

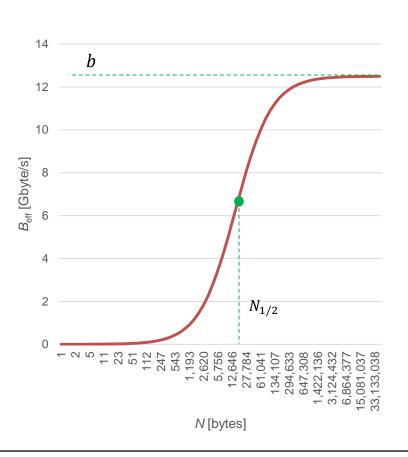
Erlangen Regional Computing Center UNIVERSITÄT GREIFSWALD Wissen lockt. Seit 1456

Winter term 2020/2021 Parallel Programming with OpenMP and MPI

Dr. Georg Hager

Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universität Erlangen-Nürnberg Institute of Physics, Universität Greifswald

Assignment 1 discussion


- Hockney Model: $T = \lambda + \frac{N}{b}$, where λ is latency, N is message size, and b is bandwidth
- Effective bandwidth: $B_{eff} = N/T$

(a) *N* for half asymptotic bandwidth?
$$\rightarrow \frac{N_{1/2}}{\lambda + \frac{N_{1/2}}{b}} = \frac{b}{2} \rightarrow N_{1/2} = \lambda b$$

Lower is better \rightarrow bandwidth increase will require larger messages to get to half max.!

(b) Effective bandwidth vs. message size

 $\rightarrow N_{1/2} = 15 \text{ kB}$

- Intel Xeon Phi "Knights Landing" Coprocessor (2016, discontinued)
 - Clock speed: up to 1.4 GHz
 - SIMD register width: 512 bit
 - Floating-point superscalarity: 2 FMA instructions per cycle
 - Cache size up to 36 Mbyte
 - Memory bandwidth (measured): 480 Gbyte/s
 - Number of cores: up to 72

(a) DP peak: $P_{peak} = 72 \times 8 \times 2 \times 2 \times 1.4 \cdot 10^9$ flop/s = 3.23 Tflop/s

(b) Upper performance bound for

```
for(int i=0; i<10000000; i++)
a[i] += s*b[i];</pre>
```

Minimum execution times:

•
$$T_{BW} = \frac{24 \times 10^7 \text{ byte}}{480 \times 10^9 \text{ byte/s}} = 500 \ \mu\text{s}$$

• $T_{flops} = \frac{2 \times 10^7 \text{ flop}}{3.23 \times 10^{12} \text{ flop/s}} = 6.19 \ \mu\text{s}$

Roofline shortcut: per-loop bound for two bottlenecks

 $P_{bound} = \min(P_{peak}, b/B_c),$

where B_c is the code balance:

 $B_c = \frac{\text{bytes transferred}}{\text{flops executed}}$

→ Upper performance bound: $P_{bound} = \frac{2 \times 10^7 \text{flop}}{T_{BW}} = 40 \text{ Gflop/s}$