
Center for Information Services and High Performance Computing (ZIH)

Performance engineering from the 
application point of view



Introduction to Performance Engineering

Slide 2

Performance factors of parallel applications

“Sequential” performance factors
— Computation
— Cache and memory
— Input / output

“Parallel” performance factors
— Partitioning / decomposition
— Communication (i.e., message passing)
— Multithreading
— Synchronization / locking



Introduction to Performance Engineering

Slide 3

What to Measure

So you have some hypothesis about how your code will behave

This requires certain data
 Simple scaling models: execution time, possibly subdivided between serial and 

parallel parts
 Roofline model: operations/second and bytes/second corresponding to one or more 

rooflines
 Load balancing: distribution of time spent in computation and communication
 Critical path: detailed measurement of execution time across all nodes and threads

Allows you to ignore certain other data
 Example: load balancing
 Detection typically based on communication wait states
 Don’t need to analyze computation details for that

When possible, measure only what you need to test your hypothesis
 All-in-one-run only when it’s unavoidable



Introduction to Performance Engineering

Slide 4

Measurement Practices

Measurements on HPC systems are noisy
— Shared resources: anything short of full-system DAT probably shares 

something (and maybe even then, if you use site-shared filesystems)
— Nondeterminism: cache effects, which nodes were allocated, small race 

conditions

Particularly relevant to wall time, but can affect other metrics

As with all scientific measurements, repeat the experiment
— Especially if the initial results look weird!



Introduction to Performance Engineering

Slide 5

Measurement issues

Accuracy
— Intrusion overhead

Measurement itself needs time and thus lowers performance
— Perturbation

Measurement alters program behavior

E.g., memory access pattern
— Accuracy of timers & counters

Granularity
— How many measurements?
— How much information / processing during each measurement?

Tradeoff: Accuracy vs. Expressiveness of data



Introduction to Performance Engineering

Slide 6

Execution time

■ Wall-clock time
■ Includes waiting time: I/O, memory, other system activities
■ In time-sharing environments also the time consumed by other 

applications
■ CPU time

■ Time spent by the CPU to execute the application
■ Does not include time the program was context-switched out

■ Problem: Does not include inherent waiting time (e.g., I/O)

■ Problem: Portability? What is user, what is system time?

■ Problem: Execution time is non-deterministic
■ Use mean or minimum of several runs



Introduction to Performance Engineering

Slide 7

Inclusive vs. Exclusive values

■ Inclusive
■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

Inclusive Exclusive

int foo() 
{
int a;
a = 1 + 1;

bar();

a = a + 1;
return a;

}



Introduction to Performance Engineering

Slide 8

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem



Introduction to Performance Engineering

Slide 9

Sampling

Running program is periodically interrupted
to take measurement
 Timer interrupt, OS signal, or HWC overflow
 Service routine examines return-address stack
 Addresses are mapped to routines using

symbol table information

Statistical inference of program behavior
 Not very detailed information on highly

volatile metrics
 Requires long-running applications

Works with unmodified executables

int main() {
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i) {

if (i > 0)
foo(i – 1);

}

Time

main foo(0) foo(1) foo(2) Measurement

t9t7t6t5t4t1 t2 t3 t8



Introduction to Performance Engineering

Slide 10

Instrumentation

Measurement code is inserted such that
every event of interest is captured directly
— Can be done in various ways

Advantage:
— Much more detailed information

Disadvantage:
— Processing of source-code / executable

necessary
— Large relative overheads for small functions

int main() {
int i;
Enter(“main”);
for (i=0; i < 3; i++)

foo(i);
Leave(“main”);
return 0;

}

void foo(int i) {
Enter(“foo”);
if (i > 0)

foo(i – 1);
Leave(“foo”);

}

Measurement

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12t13 t14

main foo(0) foo(1) foo(2)

Time



Introduction to Performance Engineering

Slide 11

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem



Introduction to Performance Engineering

Slide 12

Profiling / Runtime summarization

Recording of aggregated information
 Total, maximum, minimum, …

For measurements
 Time
 Counts
 Function calls
 Bytes transferred
 Hardware counters

Over program and system entities
 Functions, call sites, basic blocks, loops, …
 Processes, threads

Profile = summarization of events over execution interval



Introduction to Performance Engineering

Slide 13

Types of profiles

■ Flat profile
■ Shows distribution of metrics per routine / instrumented region
■ Calling context is not taken into account

■ Call-path profile
■ Shows distribution of metrics per executed call path
■ Sometimes only distinguished by partial calling context

(e.g., two levels)
■ Special-purpose profiles

■ Focus on specific aspects, e.g., MPI calls or OpenMP constructs
■ Comparing processes/threads



Introduction to Performance Engineering

Slide 14

Tracing

Recording detailed information about significant points (events) during 
execution of the program
— Enter / leave of a region (function, loop, …)
— Send / receive a message, …

Save information in event record
— Timestamp, location, event type
— Plus event-specific information (e.g., communicator,

sender / receiver, …)
Abstract execution model on level of defined events

Event trace = Chronologically ordered sequence of
event records



Introduction to Performance Engineering

Slide 15

Tracing Pros & Cons

Tracing advantages
 Event traces preserve the temporal and spatial relationships among individual 

events
( context)

 Allows reconstruction of dynamic application behaviour on any required level of 
abstraction

 Most general measurement technique
 Profile data can be reconstructed from event traces

Disadvantages
 Traces can very quickly become extremely large
 Writing events to file at runtime may causes perturbation



Introduction to Performance Engineering

Slide 16

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem



Introduction to Performance Engineering

Slide 17

Online analysis

■ Performance data is processed during measurement run

■ Process-local profile aggregation

■ Requires formalized knowledge about performance bottlenecks

■ More sophisticated inter-process analysis using

■ “Piggyback” messages

■ Hierarchical network of analysis agents

■ Online analysis often involves application steering to interrupt and re-
configure the measurement



Introduction to Performance Engineering

Slide 18

Post-mortem analysis

■ Performance data is stored at end of measurement run

■ Data analysis is performed afterwards

■ Automatic search for bottlenecks

■ Visual trace analysis

■ Calculation of statistics



Introduction to Performance Engineering

Slide 19

Example: Time-line visualization

58 A ENTER foo

60 B ENTER bar

62 A SEND to B

64 A EXIT foo

68 B RECV from A

...

69 B EXIT bar

...

main
foo
bar

58 60 62 64 66 68 70

B

A

Global trace view 

Post-Mortem

Analysis



Introduction to Performance Engineering

Slide 20

Performance engineering workflow

• Calculation of metrics
• Identification of performance 

problems
• Presentation of results

• Modifications intended to 
eliminate/reduce performance 
problem

• Collection of performance data
• Aggregation of performance 

data

• Build model of predicted 
performance

• Select data to measure
• Prepare application with 

symbols
• Insert extra code 

(probes/hooks)

Preparation Measurement

AnalysisOptimization


