
A Tracing-Oriented Approach to Parallel 
Performance Engineering



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 2

What you don’t need to hear

Performance engineering matters

We live in a (nearly) post-Moore’s-law world, thus parallelism matters

Modeling and sane decisions about measurement are critical



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 3

What we offer

All-in-one measurement system: collection of profiling and tracing data with the same framework

The ability to collect unified, detailed data from a variety of sources:
— Process-level parallelism (MPI, OpenSHMEM)
— Thread-level parallelism (OpenMP, Pthreads)
— Accelerators (CUDA, ROCm, OpenACC, OpenCL)
— I/O operations
— Compiler instrumentation
— User instrumentation (NVTX, Score-P annotations, ROCTX)



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 4

An overview of measurement techniques

Sampling vs. instrumentation

Profiling vs. tracing

Filtering approaches: paradigm vs. phase vs. region, compile-time vs. runtime

When to trace: the interesting behavior is dynamic with respect to place and time
— Summary: “we spent 30% of our time in MPI wait states.” Bad, but possibly necessary?
— Trace: “we went from 10% of our time in MPI wait states to 60% over the course of the run.” Clearly a load 

balancing problem!



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 5

Instrumentation

Measurement code is inserted such that every event of interest is captured 
directly
— Can be done in various ways

Advantage:
— Much more detailed information

Disadvantage:
— Processing of source-code / executable

necessary
— Large relative overheads for small functions

Time
Measurement int main()

{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12t13 t14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 6

Tracing

■ Recording detailed information about significant points (events) during execution of the program
■ Enter / leave of a region (function, loop, …)
■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type
■ Plus event-specific information (e.g., communicator,

sender / receiver, …)
■ Abstract execution model on level of defined events

F Event trace = Chronologically ordered sequence of
event records



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 7

Tracing Pros & Cons

■ Tracing advantages

■ Event traces preserve the temporal and spatial relationships among individual events
(F context)

■ Allows reconstruction of dynamic application behaviour on any required level of abstraction
■ Most general measurement technique

■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can very quickly become extremely large
■ Writing events to file at runtime may causes perturbation



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 8

Dealing with trace sizes

One key insight: not every bit of performance data matters to every problem!
• Does it not affect your performance model?
• Have you already optimized that part of the code?
• Is it not part of the application’s critical path?

Throw it out!
The key to manageable traces is good filtering of the data we collect



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 9

How do we make a filter?

We need to know which code regions:
• are frequently executed
• have little importance to the current problem
• are short

Short and frequently executed == high measurement overhead
Little importance == safe to remove from the measurement

What tells us all of these things? A profile



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 10

The key insight

The performance data you need to solve many performance problems without a trace is the same 
performance data you need to collect a trace with good targeting and efficiency!

Workflow:

• Instrument once

• Collect profile

• Possible initial pass of analysis and optimization

• Refine measurement to reduce overhead and allow tracing

• More detailed pass of trace-based analysis



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 11

The second key insight

When considering the parallel part of the problem, the serial details are often irrelevant; when 
considering the serial part, the parallel details are often irrelevant

If it doesn’t lead to a parallel paradigm, we can potentially filter it out!



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 12

A sneak preview of the Score-P workflow

1. Collect reference data from uninstrumented application

2. Build in/LD_PRELOAD your instrumentation of choice

3. Configure the environment to control data collection

4. Collect a profile

5. Evaluate, based on the profile data, what causes unneeded measurement overhead: scoring

6. Create a filter to collect usable measurement data

7. Evaluate program behavior based on this (now low-overhead and meaningful) profile

8. If needed, look more precisely at a trace file, generated only by changing the environment at runtime



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 13

Related tools

VIHPS partners

• TAU: general-purpose collection and visualization of profiling and trace data

• CUBE: visualization of Score-P profiles

• Scalasca: automatic analysis of traces produced by Score-P to produce annotated profiles for CUBE

• Paraver/Extrae: general-purpose collection and visualization of profiling and trace data

Other

• Nsight/NVTX: CUDA+NVTX source-level instrumentation

• ROCm tools: ROCm+ROCTX source-level instrumentation

• Dyninst: general-purpose binary instrumentation and modification

• Intel, TotalView: generally very good for understanding single-node behavior



Parallel Performance Engineering with Score-P and Vampir
IAK, ZIH, TU-Dresden, Bill Williams
NLPE@HLRS, 6 JUN 2025

Folie 14

Conclusion: when is Score-P right for you?

• When you want to collect many measurements from one instrumented build of your application

• When it is important to see connections and interactions between various types of parallelism
• Does an OpenMP imbalance propagate to MPI wait states?
• Why is my parallel file I/O slow?
• How effectively do I use the CPU and GPU together?

• When behavior changes over time

• When you want to minimize or eliminate manual changes to your source code


