
Performance Engineering

Basic skills and knowledge

(c) NHR@FAU 2024 2Performance Engineering Basics

Optimizing code: The big Picture

Implementation

Instruction code

Algorithm

core

L1

L2

L3

SIMD
FMA

Memory

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

Memory

1 Reduce algorithmic work

2 Minimize processor work

3 Distribute work and data for optimal
utilization of parallel resources

5 Use most effective
execution units on chip

4 Avoid slow data paths

6 Avoid bottlenecks

(c) NHR@FAU 2024 3Performance Engineering Basics

Basic advice
§ Software is complex

§ Keep it simple stupid! The simpler solution is the better solution.
§ Don’t be afraid to refactor your code. Extract numerical code into simple kernels.

§ Numerical algorithms on parallel computers is a nightmare:
§ To trust the results of a numerical computation is a painful journey.
§ Extensive test harness with automatic validation on different levels.

§ Time to solution is all that matters!
§ Don’t be guided by anything else: cache misses, speedup, flop rates

§ Runtime contributions only matter if they appear on the critical path!
§ Critical path is the series of runtime contributions that do not overlap and form

the total runtime

(c) NHR@FAU 2024 8Performance Engineering Basics

Performance Engineering process

Algorithm/Code
Analysis

Application
Benchmarking

HPM performance
profile

Traces/HW metricsPerformance Model

§ Identify performance issues
§ Develop performance expectation

Optimize
implementation

Change runtime
configuration

Iteratively

Runtime profile

For every hotspot

Optional

(c) NHR@FAU 2024 9Performance Engineering Basics

Runtime profiling with gprof

Instrumentation based with gprof
Compile with –pg switch:
icc -pg -O3 -c myfile1.c

Execute the application. During execution a file gmon.out is generated.
Analyze the results with:
gprof ./a.out | less

The output contains three parts: A flat profile, the call graph, and an alphabetical
index of routines.

The flat profile is what you are usually interested in.

(c) NHR@FAU 2024 10Performance Engineering Basics

Runtime profile with gprof: Flat profile

Output is sorted according to total time spent in routine.

Time spent in
routine itself

How often was
it called

How much time
was spent per call

(c) NHR@FAU 2024 11Performance Engineering Basics

Sampling-based runtime profile with perf

Call executable with perf:
perf record –g ./a.out

Analyze the results with:
perf report

Advantages vs. gprof:
§ Works on any binary without

recompile
§ Also captures OS and runtime

symbols

(c) NHR@FAU 2024 12Performance Engineering Basics

Command line version of Intel Amplifier

Works out of the box for MPI/OpenMP parallel applications.

Example usage with MPI:
mpirun -np 2 amplxe-cl -collect hotspots -result-dir myresults -- a.out

§ Compile with debugging symbols
§ Can also resolve inlined C++ routines
§ Many more collect modules available including

hardware performance monitoring metrics

(c) NHR@FAU 2024 13Performance Engineering Basics

Application benchmarking preparation
§ Discuss and prepare relevant benchmark test case(s)

§ Short turnaround time
§ Representative of real production runs

§ For long term multi-site PE projects you may extract a proxy application
§ Simplified version of app (or a part of it) that still captures the relevant

performance behavior

§ Define an application-specific performance metric
§ Should avoid “trivial” dependencies on problem parameters (see later)
§ Common choice: Useful work performed per time unit

(c) NHR@FAU 2024 14Performance Engineering Basics

Application benchmarking components
Performance measurements must be accurate, deterministic and reproducible.

Components for application benchmarking:

Always run benchmarks on an exclusive system!

System
configuration

DocumentationTiming Affinity control

(c) NHR@FAU 2024 15Performance Engineering Basics

Timing within program code
For benchmarking, an accurate wall-clock timer (end-to-end stop watch) is required:
§ clock_gettime() POSIX compliant timing function
§ MPI_Wtime() and omp_get_wtime() Standardized programming-model-

specific timing routines for MPI and OpenMP

#include <stdlib.h>
#include <time.h>

double getTimeStamp()
{
 struct timespec ts;
 clock_gettime(CLOCK_MONOTONIC, &ts);
 return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9;
}

Usage:
double S, E;
S = getTimeStamp();
/* measured code region */
E = getTimeStamp();
return E-S;

https://github.com/RRZE-HPC/TheBandwidthBenchmark/

https://github.com/RRZE-HPC/TheBandwidthBenchmark

(c) NHR@FAU 2024 16Performance Engineering Basics

System configuration and clock frequency

Socket

Memory Memory

Socket

Turbo mode
Frequency control

core

Cluster-on-die
Prefetcher settings
Transparent huge pages
Memory configuration
NUMA balancing

Uncore clock
QPI snoop mode

Tool for system state dump (requires Likwid tools):
https://github.com/RRZE-HPC/MachineState

https://github.com/RRZE-HPC/MachineState

(c) NHR@FAU 2024 18Performance Engineering Basics

Benchmark planning

Two common variants:
Core/node/device count Dataset size

§ Measure with one process (to start with)
§ Scan dataset size in fine steps
§ Verify the data volumes with a HPM tool

Scaling baseline:
one core

Scale within
memory domain

Scale across
sockets Scale across

nodes

NR

Choosing the right
scaling baseline

(c) NHR@FAU 2024 19Performance Engineering Basics

Common mistakes in result presentation
§ Do not show time but performance (anything 1/t) in scalability plots

§ Add meaningful axis labels and self-contained
captions

§ Always use zero based y-axis range

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

R
un

tim
e

[s
]

nodes

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70

Pe
rfo

rm
an

ce
 [M

flo
p/

s]

nodes

(c) NHR@FAU 2024 27Performance Engineering Basics

The Performance Logbook

§ Manual and knowledge collection how to build, configure and run application

§ Document activities and results in a structured way

§ Learn about best practice guidelines for performance engineering

§ Serve as a well-defined and simple way to exchange and hand over performance
projects

The logbook consists of a single markdown document, helper scripts, and directories
for input, raw results, and media files.

https://github.com/RRZE-HPC/ThePerformanceLogbook

https://github.com/RRZE-HPC/ThePerformanceLogbook

