
Center for Information Services and High Performance Computing (ZIH)

Score-P – A Joint Performance 
Measurement Run-Time Infrastructure



Score-P Hands-on

Slide 2

Score-P Overview

Application

Vampir Scalasca PeriscopeTAU

Accelerator-based 
parallelism

(CUDA, OpenCL, 
OpenACC)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling interrupts
(PAPI, PERF)

Call-path profiles (CUBE4, TAU)

Process-level 
parallelism

(MPI, SHMEM)

Thread-level 
parallelism

(OpenMP, Pthreads)

Instrumentation wrapper

Source code 
instrumentation
(Compiler, PDT, 

User)

CUBE TAUdb

Hardware counter
(PAPI, rusage, PERF, plugins)



Score-P Hands-on

Slide 3

Score-P Instrumenter

— Command to modify compile/link steps to instrument application
— Must be prepended to each command
— Original compile/link command:

— Modified command:

— Must be manually integrated into build system

$ icpc -Xhost … -c file.cpp

$ scorep icpc -Xhost … -c file.cpp



Score-P Hands-on

Slide 4

Score-P Instrumenter

— Auto detects most used programming paradigms
- Based on compiler name, compiler flags, or undefined functions

— Overwritten by command flags:

— Supported features depends on build configuration

$ scorep --help
This is the Score-P instrumentation tool. The usage is:
scorep <options> <original command>

Common options are:
--[no]compiler
--[no]user
--thread=(none|omp|pthread)
--mpp=(none|mpi|shmem)
--[no]cuda
--[no]openacc
--[no]opencl
--io[=posix]
--[no]memory



Center for Information Services and High Performance Computing (ZIH)

Score-P: Event trace collection



Score-P Hands-on

Slide 6

Event Trace Collection Steps

Traces can become extremely large and unwieldy
— Size is proportional to number of processes/threads (width), duration 

(length) and detail (depth) of measurement
Traces containing intermediate flushes are of little value

Uncoordinated flushes result in cascades of distortion
— Reduce size of trace
— Increase available buffer space

Traces should be written to a parallel file system
— /work or /scratch are typically provided for this purpose

Moving large traces between file systems is often impractical
— However, systems with more memory can analyze larger traces
— Alternatively, run trace analyzers with undersubscribed nodes



Score-P Hands-on

Slide 7

Event Trace Collection Steps

1. Reference preparation for validation

2. Program instrumentation
3. Summary measurement collection

4. Summary experiment scoring
5. Summary measurement collection with filtering

6. Event trace collection



Score-P Hands-on

Slide 8

Reference preparation for validation

Goals:
1. Get familiar with build instructions for the application
2. Run application to determine a reasonable input size and runtime



Score-P Hands-on

Slide 9

BT-MZ

The NAS Parallel Benchmark suite (MPI+OpenMP version)
— http://www.nas.nasa.gov/Software/NPB

Benchmark name:
— bt-mz, lu-mz, sp-mz

Number of MPI processes:
— NPROCS=4

Benchmark class:
— S, W, A, B, C, D, E
— CLASS=C

Clean environment:

# Upload the Tools.tar.gz from the Moodle to your home directory
% tar xvzf Tools.tar.gz
% cd Tools
% source env.sh

http://www.nas.nasa.gov/Software/NPB


Score-P Hands-on

Slide 10

BT-MZ / Reference preparation

Build uninstrumented benchmark:

% cd BT-MZ
% make bt-mz NPROCS=4 CLASS=C
cd BT-MZ; make CLASS=W NPROCS=4 VERSION=
make: Entering directory 'BT-MZ'
cd ../sys; cc  -o setparams setparams.c -lm
../sys/setparams bt-mz 4 C
[…]
Built executable ../bin/bt-mz_C.4
make: Leaving directory 'BT-MZ‘
% ls bin
bt-mz_C.4



Score-P Hands-on

Slide 11

BT-MZ / Reference run

Run uninstrumented benchmark:

% ./run.sh
Number of zones:  16 x  16
Iterations: 200    dt:   0.000100
Number of active processes:     4

Use the default load factors with threads
Total number of threads:     32  (  8.0 threads/process)

Calculated speedup =     31.99
BT-MZ Benchmark Completed.
Class           =                        C
Size            =            480x  320x 28
Iterations      =                      200
Time in seconds =                    20.41
Total processes =                        4
Total threads   =                       32
Mop/s total     =                118925.36
Mop/s/thread    =                  3716.42
Operation type  =           floating point
Verification    =               SUCCESSFUL
Version         =                    3.3.1
Compile date    =              27 May 2025



Score-P Hands-on

Slide 12

Event Trace Collection Steps

1. Reference preparation for validation

2. Program instrumentation
3. Summary measurement collection

4. Summary experiment scoring
5. Summary measurement collection with filtering

6. Event trace collection



Score-P Hands-on

Slide 13

Program instrumentation
Summary measurement collection

Goals:
1. Adjust build system to use Score-P instrumenter
2. Run application to determine measurement overhead



Score-P Hands-on

Slide 14

BT-MZ / Instrumentation

Edit config/make.def to examine build configuration
— Modify specification of compiler/linker: MPIF77

#            SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS
#---------------------------------------------------------------------
# Items in this file may need to be changed for each platform.
#---------------------------------------------------------------------
...
#---------------------------------------------------------------------
# The Fortran compiler used for MPI programs
#---------------------------------------------------------------------
MPIF77 = $(PREP) mpif77

# This links MPI Fortran programs; usually the same as ${MPIF77}
FLINK   = $(MPIF77)
...

Allows prepending 
scorep to mpif77



Score-P Hands-on

Slide 15

BT-MZ / Instrumentation

Build instrumented benchmark:

% make clean
% make PREP=scorep bt-mz NPROCS=4 CLASS=C
cd BT-MZ; make CLASS=W NPROCS=4 VERSION=
make: Entering directory 'BT-MZ'
cd ../sys; cc  -o setparams setparams.c -lm
../sys/setparams bt-mz 4 C
[…]
Built executable ../bin.scorep/bt-mz_C.4
make: Leaving directory 'BT-MZ‘
% ls bin.scorep
bt-mz_C.4



Score-P Hands-on

Slide 16

Measurement Configuration: scorep-info

Measurements with Score-P are configured via environmental variables:

% scorep-info config-vars --full
SCOREP_ENABLE_PROFILING
Description: Enable profiling
[...]

SCOREP_ENABLE_TRACING
Description: Enable tracing
[...]

SCOREP_TOTAL_MEMORY
Description: Total memory in bytes for the measurement system
[...]

SCOREP_EXPERIMENT_DIRECTORY
Description: Name of the experiment directory
[...]

SCOREP_FILTERING_FILE
Description: A file name which contain the filter rules
[...]

SCOREP_METRIC_PAPI
Description: PAPI metric names to measure
[...]

SCOREP_METRIC_RUSAGE
Description: Resource usage metric names to measure
[... More configuration variables ...]



Score-P Hands-on

Slide 17

BT-MZ / Instrumented run

Run instrumented benchmark:

% export SCOREP_EXPERIMENT_DIRECTORY=scorep-bt_mz-4x8-profile
% ./profile.sh
Number of zones:  16 x  16
Iterations: 200    dt:   0.000100
Number of active processes:     4

Use the default load factors with threads
Total number of threads:     32  (  8.0 threads/process)

Calculated speedup =     31.99
BT-MZ Benchmark Completed.
Class           =                        C
Size            =            480x  320x 28
Iterations      =                      200
Time in seconds =                    65.99
Total processes =                        4
Total threads   =                       32
Mop/s total     =                 36778.04
Mop/s/thread    =                  1149.31
Operation type  =           floating point
Verification    =               SUCCESSFUL
Version         =                    3.3.1
Compile date    =              27 May 2025



Score-P Hands-on

Slide 18

BT-MZ / Result examination

Creates experiment directory ./scorep-bt_mz-4x8-profile
— A manifest, what is included in this experiment directory (MANIFEST.md)
— a record of the measurement configuration (scorep.cfg)
— the analysis report that was collated after measurement (profile.cubex)

Congratulations!?
... but how good was the measurement?
— The measured execution produced the desired valid result
— however, the execution took rather longer than expected!

% ls scorep-bt_mz-4x8-profile
MANIFEST.md  profile.cubex scorep.cfg
% cat scorep-bt_mz-4x8-profile/MANIFEST.md
% cat scorep-bt_mz-4x8-profile/scorep.cfg



Score-P Hands-on

Slide 19

Event Trace Collection Steps

1. Reference preparation for validation

2. Program instrumentation
3. Summary measurement collection

4. Summary experiment scoring
5. Summary measurement collection with filtering

6. Event trace collection



Score-P Hands-on

Slide 20

Summary experiment scoring
Summary measurement collection with filtering

Goals:
1. Determine functions causing measurement overhead or trace buffer 

requirements
2. Create filter to exclude these functions from measurement
3. Verify filtering reduced the measurement overhead or trace buffer 

requirements



Score-P Hands-on

Slide 21

Report scoring as textual output

Region/callpath classification
— MPI (pure MPI library functions)
— OMP (pure OpenMP functions/regions)
— USR (user-level source local computation)
— COM (“combined” USR + OpenMP/MPI)
— ANY/ALL (aggregate of all region types)

% scorep-score scorep-bt_mz-4x8-profile/profile.cubex
Estimated aggregate size of event trace:                   161GB
Estimated requirements for largest trace buffer (max_buf): 41GB
Estimated memory requirements (SCOREP_TOTAL_MEMORY):       41GB
(warning: The memory requirements cannot be satisfied by Score-P to avoid
intermediate flushes when tracing. Set SCOREP_TOTAL_MEMORY=4G to get the
maximum supported memory or reduce requirements using USR regions filters.)

flt type     max_buf[B]        visits time[s] time[%] time/visit[us]  region
ALL 43,216,467,671 6,597,243,813 2059.79   100.0           0.31  ALL
USR 42,988,648,534 6,574,790,617  887.80    43.1           0.14  USR
OMP    222,996,992    21,723,136 1158.81    56.3          53.34  OMP
COM      4,697,810       722,740    8.45     0.4          11.69  COM
MPI        124,294         7,316    4.72     0.2         644.54  MPI

SCOREP             41             4    0.01     0.0        2243.75  SCOREP

161GB total memory 
41GB per rank!

BT-MZ / Summary Analysis Result Scoring

USR

USR

COM

COM USR

OMP MPI



Score-P Hands-on

Slide 22

BT-MZ / Summary Analysis Report Breakdown

Score report breakdown by region

% scorep-score –r scorep-bt_mz-4x8-profile/profile.cubex

flt type     max_buf[B]        visits time[s] time[%] time/visit[us]  region
ALL 43,244,308,217 6,599,953,989 1466.39   100.0           0.22  ALL
USR 42,988,632,934 6,574,788,217  677.23    46.2           0.10  USR
OMP    250,853,312    24,435,712  778.31    53.1          31.85  OMP
COM      4,697,810       722,740    1.86     0.1           2.57  COM
MPI        124,120         7,316    8.99     0.6        1228.34  MPI

SCOREP             41             4    0.02     0.0        3825.92  SCOREP

USR 13,812,365,034 2,110,313,472  285.49    19.5           0.14  binvcrhs_
USR 13,812,365,034 2,110,313,472  152.25    10.4           0.07  matvec_...
USR 13,812,365,034 2,110,313,472  217.87    14.9           0.10  matmul_...
USR    596,197,758    87,475,200    8.37     0.6           0.10  lhsinit_
USR    596,197,758    87,475,200    7.11     0.5           0.08  binvrhs_
USR    447,869,968    68,892,672    6.13     0.4           0.09  exact_...

USR

USR

COM

COM USR

OMP MPI



Score-P Hands-on

Slide 23

BT-MZ / Summary Analysis Report Breakdown

Create filtering file for high-frequent regions
% scorep-score –g scorep-bt_mz-4x9-profile/profile.cubex

An initial filter file template has been generated: 'initial_scorep.filter'

To use this file for filtering at run-time, set the respective Score-P variable:

SCOREP_FILTERING_FILE=initial_scorep.filter

For compile-time filtering 'scorep' has to be provided with the '--instrument-filter' option:

$ scorep --instrument-filter=initial_scorep.filter

Compile-time filtering depends on support in the used Score-P installation.

The filter file is annotated with comments, please check if the selection is
suitable for your purposes and add or remove functions if needed.



Score-P Hands-on

Slide 24

BT-MZ / Summary Analysis Report Breakdown

Simulate filtering file
% scorep-score –f initial_scorep.filter \

scorep-bt_mz-4x8-profile/profile.cubex

Estimated aggregate size of event trace:                   976MB
Estimated requirements for largest trace buffer (max_buf): 244MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY):       262MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=262MB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

flt type     max_buf[B]        visits time[s] time[%] time/visit[us]  region
- ALL 43,244,308,217 6,599,953,989 1466.39   100.0           0.22  ALL
- USR 42,988,632,934 6,574,788,217  677.23    46.2           0.10  USR
- OMP    250,853,312    24,435,712  778.31    53.1          31.85  OMP
- COM      4,697,810       722,740    1.86     0.1           2.57  COM
- MPI        124,120         7,316    8.99     0.6        1228.34  MPI
- SCOREP             41             4    0.02     0.0        3825.92  SCOREP

976 MB total memory 
262 MB per rank!



Score-P Hands-on

Slide 25

BT-MZ / Filtered run

Run instrumented benchmark with filter:

% ./filtering.sh
Number of zones:  16 x  16
Iterations: 200    dt:   0.000100
Number of active processes:     4

Use the default load factors with threads
Total number of threads:     32  (  8.0 threads/process))

BT-MZ Benchmark Completed.
Class           =                        C
Size            =            480x  320x 28
Iterations      =                      200
Time in seconds =                    29.70
Total processes =                        4
Total threads   =                       32
Mop/s total     =                 81708.91
Mop/s/thread    =                  2553.40
Operation type  =           floating point
Verification    =               SUCCESSFUL
Version         =                    3.3.1
Compile date    =              27 May 2025



Score-P Hands-on

Slide 26

BT-MZ / Filtered run

Verify filtering result:
% scorep-score scorep-bt_mz-4x8-filtered/profile.cubex

Estimated aggregate size of event trace:                   870MB
Estimated requirements for largest trace buffer (max_buf): 218MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY):       234MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=234MB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

flt type  max_buf[B]     visits time[s] time[%] time/visit[us]  region
ALL 227,865,495 22,460,325  888.86   100.0          39.57  ALL
OMP 222,996,992 21,723,136  876.76    98.6          40.36  OMP
COM   4,697,810    722,740    7.86     0.9          10.87  COM
MPI     124,294      7,316    4.23     0.5         578.01  MPI
USR      46,358      7,129    0.01     0.0           0.91  USR

SCOREP          41          4    0.00     0.0        1188.77  SCOREP



Score-P Hands-on

Slide 27

Event Trace Collection Steps

1. Reference preparation for validation

2. Program instrumentation
3. Summary measurement collection

4. Summary experiment scoring
5. Summary measurement collection with filtering

6. Event trace collection



Score-P Hands-on

Slide 28

Event trace collection

Goals:
1. Create event trace with reduced overhead for further analysis 



Score-P Hands-on

Slide 29

BT-MZ / Tracing run

Run instrumented benchmark in trace mode:

% ./tracing.sh
Number of zones:  16 x  16
Iterations: 200    dt:   0.000100
Number of active processes:     4

Use the default load factors with threads
Total number of threads:     32  (  8.0 threads/process)

BT-MZ Benchmark Completed.
Class           =                        C
Size            =            480x  320x 28
Iterations      =                      200
Time in seconds =                    30.71
Total processes =                        4
Total threads   =                       32
Mop/s total     =                 79037.07
Mop/s/thread    =                  2469.91
Operation type  =           floating point
Verification    =               SUCCESSFUL
Version         =                    3.3.1
Compile date    =              27 May 2025



Score-P Hands-on

Slide 30

BT-MZ / trace result examination

Creates experiment directory ./scorep-bt_mz-4x8-tracing
— A manifest, what is included in this experiment directory (MANIFEST.md)
— a record of the measurement configuration (scorep.cfg)
— the trace file collection (traces.otf2, …)

% ls scorep-bt_mz-4x8-tracing
MANIFEST.md  scorep.cfg traces/  traces.def  traces.otf2
% cat scorep-bt_mz-4x8-tracing/MANIFEST.md
% cat scorep-bt_mz-4x8-tracing/scorep.cfg

# start Vampir
% vampir scorep-bt_mz-4x8-tracing/traces.otf2


