
Performance Engineering

Basic skills and knowledge

(c) NHR@FAU 2022 2Performance Engineering Basics

Optimizing code: The big Picture

Implementation

Instruction code

Algorithm

core

L1

L2

L3

SIMD

FMA

Memory

core

L1

L2

L3

SIMD

FMA

core

L1

L2

L3

SIMD

FMA

core

L1

L2

L3

SIMD

FMA

core

L1

L2

L3

SIMD

FMA

core

L1

L2

L3

SIMD

FMA

core

L1

L2

L3

SIMD

FMA

core

L1

L2

L3

SIMD

FMA

Memory

1 Reduce algorithmic work

2 Minimize processor work

3
Distribute work and data for optimal

utilization of parallel resources

5
Use most effective

execution units on chip

4 Avoid slow data paths

6 Avoid bottlenecks

(c) NHR@FAU 2022 7Performance Engineering Basics

Performance Engineering process

Algorithm/Code

Analysis

Application

Benchmarking
HPM performance

profile

Traces/HW metricsPerformance Model

▪ Identify performance issues

▪ Develop performance expectation

Optimize

implementation

Change runtime

configuration

Iteratively

Runtime profile

For every hotspot

Optional

(c) NHR@FAU 2022 8Performance Engineering Basics

Runtime profiling with gprof

Instrumentation based with gprof

Compile with –pg switch:

icc -pg -O3 -c myfile1.c

Execute the application. During execution a file gmon.out is generated.

Analyze the results with:

gprof ./a.out | less

The output contains three parts: A flat profile, the call graph, and an alphabetical

index of routines.

The flat profile is what you are usually interested in.

(c) NHR@FAU 2022 9Performance Engineering Basics

Runtime profile with gprof: Flat profile

Output is sorted according to total time spent in routine.

Time spent in

routine itself

How often was

it called
How much time

was spent per call

(c) NHR@FAU 2022 10Performance Engineering Basics

Sampling-based runtime profile with perf

Call executable with perf:

perf record –g ./a.out

Analyze the results with:

perf report

Advantages vs. gprof:

▪ Works on any binary without

recompile

▪ Also captures OS and runtime

symbols

(c) NHR@FAU 2022 11Performance Engineering Basics

Command line version of Intel Amplifier

Works out of the box for MPI/OpenMP parallel applications.

Example usage with MPI:
mpirun -np 2 amplxe-cl -collect hotspots -result-dir myresults -- a.out

▪ Compile with debugging symbols

▪ Can also resolve inlined C++ routines

▪ Many more collect modules available including

hardware performance monitoring metrics

(c) NHR@FAU 2022 12Performance Engineering Basics

Application benchmarking preparation

▪ Discuss and prepare relevant benchmark test case(s)

▪ Short turnaround time

▪ Representative of real production runs

▪ For long term multi-site PE projects you may extract a proxy application

▪ Simplified version of app (or a part of it) that still captures the relevant

performance behavior

▪ Define an application-specific performance metric

▪ Should avoid “trivial” dependencies on problem parameters (see later)

▪ Common choice: Useful work performed per time unit

(c) NHR@FAU 2022 13Performance Engineering Basics

Application benchmarking components

Performance measurements must be accurate, deterministic and reproducible.

Components for application benchmarking:

Always run benchmarks on an exclusive system!

System

configuration

DocumentationTiming Affinity control

(c) NHR@FAU 2022 14Performance Engineering Basics

Timing within program code

For benchmarking, an accurate wall-clock timer (end-to-end stop watch) is required:

▪ clock_gettime() POSIX compliant timing function

▪ MPI_Wtime() and omp_get_wtime() Standardized programming-model-

specific timing routines for MPI and OpenMP

#include <stdlib.h>

#include <time.h>

double getTimeStamp()

{

struct timespec ts;

clock_gettime(CLOCK_MONOTONIC, &ts);

return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9;

}

Usage:

double S, E;

S = getTimeStamp();

/* measured code region */

E = getTimeStamp();

return E-S;

https://github.com/RRZE-HPC/TheBandwidthBenchmark/

https://github.com/RRZE-HPC/TheBandwidthBenchmark

(c) NHR@FAU 2022 15Performance Engineering Basics

System configuration and clock frequency

Socket

Memory Memory

Socket

Turbo mode

Frequency control

core

Cluster-on-die

Prefetcher settings

Transparent huge pages

Memory configuration

NUMA balancing

Uncore clock

QPI snoop mode

Tool for system state dump (requires Likwid tools):

https://github.com/RRZE-HPC/MachineState

https://github.com/RRZE-HPC/MachineState

(c) NHR@FAU 2022 17Performance Engineering Basics

Benchmark planning

Two common variants:

Core/node/device count Dataset size

▪ Measure with one process (to start with)

▪ Scan dataset size in fine steps

▪ Verify the data volumes with a HPM tool

Scaling baseline:

one core

Scale within

memory domain

Scale across

sockets
Scale across

nodes

NR

Choosing the right

scaling baseline

(c) NHR@FAU 2022 25Performance Engineering Basics

The Performance Logbook

▪ Manual and knowledge collection how to build, configure and run application

▪ Document activities and results in a structured way

▪ Learn about best practice guidelines for performance engineering

▪ Serve as a well-defined and simple way to exchange and hand over performance

projects

The logbook consists of a single markdown document, helper scripts, and directories

for input, raw results, and media files.

https://github.com/RRZE-HPC/ThePerformanceLogbook

https://github.com/RRZE-HPC/ThePerformanceLogbook

