
Performance Engineering

Basic skills and knowledge
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Optimizing code: The big Picture
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1 Reduce algorithmic work

2 Minimize processor work

3
Distribute work and data for optimal 

utilization of parallel resources

5
Use most effective 

execution units on chip

4 Avoid slow data paths

6 Avoid bottlenecks
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Performance Engineering process

Algorithm/Code 

Analysis

Application 

Benchmarking
HPM performance 

profile

Traces/HW metricsPerformance Model

▪ Identify performance issues

▪ Develop performance expectation

Optimize 

implementation

Change runtime 

configuration 

Iteratively

Runtime profile

For every hotspot

Optional
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Runtime profiling with gprof

Instrumentation based with gprof

Compile with –pg switch:

icc -pg -O3 -c myfile1.c

Execute the application. During execution a file gmon.out is generated. 

Analyze the results with:

gprof ./a.out | less

The output contains three parts: A flat profile, the call graph, and an alphabetical

index of routines.

The flat profile is what you are usually interested in.
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Runtime profile with gprof: Flat profile

Output is sorted according to total time spent in routine. 

Time spent in 

routine itself

How often was 

it called
How much time 

was spent per call
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Sampling-based runtime profile with perf

Call executable with perf:

perf record –g ./a.out

Analyze the results with:

perf report

Advantages vs. gprof:

▪ Works on any binary without 

recompile

▪ Also captures OS and runtime 

symbols
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Command line version of Intel Amplifier

Works out of the box for MPI/OpenMP parallel applications.

Example usage with MPI:
mpirun -np 2 amplxe-cl -collect hotspots -result-dir myresults -- a.out

▪ Compile with debugging symbols

▪ Can also resolve inlined C++ routines

▪ Many more collect modules available including

hardware performance monitoring metrics
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Application benchmarking preparation

▪ Discuss and prepare relevant benchmark test case(s)

▪ Short turnaround time

▪ Representative of real production runs

▪ For long term multi-site PE projects you may extract a proxy application

▪ Simplified version of app (or a part of it) that still captures the relevant 

performance behavior

▪ Define an application-specific performance metric

▪ Should avoid “trivial” dependencies on problem parameters (see later)

▪ Common choice: Useful work performed per time unit
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Application benchmarking components

Performance measurements must be accurate, deterministic and reproducible.

Components for application benchmarking:

Always run benchmarks on an exclusive system!

System 

configuration

DocumentationTiming Affinity control
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Timing within program code

For benchmarking, an accurate wall-clock timer (end-to-end stop watch) is required:

▪ clock_gettime()  POSIX compliant timing function

▪ MPI_Wtime() and omp_get_wtime() Standardized programming-model-

specific timing routines for MPI and OpenMP

#include <stdlib.h>

#include <time.h>

double getTimeStamp()

{

struct timespec ts;

clock_gettime(CLOCK_MONOTONIC, &ts);

return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9;

}

Usage:

double S, E;

S = getTimeStamp();

/* measured code region */

E = getTimeStamp();

return E-S;

https://github.com/RRZE-HPC/TheBandwidthBenchmark/

https://github.com/RRZE-HPC/TheBandwidthBenchmark
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System configuration and clock frequency

Socket

Memory Memory

Socket

Turbo mode

Frequency control

core

Cluster-on-die

Prefetcher settings

Transparent huge pages

Memory configuration

NUMA balancing

Uncore clock

QPI snoop mode

Tool for system state dump (requires Likwid tools):

https://github.com/RRZE-HPC/MachineState

https://github.com/RRZE-HPC/MachineState
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Benchmark planning

Two common variants:

Core/node/device count Dataset size

▪ Measure with one process (to start with)

▪ Scan dataset size in fine steps

▪ Verify the data volumes with a HPM tool

Scaling baseline: 

one core

Scale within 

memory domain

Scale across 

sockets
Scale across 

nodes

NR

Choosing the right 

scaling baseline
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The Performance Logbook

▪ Manual and knowledge collection how to build, configure and run application

▪ Document activities and results in a structured way

▪ Learn about best practice guidelines for performance engineering

▪ Serve as a well-defined and simple way to exchange and hand over performance

projects

The logbook consists of a single markdown document, helper scripts, and directories

for input, raw results, and media files.

https://github.com/RRZE-HPC/ThePerformanceLogbook

https://github.com/RRZE-HPC/ThePerformanceLogbook

