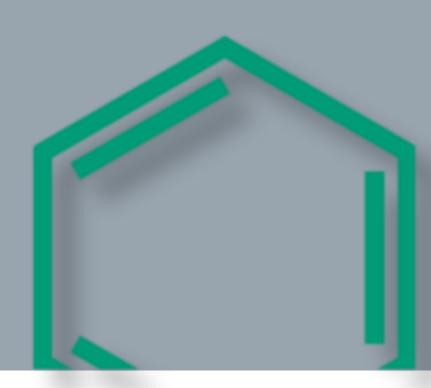
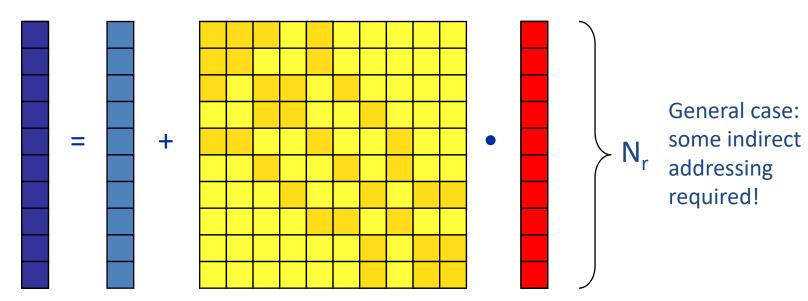


Case study: Sparse Matrix-Vector Multiplication



Sparse Matrix Vector Multiplication (SpMV)

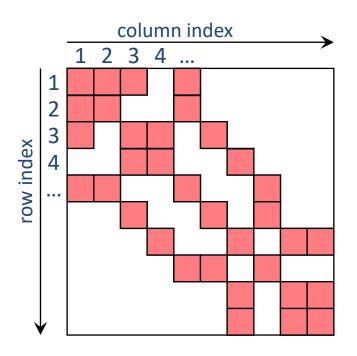
- Key ingredient in numerous sparse linear algebra solvers
- Store only N_{nz} nonzero elements of matrix and RHS, LHS vectors with N_r (number of matrix rows) entries
- "Sparse": N_{nz} ~ N_r
- Average number of nonzeros per row: $N_{nzr} = N_{nz}/N_{r}$



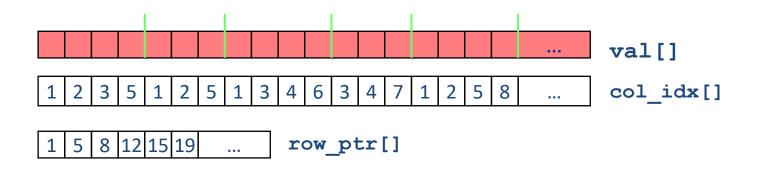
SpMVM characteristics

- For large problems, SpMV is inevitably memory-bound
 - Intra-socket saturation effect on modern multicores
- SpMV is easily parallelizable in shared and distributed memory
 - Load balancing
 - Communication overhead
- Data storage format is crucial for performance properties
 - Most useful general format on CPUs: Compressed Row Storage (CRS)
 - Depending on compute architecture

CRS matrix storage scheme



- val[] stores all the nonzeros (length N_{nz})
- col_idx[] stores the column index of each nonzero (length N_{nz})
- row_ptr[] stores the starting index of each new row in val[] (length: N_r)



Case study: Sparse matrix-vector multiply

- Strongly memory-bound for large data sets
 - Streaming, with partially indirect access:

```
\label{eq:somp} \begin{tabular}{ll} !\$OMP parallel do schedule(???) \\ do i = 1,N_r \\ do j = row\_ptr(i), row\_ptr(i+1) - 1 \\ C(i) = C(i) + val(j) * B(col\_idx(j)) \\ enddo \\ enddo \\ !\$OMP end parallel do \\ \end{tabular}
```

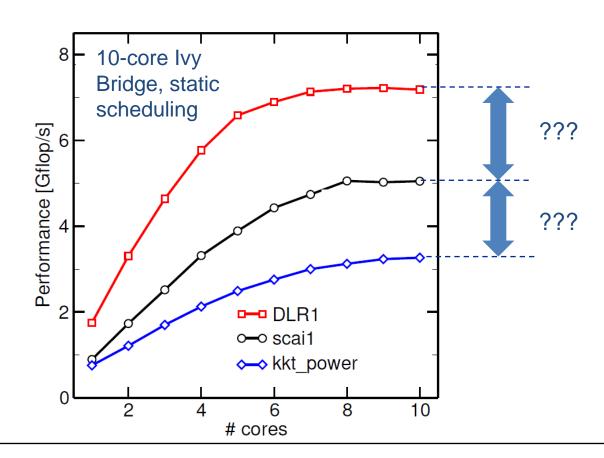
- Usually many spMVMs required to solve a problem
- Now let's look at some performance measurements...

Performance characteristics

- Strongly memory-bound for large data sets → saturating performance across cores on the chip
- Performance seems to depend on the matrix
- Can we explain this?

Is there a "light speed" for SpMV?

Optimization?



SpMV node performance model – CRS (1)

```
do i = 1, N_r
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))
enddo
enddo
```

```
real*8 val(N<sub>nz</sub>)
integer*4 col_idx(N<sub>nz</sub>)
integer*4 row_ptr(N<sub>r</sub>)
real*8 C(N<sub>r</sub>)
real*8 B(N<sub>c</sub>)
```

Min. load traffic [B]: $(8 + 4) N_{nz} + (4 + 8) N_r + 8 N_c$

Min. store traffic [B]: $8 N_r$

Total FLOP count [F]: $2 N_{nz}$

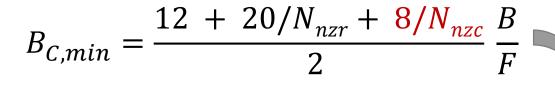
$$B_{C,min} = \frac{12 N_{nz} + 20 N_r + 8 N_c}{2 N_{nz}} \frac{B}{F} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}$$
Nonzeros per row $(N_{nzr} = N_{nz}/N_r)$ or column $(N_{nzc} = N_{nz}/N_c)$

Lower bound for code balance: $B_{C,min} \ge 6 \frac{B}{F} \longrightarrow I_{max} \le \frac{1}{6} \frac{F}{B}$

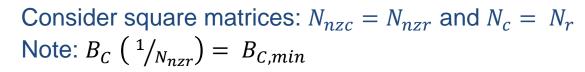
SpMV node performance model – CRS (2)

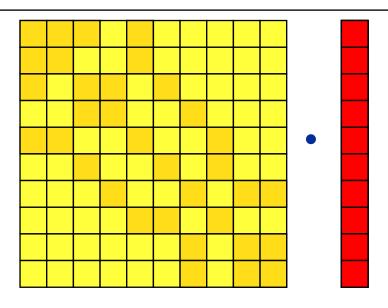
do i = 1,
$$N_r$$

do j = $row_ptr(i)$, $row_ptr(i+1) - 1$
 $C(i) = C(i) + val(j) * B(col_idx(j))$
enddo
enddo



$$B_C(\alpha) = \frac{12 + 20/N_{nzr} + 8 \alpha}{2} \frac{B}{F}$$





Parameter (α) quantifies additional traffic for **B** (:) (irregular access):

$$\alpha \ge 1/N_{nzc}$$

$$\alpha N_{nzc} \geq 1$$

The " α effect"

DP CRS code balance

- α quantifies the traffic for loading the RHS
 - $\alpha = 0 \rightarrow RHS$ is in cache
 - $\alpha = 1/N_{nzr}$ \rightarrow RHS loaded once
 - $\alpha = 1 \rightarrow \text{no cache}$
 - $\alpha > 1 \rightarrow$ Houston, we have a problem!
- "Target" performance = b_S/B_c
- Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict α ?

- Not in general
- Simple cases (banded, block-structured): Similar to layer condition analysis
- \rightarrow Determine α by measuring the actual memory traffic (\rightarrow measured code balance B_C^{meas})

$$B_{C}(\alpha) = \frac{12 + 20/N_{nzr} + 8 \alpha}{2} \frac{B}{F}$$
$$= \left(6 + 4 \alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F}$$

Determine α (RHS traffic quantification)

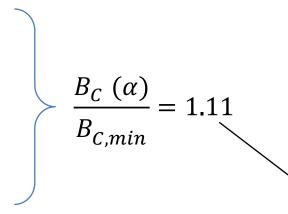
$$B_C(\alpha) = \left(6 + 4\alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F} = \frac{V_{meas}}{N_{nz} \cdot 2 F} \quad (= B_C^{meas})$$

- V_{meas} is the measured overall memory data traffic (using, e.g., likwid-perfctr)
- Solve for α :

$$\alpha = \frac{1}{4} \left(\frac{V_{meas}}{N_{nz} \cdot 2 \text{ bytes}} - 6 - \frac{10}{N_{nzr}} \right)$$

Example: kkt_power matrix from the UoF collection on one Intel SNB socket

- $N_{nz} = 14.6 \cdot 10^6$, $N_{nzr} = 7.1$
- $V_{meas} \approx 258 \text{ MB}$
- $\rightarrow \alpha = 0.36$, $\alpha N_{nzr} = 2.5$
- → RHS is loaded 2.5 times from memory



11% extra traffic → optimization potential!

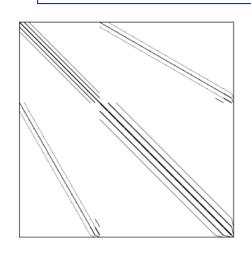
10

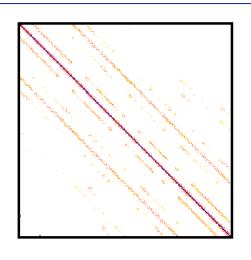
Three different sparse matrices

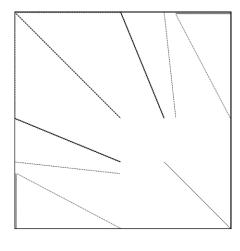
Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, $b_S = 46.6 \, \mathrm{GB/s}$

$$\rightarrow$$
 Roofline: $P_{opt} = {}^{b_S}/_{B_{C,min}}$

Matrix	N	N_{nzr}	$B_{C,min}$ [B/F]	P_{opt} [GF/s]
DLR1	278,502	143	6.1	7.64
scai1	3,405,035	7.0	8.0	5.83
kkt_power	2,063,494	7.08	8.0	5.83





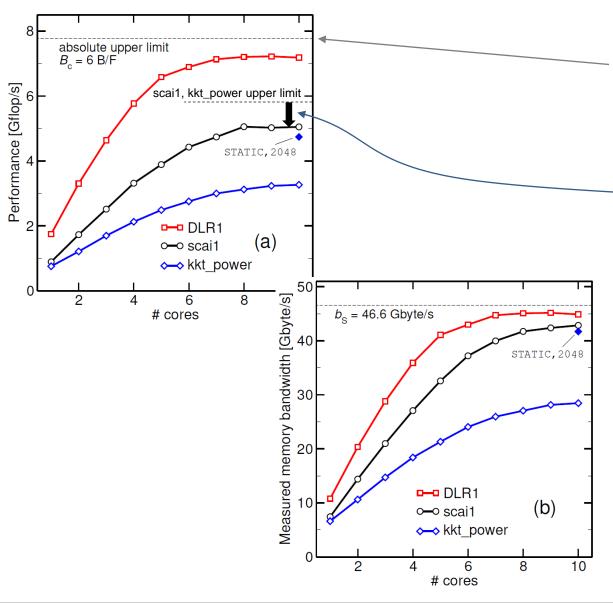


DLR1

scai1

kkt_power

Now back to the start...



- $b_S = 46.6 \, \text{GB/s}$, $B_c = 6 \, \text{B/F}$
- Maximum spMVM performance:

$$P_{max} = 7.8 \,\mathrm{GF/s}$$

 DLR1 causes (almost) minimum CRS code balance (as expected)

scai1 measured balance:

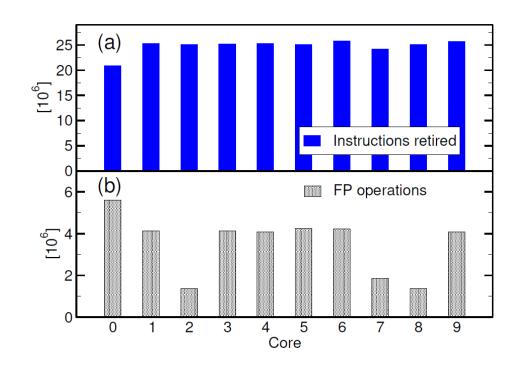
 $B_c^{meas} \approx 8.5 \text{ B/F} > B_{C,min}$ (6% higher than min)

- \rightarrow good BW utilization, slightly non-optimal α
- kkt_power measured balance:

 $B_c^{meas} \approx 8.8 \text{ B/F} > B_{C,min}$ (10% higher than min)

→ performance degraded by load imbalance, fix by block-cyclic schedule

Investigating the load imbalance with kkt_power

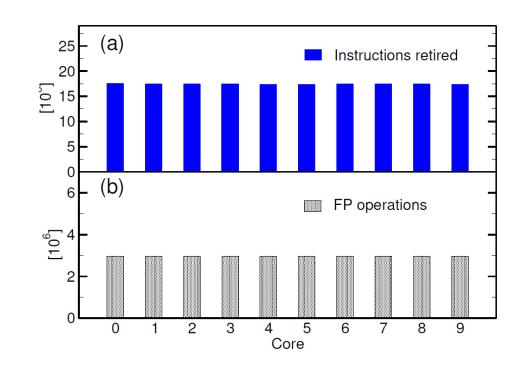


Measurements with likwid-perfctr (MEM_DP group)

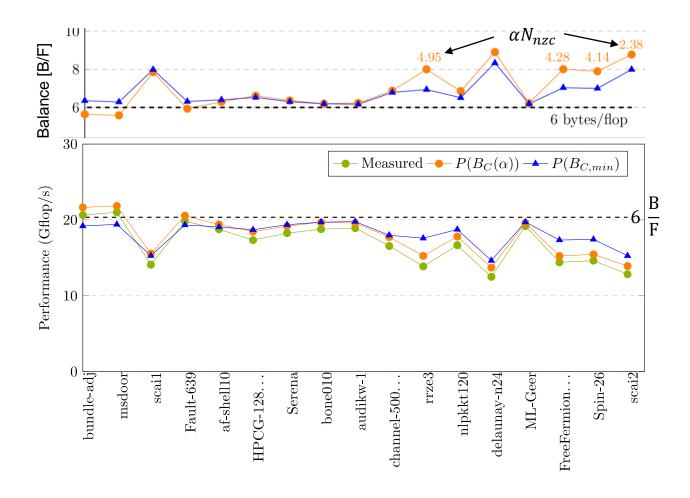
static

static,2048

- → Fewer overall instructions, (almost) BW saturation, 50% better performance with load balancing
- → CPI value unchanged!



SpMV node performance model – CPU



Intel Xeon Platinum 9242 24c@2.8GHz (turbo) $b_S = 122 GB/s$

15

Matrices taken from: C. L. Alappat et al.: *ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX.* DOI: 10.1002/cpe.6512

When Roofline for SpMV may not work

Reasons for performance not attaining the limit

- 1. Intensity lower than the minimum
 - More RHS traffic than the optimistic limit ($\frac{4}{N_{nzr}}$ B/F)
- 2. "Slow code"
 - "invisible" performance ceiling due to inefficient instructions or inefficient execution
- 3. Load imbalance
 - A single process/thread cannot saturate the memory bandwidth
- 4. Erratic memory access patterns for RHS
 - Latency dominates

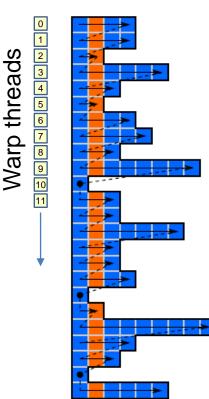
Roofline Case Studies | SpMV

What about GPUs?

- GPUs need
 - Enough work per kernel launch in order to leverage their parallelism

 Coalesced access to memory (consecutive threads in a warp should access consecutive memory addresses)

- Plain CRS for SpMV on GPUs is not a good idea
 - 1. Short inner loop
 - Different amount of work per thread
 - 3. Non-coalesced memory access
- Remedy: Use SIMD/SIMT-friendly storage format
 - ELLPACK, SELL-C-σ, DIA, ESB,...



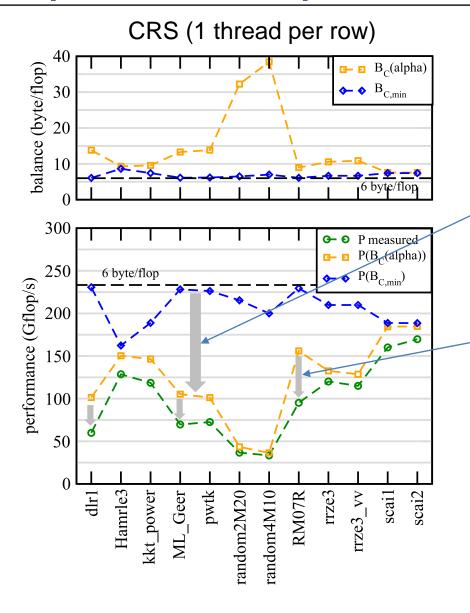
CRS SpMV in CUDA (y = Ax)

```
template <typename VT, typename IT>
global static void
spmv csr(const ST num rows,
         const IT * RESTRICT row_ptrs, const IT * RESTRICT col_idxs,
         const VT * RESTRICT values, const VT * RESTRICT x,
                                             VT * RESTRICT V)
   ST row = threadIdx.x + blockDim.x * blockIdx.x; // 1 thread per row
   if (row < num rows) {</pre>
       VT sum{};
        for (IT j = row_ptrs[row]; j < row_ptrs[row + 1]; ++j) {
            sum += values[j] * x[col idxs[j]];
       y[row] = sum;
```

$$B_c(\alpha) = \left(6 + 4 \alpha + \frac{6}{N_{nzr}}\right) \frac{B}{F}$$

No write-allocate on GPUs for consecutive stores

SpMV CRS performance on a GPU



NVIDIA Ampere A100 Memory bandwidth $b_S = 1400 \text{ GB/s}$

- Strong " α effect" large deviation from optimal α for many matrices
 - Many cache lines touched b/c every thread handles one row → bad cache usage
- Mediocre memory bandwidth usage
 (<< 1400 GB/s) in many cases
 - Non-coalesced memory access
 - Imbalance across rows/threads of warps

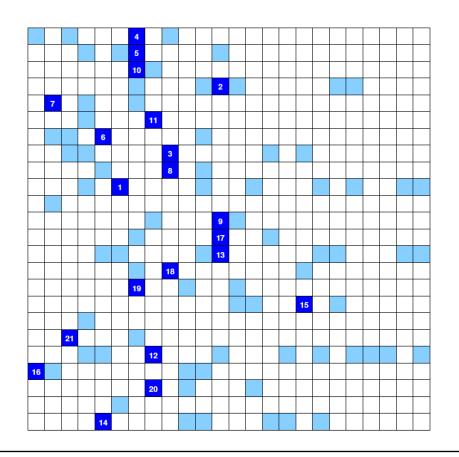
19

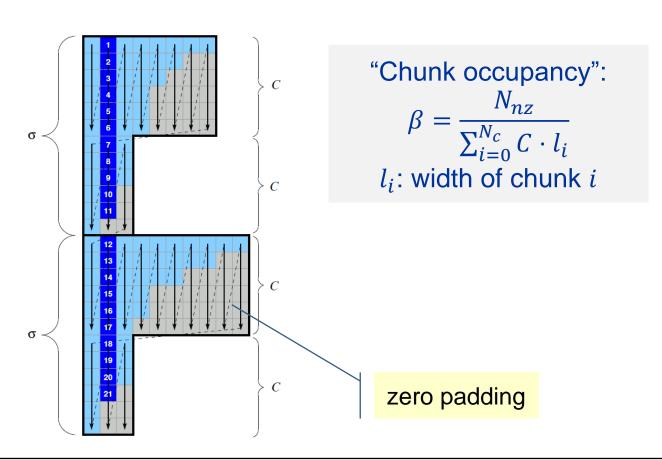
M. Kreutzer et al.: A Unified Sparse Matrix Data Format For Efficient General Sparse Matrix-vector Multiplication On Modern Processors With Wide SIMD Units, SIAM SISC 2014, DOI: 10.1137/130930352

20

Idea

- Sort rows according to length within sorting scope σ
- Store nonzeros column-major in zero-padded chunks of height C





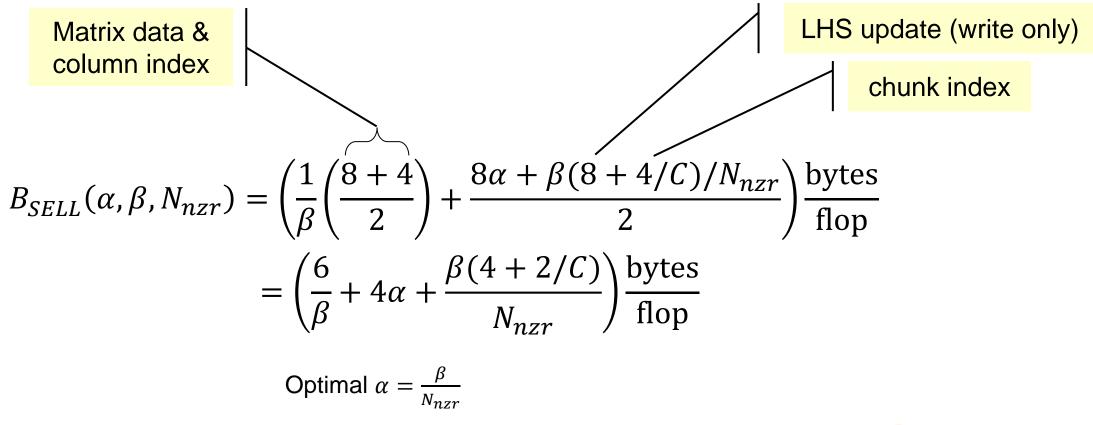
SELL-C- σ SpMV in CUDA (y=Ax)

```
template <typename VT, typename IT> global static void
spmv scs(const ST C, const ST n chunks, const IT * RESTRICT chunk ptrs,
        const IT * RESTRICT chunk lengths, const IT * RESTRICT col_idxs,
        const VT * RESTRICT values, const VT * RESTRICT x, VT * RESTRICT y)
  ST row = threadIdx.x + blockDim.x * blockIdx.x;
  ST c = row / C; // the no. of the chunk
  ST idx = row % C; // index inside the chunk
  if (row < n chunks * C) {
      VT tmp{};
      IT cs = chunk ptrs[c]; // points to start indices of chunks
      for (ST j = 0; j < chunk lengths[c]; ++j) {
          tmp += values[cs + idx] * x[col idxs[cs + idx]];
          cs += C;
      y[row] = tmp;
```

Roofline Case Studies | SpMV (c) NHR@FAU 2025

21

Code balance of SELL-C- σ (y=Ax)



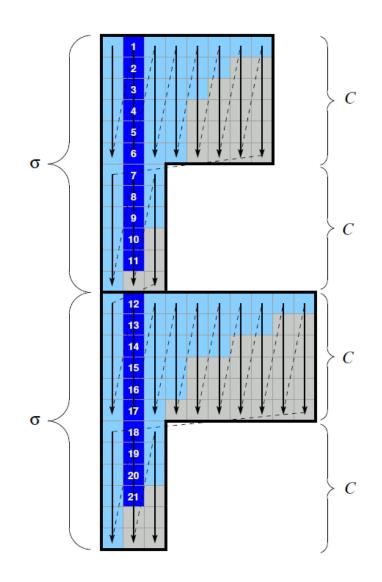
When measuring B_C^{meas} , take care to use the "useful" number of flops (excluding zero padding) for work

22

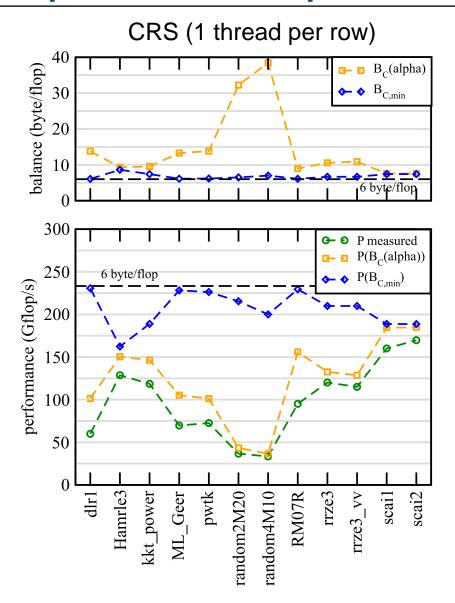
How to choose the parameters C and σ on GPUs?

- **-** C
 - n × warp size to allow good utilization of GPU threads and cache lines

- **•** 0
 - As small as possible, as large as necessary
 - Large σ reduces zero padding (brings β closer to 1)
 - Sorting alters RHS access pattern $\rightarrow \alpha$ depends on σ

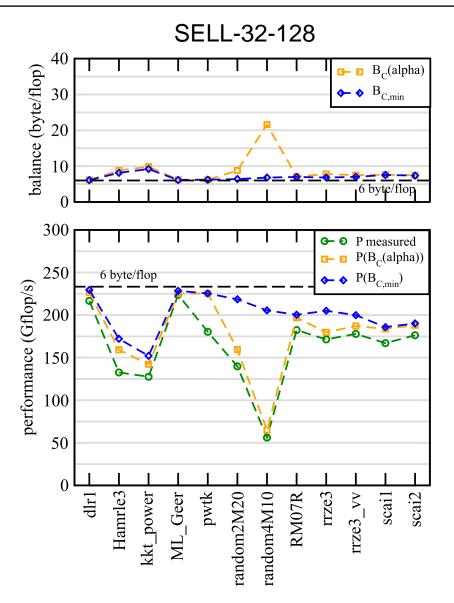


SpMV node performance model – GPU



NVIDIA Ampere A100

 $b_S = 1400 \text{ GB/s}$



24

Roofline analysis for spMVM

- Conclusion from the Roofline analysis
 - The roofline model does not "work" for spMVM due to the RHS traffic uncertainties
 - We have "turned the model around" and measured the actual memory traffic to determine the RHS overhead
 - Result indicates:
 - 1. how much actual traffic the RHS generates
 - 2. how efficient the RHS access is (compare BW with max. BW)
 - 3. how much optimization potential we have with matrix reordering
- Do not forget about load balancing!
- Sparse matrix times multiple vectors bears the potential of huge savings in data volume
- Consequence: Modeling is not always 100% predictive. It's all about learning more about performance properties!