
Performance Engineering

Basic skills and knowledge
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Optimizing code: The big Picture
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1 Reduce algorithmic work

2 Minimize processor work

3 Distribute work and data for optimal 
utilization of parallel resources

5 Use most effective 
execution units on chip

4 Avoid slow data paths

6 Avoid bottlenecks
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Basic advice
§ Software is complex

§ Keep it simple stupid! The simpler solution is the better solution.
§ Don’t be afraid to refactor your code. Extract numerical code into simple kernels.

§ Numerical algorithms on parallel computers is a nightmare:
§ To trust the results of a numerical computation is a painful journey.
§ Extensive test harness with automatic validation on different levels.

§ Time to solution is all that matters!
§ Don’t be guided by anything else: cache misses, speedup, flop rates

§ Runtime contributions only matter if they appear on the critical path!
§ Critical path is the series of runtime contributions that do not overlap and form 

the total runtime
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Performance Engineering process

Algorithm/Code 
Analysis

Application 
Benchmarking

HPM performance 
profile

Traces/HW metricsPerformance Model

§ Identify performance issues
§ Develop performance expectation

Optimize 
implementation

Change runtime 
configuration 

Iteratively

Runtime profile

For every hotspot

Optional
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Runtime profiling with gprof

Instrumentation based with gprof
Compile with –pg switch:
icc -pg -O3 -c myfile1.c

Execute the application. During execution a file gmon.out is generated. 
Analyze the results with:
gprof ./a.out | less

The output contains three parts: A flat profile, the call graph, and an alphabetical 
index of routines.

The flat profile is what you are usually interested in.
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Runtime profile with gprof: Flat profile

Output is sorted according to total time spent in routine. 

Time spent in 
routine itself

How often was 
it called

How much time 
was spent per call
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Sampling-based runtime profile with perf

Call executable with perf:
perf record –g ./a.out

Analyze the results with:
perf report

Advantages vs. gprof:
§ Works on any binary without 

recompile
§ Also captures OS and runtime 

symbols
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Command line version of Intel Amplifier

Works out of the box for MPI/OpenMP parallel applications.

Example usage with MPI:
mpirun -np 2 amplxe-cl -collect hotspots -result-dir myresults -- a.out

§ Compile with debugging symbols
§ Can also resolve inlined C++ routines
§ Many more collect modules available including 

hardware performance monitoring metrics
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Application benchmarking preparation
§ Discuss and prepare relevant benchmark test case(s)

§ Short turnaround time
§ Representative of real production runs

§ For long term multi-site PE projects you may extract a proxy application
§ Simplified version of app (or a part of it) that still captures the relevant 

performance behavior

§ Define an application-specific performance metric
§ Should avoid “trivial” dependencies on problem parameters (see later)
§ Common choice: Useful work performed per time unit
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Application benchmarking components
Performance measurements must be accurate, deterministic and reproducible.

Components for application benchmarking:

Always run benchmarks on an exclusive system!

System 
configuration

DocumentationTiming Affinity control
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Timing within program code
For benchmarking, an accurate wall-clock timer (end-to-end stop watch) is required:
§ clock_gettime()  POSIX compliant timing function
§ MPI_Wtime() and omp_get_wtime()  Standardized programming-model-

specific timing routines for MPI and OpenMP

#include <stdlib.h>
#include <time.h>

double getTimeStamp()
{
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9;
}

Usage:
double S, E;
S = getTimeStamp();
/* measured code region */
E = getTimeStamp();
return E-S;

https://github.com/RRZE-HPC/TheBandwidthBenchmark/

https://github.com/RRZE-HPC/TheBandwidthBenchmark
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System configuration and clock frequency

Socket

Memory Memory

Socket

Turbo mode
Frequency control

core

Cluster-on-die
Prefetcher settings
Transparent huge pages
Memory configuration
NUMA balancing

Uncore clock
QPI snoop mode

Tool for system state dump (requires Likwid tools):
https://github.com/RRZE-HPC/MachineState

https://github.com/RRZE-HPC/MachineState
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Benchmark planning

Two common variants:
Core/node/device count Dataset size

§ Measure with one process (to start with)
§ Scan dataset size in fine steps
§ Verify the data volumes with a HPM tool

Scaling baseline: 
one core

Scale within 
memory domain

Scale across 
sockets Scale across 

nodes

NR

Choosing the right 
scaling baseline



(c) NHR@FAU 2024 19Performance Engineering Basics

Common mistakes in result presentation
§ Do not show time but performance (anything 1/t) in scalability plots

§ Add meaningful axis labels and self-contained
captions

§ Always use zero based y-axis range
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The Performance Logbook

§ Manual and knowledge collection how to build, configure and run application

§ Document activities and results in a structured way

§ Learn about best practice guidelines for performance engineering

§ Serve as a well-defined and simple way to exchange and hand over performance 
projects

The logbook consists of a single markdown document, helper scripts, and directories 
for input, raw results, and media files.

https://github.com/RRZE-HPC/ThePerformanceLogbook

https://github.com/RRZE-HPC/ThePerformanceLogbook

