m likwid-pin –c M${c}:0-5 ./stream

done

done

numactl --interleave=0-7 likwid-pin -c E:N:8:1:12 ./stream

▪ But what is the default without numactl?

(c) NHR@FAU 2023 4ccNUMA

numactl as a simple ccNUMA locality tool :

How do we enforce some locality of access?

ccNUMA map scan

for Naples system

(c) NHR@FAU 2023 5ccNUMA

ccNUMA default memory locality

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the processor that first touches it!

(Except if there is not enough local memory available)

▪ Caveat: “to touch” means “to write,” not “to allocate”

▪ Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE/sizeof(double)

huge[i] = 0.0;

▪ It is sufficient to touch a single item to map the entire page

Memory not

mapped here yet

Mapping takes

place here

(c) NHR@FAU 2023 6ccNUMA

Coding for ccNUMA data locality

integer,parameter :: N=100000000

double precision, allocatable :: A(:), B(:)

allocate(A(N),B(N))

A=0.d0

!$OMP parallel do

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=100000000

double precision, allocatable :: A(:), B(:)

allocate(A(N),B(N))

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

Simplest case: explicit initialization

integer,parameter :: N=10000000

double precision, allocatable :: A(:), B(:)

allocate(A(N),B(N))

READ(1000) A

!$OMP parallel do

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision, allocatable :: A(:), B(:)

allocate(A(N),B(N))

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

!$OMP single

READ(1000) A

!$OMP end single

!$OMP do schedule(static)

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

(c) NHR@FAU 2023 7ccNUMA

Coding for ccNUMA data locality

Sometimes initialization is not so obvious: I/O cannot be easily parallelized, so “localize”

arrays before I/O

(c) NHR@FAU 2023 8ccNUMA

Coding for Data Locality

▪ Required condition: OpenMP loop schedule of initialization must be the same as in all

computational loops

▪ Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to be sure…

▪ Imposes some constraints on possible optimizations (e.g. load balancing)

▪ Presupposes that all worksharing loops with the same loop length have the same thread-

chunk mapping

▪ If dynamic scheduling/tasking is unavoidable, the problem cannot be solved completely if a

team of threads spans more than one LD

▪ Static parallel first touch is still a good idea

▪ OpenMP 5.0 will have rudimentary memory affinity functionality

▪ How about global objects?

▪ Initialized before main() is called

▪ If communication vs. computation is favorable, might consider properly placed copies of

global data

▪ C++: Arrays of objects and std::vector<> are by default initialized sequentially

▪ STL allocators provide an elegant solution

(c) NHR@FAU 2023ccNUMA

Coding for Data Locality:
NUMA allocator for parallel first touch in std::vector<>

template <class T> class NUMA_Allocator {

public:

T* allocate(size_type numObjects, const void

*localityHint=0) {

size_type ofs,len = numObjects * sizeof(T);

void *m = malloc(len);

char *p = static_cast<char*>(m);

int i,pages = len >> PAGE_BITS;

#pragma omp parallel for schedule(static) private(ofs)

for(i=0; i<pages; ++i) {

ofs = static_cast<size_t>(i) << PAGE_BITS;

p[ofs]=0;

}

return static_cast<pointer>(m);

}

...

};

Application:
vector<double,NUMA_Allocator<double> > x(10000000);

9

(c) NHR@FAU 2023 10ccNUMA

Diagnosing bad locality

▪ If your code is cache bound, you might not notice any

locality problems

▪ Otherwise, bad locality limits scalability

(whenever a ccNUMA node boundary is crossed)
▪ Just an indication, not a proof yet

▪ Running with numactl --interleave might give

you a hint
▪ See later

▪ Consider using performance counters
▪ likwid-perfctr can be used to measure non-local memory accesses

▪ Example for Intel dual-socket system (Ivy Bridge, 2x10-core):

$ likwid-perfctr -g NUMA –C M0:0-4@M1:0-4 ./a.out

serial init.

c
c
N

U
M

A
d

o
m

a
in

 b
o
u

n
d

a
ry

SC23 11Node-Level Performance Engineering

Using performance counters for diagnosis

▪ Intel Ice Lake SP node (running 2x32 threads):

measure inter-socket traffic

▪ Output:

Caveat: NUMA metrics vary strongly among CPU models

+-----------------------------------+------------+-------------+

| Metric | HWThread 0 | HWThread 32 |

+-----------------------------------+------------+-------------+

| Runtime (RDTSC) [s] | 12.3681 | 12.3681 |

| Runtime unhalted [s] | 12.1108 | 8.2227 |

| Clock [MHz] | 3281.3537 | 3103.6518 |

| CPI | 5.4670 | 35.5873 |

| Received data bandwidth [MByte/s] | 22127.2106 | 21358.7412 |

| Received data volume [GByte] | 273.6708 | 264.1663 |

| Sent data bandwidth [MByte/s] | 21358.7391 | 22127.2191 |

| Sent data volume [GByte] | 264.1663 | 273.6709 |

| Total data bandwidth [MByte/s] | 43485.9496 | 43485.9603 |

| Total data volume [GByte] | 537.8370 | 537.8372 |

+-----------------------------------+------------+-------------+

$ likwid-perfctr -g UPI –C S0:0@S1:0 ./a.out

About half of the overall

memory traffic is caused by

the remote domain!

OpenMP STREAM triad on a dual AMD Epyc 7451 (“Naples”)

(6 cores per LD)

1. Parallel init: Correct parallel initialization

2. LD0: Force data into LD0 via numactl –m 0

3. Interleaved: numactl --interleave <LD range>

(c) NHR@FAU 2023ccNUMA 13

(c) NHR@FAU 2023 14ccNUMA

A weird observation

L
o
n

g
e
r

ru
n

ti
m

e

▪ Experiment: memory-bound Jacobi solver with sequential data initialization

▪ No parallel data placement at all!

▪ Expect no scaling across LDs

▪ Convergence threshold 𝛿
determines the runtime

▪ The smaller 𝛿, the longer the run

▪ Observation

▪ No scaling across LDs for large 𝛿
(runtime 0.5 s)

▪ Scaling gets better with smaller 𝛿
up to almost perfect efficiency 𝜀
(runtime 91 s)

▪ Conclusion

▪ Something seems to “heal” the bad

access locality on a time scale of tens of seconds

(c) NHR@FAU 2023 15ccNUMA

Riddle solved: NUMA balancing

▪ Linux kernel supports automatic page migration

$ cat /proc/sys/kernel/numa_balancing

0

$ echo 1 > /proc/sys/kernel/numa_balancing # activate

▪ Active on all current Linux distributions, some performance impact for

single core execution

▪ Parameters control aggressiveness

▪ Default behavior is “take it slow”

▪ Do not rely on it! Parallel first touch is still a good idea!

$ ll /proc/sys/kernel/numa*

-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing

-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_delay_ms

-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_period_max_ms

-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_period_min_ms

-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_size_mb

(c) NHR@FAU 2023 16ccNUMA

Summary on ccNUMA issues

▪ Identify the problem

▪ Is ccNUMA an issue in your code?

▪ Simple test: run with numactl --interleave

▪ Consider performance counters if available

▪ Apply first-touch placement in initialization loops

▪ Consider loop lengths and static scheduling

▪ C++ and global/static objects may require special care

▪ NUMA balancing is active on many Linux systems today

▪ Automatic page migration

▪ Slow process, may take many seconds (configurable)

▪ Not a silver bullet

▪ Still a good idea to do parallel first touch

▪ If dynamic scheduling cannot be avoided

▪ Consider round-robin placement as a quick (but non-ideal) fix

▪ OpenMP 5.0 has some data affinity support

