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Outline of course

▪ Basics of parallel computer architecture

▪ Basics of parallel computing

▪ Introduction to shared-memory programming with OpenMP

▪ OpenMP performance issues

▪ Introduction to the Message Passing Interface (MPI)

▪ Advanced MPI

▪ MPI performance issues

▪ Hybrid MPI+OpenMP programming
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Simple but enlightening scalability models
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Metrics to quantify the efficiency of parallel computing

▪ 𝑇(𝑁): execution time of some fixed workload with 𝑁 workers

▪ How much faster than with a single worker?

→ parallel speedup: 𝑆 𝑁 =
𝑇(1)

𝑇(𝑁)

▪ How efficiently do those 𝑁 workers do their work?

→ parallel efficiency: 𝜀 𝑁 =
𝑆 𝑁

𝑁

▪ Warning: These metrics are not performance metrics!

Can we

predict

𝑆 𝑁 ? Are 

there limits

to it? 
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Assumptions for basic scalability models

▪ Scalable hardware: 𝑁 times the iron can work 𝑁 times faster

▪ Work is either fully parallelizable or not at all

▪ For the time being, assume a constant workload

Ideal world: 

All work is perfectly parallelizable

𝑆 𝑁 = 𝑁, 𝜀 = 1

2020-10-26
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A simple speedup model for fixed workload

One worker normalized execution time: 𝑇 1 = 𝑠 + 𝑝 = 1
𝑠: runtime of purely serial part

𝑝: runtime of perfectly parallelizable part

𝑝 = 1 − 𝑠 𝑠

𝑇 𝑁 = 𝑠 +
𝑝

𝑁

𝑝/𝑁

𝑠
Parallel execution:

2020-10-26
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Amdahl’s Law (1967) – “Strong Scaling”

▪ Fixed workload speedup with 𝑠 being the fraction of nonparallelizable work

▪ Parallel efficiency: 𝜀 𝑁 =
1

𝑠 𝑁−1 +1

𝑆 𝑁 =
𝑇(1)

𝑇(𝑁)
=

1

𝑠 +
1 − 𝑠
𝑁

Gene M. Amdahl: Validity of the single processor approach to achieving large scale computing capabilities . 

In Proceedings of the April 18-20, 1967, spring joint computer conference (AFIPS '67 (Spring)). Association 

for Computing Machinery, New York, NY, USA, 483–485. DOI:10.1145/1465482.1465560
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Fundamental limits in Amdahl’s Law

▪ Asymptotic speedup

lim
𝑁→∞

𝑆 𝑁 =
1

𝑠

▪ Asymptotic parallel efficiency

lim
𝑁→∞

𝜀 𝑁 = 0

→ Asymptotically, nobody is doing anything except the worker that gets the

serial work!

▪ In reality, it’s even worse…

2020-10-26



9Parallel Programming 2020

Strong scaling plus overhead 

▪ Let 𝑐(𝑁) be an overhead term that may include communication and/or 

synchronization

→ 𝑇 𝑁 = 𝑠 +
𝑝

𝑁
+ 𝑐(𝑁)

▪ What goes into 𝑐(𝑁)?

▪ Communication pattern

▪ Synchronization strategy

▪ Message sizes 

▪ Network structure

▪ …

Typical examples: 𝑐(𝑁) =

▪ 𝑘𝑁2 (all-to-all on bus network)

▪ 𝑘 log 𝑁 (optimal synchronization)

▪ 𝑘𝑁 (one sends to all)

▪ 𝜆 + 𝑘𝑁
−
2

3 (Cartesian domain 

decomposition, 

nonblocking network)
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10Parallel Programming 2020

Strong scaling with a particularly bad overhead model

Assume 𝑐 𝑁 = 𝑘𝑁 and 𝑇 1 = 𝑠 + 𝑝, i.e., no communication with 𝑁 = 1

𝑝 = 1 − 𝑠 𝑠

𝑝/𝑁

𝑠

𝑘𝑁

𝑇 𝑁 = 𝑠 +
𝑝

𝑁
+ 𝑘𝑁

Parallel execution:

2020-10-26
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Strong scaling with linear overhead

▪ Linear overhead is hazardous

▪ Large-𝑁 behavior

→ 𝑆𝑘 𝑁
𝑁≫1 1

𝑁𝑘

𝑆 𝑁 =
𝑇(1)

𝑇(𝑁)
=

1

𝑠 +
1 − 𝑠
𝑁 + 𝑘𝑁
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So, all is lost? Not quite!

▪ Communication is not necessarily serial and/or non-overlapping

▪ Nonblocking networks can transfer many messages concurrently

▪ Communication may be overlapped with useful work for some algorithms

▪ Increasing the amount of parallel work can mitigate the impact of the serial 

work

2020-10-26
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A simple speedup model for scaled workload

▪ What if we could increase the parallel part of the work only?

→ the larger 𝑝, the larger the speedup

▪ This is not possible for all applications,

but for some

▪ “Weak scaling”

𝑝 𝑠

𝑝/𝑁 𝑠

𝑝 𝑠

𝑝/𝑁 𝑠

2020-10-26
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A simple speedup model for scaled workload

▪ Parallel workload grows linearly with 𝑁

→ 𝑇 𝑁 = 𝑠 +
𝑝𝑁

𝑁
= 𝑠 + 𝑝, i.e., runtime stays constant

▪ Scalability metric? 

→ How much more work per second can be done with 𝑁 workers than with 

one worker?

𝑆 𝑁 =
(𝑠 + 𝑝𝑁)/(𝑠 + 𝑝)

(𝑠 + 𝑝)/(𝑠 + 𝑝)
= 𝑠 + 1 − 𝑠 𝑁

Gustafson’s Law 

(“weak scaling”)

John L. Gustafson: Reevaluating Amdahl's law. Commun. ACM 31, 5 (May 1988), 532–533. 

DOI:10.1145/42411.42415
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Gustafson’s Law for weak scaling

▪ Linear speedup (but not proportional unless 𝑠 = 0) with 𝑁:

▪ Weak scaling is the solution to the Amdahl dilemma: Why should we build 

massively parallel systems if all parallelism is limited by the serial fraction?

▪ Extension to communication?

→ 𝑇 𝑁 = 𝑠 +
𝑝𝑁

𝑁
+ 𝑐 𝑁 = 1 + 𝑐 𝑁

→ 𝑆 𝑁 =
(𝑠+𝑝𝑁)/(1+𝑐(𝑁))

(𝑠+𝑝)/1
=

𝑠+ 1−𝑠 𝑁

1+𝑐(𝑁)

𝑆 𝑁 = 𝑠 + 1− 𝑠 𝑁 → unbounded speedup!

Much more relaxed 

conditions on 𝑐(𝑁)

2020-10-26



How can we determine the model parameters?

▪ Manual analysis: Requires in-depth knowledge of hardware and program

▪ Curve fitting: Less insight, but also less cumbersome

▪ Example: Strong scaling of 

hypothetical code on “Meggie” 

node @FAU (10 cores per socket, 

2 sockets per node)

▪ Use “extended Amdahl’s” with 𝑘𝑁
overhead

▪ Result:

Best fit is not a good fit at all

Parallel Programming 2020 162020-10-26
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Separation of scaling baselines is key!

▪ Intra-socket scaling is not covered by the model

▪ Model assumes “scalable resources”

Socket saturation 

due to memory 

bandwidth

Model well suited 

for internode 

scaling!

Scaling baseline: 

1 node

Separating scaling baselines 

is important in modeling!

Scaling baseline: 

1 core

2020-10-26
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Amdahl generalized: load imbalance

▪ Load imbalance at sync points

▪ More specifically, execution time imbalance

▪ 𝑝/𝑁 assumption no longer valid in general

▪ Hard to model in general, but two corner cases:

▪ A few “laggers” waste lots of resources

▪ Single lagger → Amdahl’s Law

▪ A few “speeders” might be harmless

▪ Tuning advice

▪ Avoid sync points

▪ Turn laggers into speeders 

2020-10-26
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Resource bottlenecks

▪ Amdahl’s Law assumes perfect scalability of resources

▪ Reality: Computer architecture is plagued by bottlenecks!

▪ Example: array update loop

▪ Amdahl’s: 𝑠 = 0, 𝑐(𝑁) = 0

▪ Perfect speedup? No!

▪ Saturation because of memory

bandwidth exhaustion

#pragma omp parallel for

for(i=0; i<10000000; ++i)

a[i] = a[i] + s * c[i];

8-core CPU (Intel Sandy Bridge)

2020-10-26
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A more general view on resource bottlenecks

▪ What is the maximum performance when limited by a bottleneck?

▪ Resource bottleneck 𝑖 delivers resources at maximum rate 𝑅𝑖
𝑚𝑎𝑥

▪ 𝑊𝑖 = needed amount of resources

▪ Minimum runtime: 𝑇𝑖 =
𝑊𝑖

𝑅𝑖
𝑚𝑎𝑥

▪ Multiple bottlenecks → multiple minimum runtimes:  𝑇min = 𝑓(𝑇1 , …𝑇𝑛)

▪ Overall performance: 

𝑊𝑖

𝑅𝑖
𝑚𝑎𝑥

𝑃max =
𝑊

𝑇min

2020-10-26
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A bottleneck model of computing

▪ Example: two bottlenecks

#pragma omp parallel for

for(i=0; i<107; ++i)

a[i] = a[i] + s * c[i];

8-core CPU 

(3 GHz Intel Sandy Bridge)

𝑅𝐵𝑊
𝑚𝑎𝑥 = 40

Gbyte

s

𝑊𝐵𝑊 = 3 × 8 × 107 bytes

𝑅𝑓𝑙𝑜𝑝𝑠
𝑚𝑎𝑥 = 192

Gflops

s

𝑊𝑓𝑙𝑜𝑝𝑠 = 2 × 107 flops

𝑇𝑓𝑙𝑜𝑝𝑠 =
2 × 107 flops

192
Gflops
s

= 104 𝜇𝑠 𝑇𝐵𝑊 =
2.4 × 108 bytes

40
Gbyte
s

= 6.0 ms

2020-10-26
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An optimistic bottleneck model

▪ How do we reconcile the multiple bottlenecks? 

I.e., what is the functional form of 𝑓(𝑇1 , … 𝑇𝑛)?

→ optimistic model (full overlap):      𝑓 𝑇1 , … 𝑇𝑛 = max(𝑇1 , … 𝑇𝑛)

▪ Application to example: 𝑇min = max 𝑇𝑓𝑙𝑜𝑝𝑠 , 𝑇𝐵𝑊 = 6ms

▪ Maximum performance (“light speed”): 𝑃max =
2×107

6.0×10−3
flops
s

= 3.3 Gflop/s

This is called the Roofline model. See also https://youtu.be/IrkNZG8MJ64

2020-10-26
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Measuring and presenting performance
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Benchmarking: two kinds (and a half)

Micro-

benchmarking

Application

benchmarking

Mini-apps 

(proxy apps)
real applications

realistic problems

simple loops, functions

well understood

configurable

carefully designed

2020-10-26
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Proper definition of benchmark cases 

Benchmarking is a vital part of development and performance analysis

1. Define proper benchmark case(s) (input data sets)

▪ Reflect(s) “production” workload

▪ Tolerable runtime (minutes at most)

2. Document system settings and execution environment

▪ Software: compilers, compiler options, library versions, OS version, …

▪ Hardware: CPU type, network, [… many more …]

▪ Runtime options: Threads/processes per node, affinity, large pages, 

[… many more …]

3. Document measurement methodology

▪ Number of repetitions, statistical variations, …

2020-10-26
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Performance and time

▪ Performance is a “higher is better” metric:   𝑃 𝑁 = 𝑆 𝑁 × 𝑃(1)

▪ How much work can be done per time unit?

▪ Work: flops, iterations, “the problem,” …

▪ Time: wall-clock time

▪ Measuring performance:

▪ Caveat: 

Timer resolution is finite!

#if !defined(_POSIX_C_SOURCE)

#define _POSIX_C_SOURCE 199309L

#endif

#include <time.h>

double get_walltime() {

struct timespec ts;

clock_gettime(CLOCK_MONOTONIC, &ts);

return (double)ts.tv_sec + 

(double)ts.tv_nsec * 1.e-9;

}

double get_walltime_() {

return get_walltime();

}

Return 

time 

stamp

For

Fortran

double s = get_walltime();

// do your work here

double e = get_walltime();

double p = work/(e-s);

2020-10-26
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Popular blunders: runtime != performance

▪ Just presenting runtime is almost always a bad idea!

Insights hidden by 

trivial dependency: 

“larger problems 

need more time”

Performance metric 

reveals interesting 

behavior worth 

investigating!

2020-10-26
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Popular blunders: speedup != performance

Speedup hides the “higher is better” quality when comparing different 

systems or cases
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Popular blunders: TMI bombs are no good

▪ Show only the data that is required to drive your point home

▪ You can always put the rest into an online repository (good thing!)

2020-10-26
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More about how not to do it

Fooling the masses with performance results on parallel computers

https://blogs.fau.de/hager/archives/category/fooling-the-masses

https://blogs.fau.de/hager/files/2018/08/FTM-GridKa18-c.pdf

2020-10-26
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Finding parallelism and 

mapping it to the hardware



Finding parallelism

▪ … may be simple or might be a challenge. 

Example: summing up many numbers

෍= 𝑠1 +𝑠2 + 𝑠3 + 𝑠4 + 𝑠5 + 𝑠6 +⋯+ 𝑠999999+ 𝑠1000000

෍= ((… (((((𝑠1+𝑠2) + 𝑠3) + 𝑠4) + 𝑠5) + 𝑠6) +⋯+ 𝑠999999) + 𝑠1000000)

Sequential summation

෍= ((𝑠1+𝑠2) + 𝑠3 + 𝑠4 ) + ( 𝑠5 + 𝑠6 +⋯) +⋯+ (𝑠999999 + 𝑠1000000))

(Stepwise) parallel summation

2020-10-26Parallel Programming 2020 33
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Finding parallelism: data parallelism on coarse level

▪ Example: domain decomposition (e.g., in Computational Fluid Dynamics)

▪ Mapping of 3D mesh to processes/threads

▪ Cartesian/unstructured grid

▪ Next-neighbor communication 

by message passing

▪ Simple communication, load balancing 

P1 P2 P3 P4

Solve equations in each block

Exchange boundary cells 

Check for convergence

Initial configuration
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Finding parallelism: functional parallelism on coarse level

▪ Example: functional decomposition (e.g., multi-physics codes)

▪ Different functional units of a program are mapped to different processors

▪ Every sub-task is different from the others and has different communication 

requirements

▪ Problem: load balancing

Air flow
Heat transfer

Cloud motionExample: 

Climate model
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Finding parallelism: data parallelism on intermediate level

▪ Example: work sharing in shared memory via threading

▪ Here: matrix-vector multiplication (dense MVM)

▪ Execute a complete kernel (“solver”)

on multiple threads, share data

▪ “Loop parallelism”

▪ Programming techniques

▪ OpenMP threading, or any other threading model (e.g., POSIX threads)

▪ Auto-parallelizing compilers (don’t hold your breath)

#pragma omp parallel for

for(int r=0; r<rows; ++r)

for(int c=0; c<cols; ++c)

y[r] += m[r][c] * x[c]; = + •

Thread 0

Thread 1

Thread 2

2020-10-26
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Finding parallelism: instruction and data parallelism on fine level

▪ Instruction-level parallelism 

exploits concurrency in 

instruction streams

▪ Example: dense MVM

▪ 2 loads + 1 FMA in inner loop

▪ Pipelining & superscalarity

▪ Mostly automatic, done by 

hardware

▪ Compiler can help

for(int r=0; r<rows; ++r)

for(int c=0; c<cols; ++c)

y[r] += m[r][c] * x[c];

▪ SIMD parallelism exploits parallel 

data processing by instruction

▪ Example: dense MVM

▪ Done by compiler or programmer

▪ Target: inner loops

for(int r=0; r<rows; ++r) {

y0 = y1 = 0.;

for(int c=0; c<cols; c+=2) {

y0 += m[r][c]   * x[c];

y1 += m[r][c+1] * x[c+1];

}

y[r] += y0 + y1;

}
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Levels of parallelism in large parallel systems
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ILP, pipelining, SIMD

Chip

cores
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Take-home messages

▪ The available parallelism is usually limited

▪ Serial fraction, communication

▪ If you do it right, unlimited parallelism might be an option

▪ Weak scaling, favorable communication

▪ Hardware bottlenecks are ubiquitous but constitute well-defined upper 

performance limits

▪ A back-of-the-envelope calculation is better than nothing

▪ Measuring and presenting performance data is ridden with pitfalls

▪ Know your hardware and the parallelism it provides to your application


