
Center for Information Services and High Performance Computing (ZIH)

Performance engineering from the
application point of view

Introduction to Performance Engineering

Slide 2

Performance factors of parallel applications

“Sequential” performance factors
— Computation
— Cache and memory
— Input / output

“Parallel” performance factors
— Partitioning / decomposition
— Communication (i.e., message passing)
— Multithreading
— Synchronization / locking

Introduction to Performance Engineering

Slide 3

What to Measure

So you have some hypothesis about how your code will behave

This requires certain data
 Simple scaling models: execution time, possibly subdivided between serial and

parallel parts
 Roofline model: operations/second and bytes/second corresponding to one or more

rooflines
 Load balancing: distribution of time spent in computation and communication
 Critical path: detailed measurement of execution time across all nodes and threads

Allows you to ignore certain other data
 Example: load balancing
 Detection typically based on communication wait states
 Don’t need to analyze computation details for that

When possible, measure only what you need to test your hypothesis
 All-in-one-run only when it’s unavoidable

Introduction to Performance Engineering

Slide 4

Measurement Practices

Measurements on HPC systems are noisy
— Shared resources: anything short of full-system DAT probably shares

something (and maybe even then, if you use site-shared filesystems)
— Nondeterminism: cache effects, which nodes were allocated, small race

conditions

Particularly relevant to wall time, but can affect other metrics

As with all scientific measurements, repeat the experiment
— Especially if the initial results look weird!

Introduction to Performance Engineering

Slide 5

Measurement issues

Accuracy
— Intrusion overhead

Measurement itself needs time and thus lowers performance
— Perturbation

Measurement alters program behavior

E.g., memory access pattern
— Accuracy of timers & counters

Granularity
— How many measurements?
— How much information / processing during each measurement?

Tradeoff: Accuracy vs. Expressiveness of data

Introduction to Performance Engineering

Slide 6

Execution time

■ Wall-clock time
■ Includes waiting time: I/O, memory, other system activities
■ In time-sharing environments also the time consumed by other

applications
■ CPU time

■ Time spent by the CPU to execute the application
■ Does not include time the program was context-switched out

■ Problem: Does not include inherent waiting time (e.g., I/O)

■ Problem: Portability? What is user, what is system time?

■ Problem: Execution time is non-deterministic
■ Use mean or minimum of several runs

Introduction to Performance Engineering

Slide 7

Inclusive vs. Exclusive values

■ Inclusive
■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

Inclusive Exclusive

int foo()
{
int a;
a = 1 + 1;

bar();

a = a + 1;
return a;

}

Introduction to Performance Engineering

Slide 8

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

Introduction to Performance Engineering

Slide 9

Sampling

Running program is periodically interrupted
to take measurement
 Timer interrupt, OS signal, or HWC overflow
 Service routine examines return-address stack
 Addresses are mapped to routines using

symbol table information

Statistical inference of program behavior
 Not very detailed information on highly

volatile metrics
 Requires long-running applications

Works with unmodified executables

int main() {
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i) {

if (i > 0)
foo(i – 1);

}

Time

main foo(0) foo(1) foo(2) Measurement

t9t7t6t5t4t1 t2 t3 t8

Introduction to Performance Engineering

Slide 10

Instrumentation

Measurement code is inserted such that
every event of interest is captured directly
— Can be done in various ways

Advantage:
— Much more detailed information

Disadvantage:
— Processing of source-code / executable

necessary
— Large relative overheads for small functions

int main() {
int i;
Enter(“main”);
for (i=0; i < 3; i++)

foo(i);
Leave(“main”);
return 0;

}

void foo(int i) {
Enter(“foo”);
if (i > 0)

foo(i – 1);
Leave(“foo”);

}

Measurement

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12t13 t14

main foo(0) foo(1) foo(2)

Time

Introduction to Performance Engineering

Slide 11

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

Introduction to Performance Engineering

Slide 12

Profiling / Runtime summarization

Recording of aggregated information
 Total, maximum, minimum, …

For measurements
 Time
 Counts
 Function calls
 Bytes transferred
 Hardware counters

Over program and system entities
 Functions, call sites, basic blocks, loops, …
 Processes, threads

Profile = summarization of events over execution interval

Introduction to Performance Engineering

Slide 13

Types of profiles

■ Flat profile
■ Shows distribution of metrics per routine / instrumented region
■ Calling context is not taken into account

■ Call-path profile
■ Shows distribution of metrics per executed call path
■ Sometimes only distinguished by partial calling context

(e.g., two levels)
■ Special-purpose profiles

■ Focus on specific aspects, e.g., MPI calls or OpenMP constructs
■ Comparing processes/threads

Introduction to Performance Engineering

Slide 14

Tracing

Recording detailed information about significant points (events) during
execution of the program
— Enter / leave of a region (function, loop, …)
— Send / receive a message, …

Save information in event record
— Timestamp, location, event type
— Plus event-specific information (e.g., communicator,

sender / receiver, …)
Abstract execution model on level of defined events

Event trace = Chronologically ordered sequence of
event records

Introduction to Performance Engineering

Slide 15

Tracing Pros & Cons

Tracing advantages
 Event traces preserve the temporal and spatial relationships among individual

events
(context)

 Allows reconstruction of dynamic application behaviour on any required level of
abstraction

 Most general measurement technique
 Profile data can be reconstructed from event traces

Disadvantages
 Traces can very quickly become extremely large
 Writing events to file at runtime may causes perturbation

Introduction to Performance Engineering

Slide 16

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

Introduction to Performance Engineering

Slide 17

Online analysis

■ Performance data is processed during measurement run

■ Process-local profile aggregation

■ Requires formalized knowledge about performance bottlenecks

■ More sophisticated inter-process analysis using

■ “Piggyback” messages

■ Hierarchical network of analysis agents

■ Online analysis often involves application steering to interrupt and re-
configure the measurement

Introduction to Performance Engineering

Slide 18

Post-mortem analysis

■ Performance data is stored at end of measurement run

■ Data analysis is performed afterwards

■ Automatic search for bottlenecks

■ Visual trace analysis

■ Calculation of statistics

Introduction to Performance Engineering

Slide 19

Example: Time-line visualization

58 A ENTER foo

60 B ENTER bar

62 A SEND to B

64 A EXIT foo

68 B RECV from A

...

69 B EXIT bar

...

main
foo
bar

58 60 62 64 66 68 70

B

A

Global trace view

Post-Mortem

Analysis

Introduction to Performance Engineering

Slide 20

Performance engineering workflow

• Calculation of metrics
• Identification of performance

problems
• Presentation of results

• Modifications intended to
eliminate/reduce performance
problem

• Collection of performance data
• Aggregation of performance

data

• Build model of predicted
performance

• Select data to measure
• Prepare application with

symbols
• Insert extra code

(probes/hooks)

Preparation Measurement

AnalysisOptimization

