_ UNIVERSITAT GREIFSWALD
Wissen lockt. Seit 1456

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager
Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universitat Erlangen-Nurnberg
Institute of Physics, Universitat Greifswald

Lecture 3: Parallel computing and its limits

Outline of course

= Basics of parallel computing

Parallel Programming 2020 2020-10-26

RIEDRICH-ALEXANDER

UNIVERSITAT _
ERLANGEN-NURNBERG

Simple but enlightening scalability models

Metrics to quantify the efficiency of parallel computing

= T(N): execution time of some fixed workload with N workers
= How much faster than with a single worker?

: _ @
—> parallel speedup: S(N) = V)
Can we
= How efficiently do those N workers do their work? predict
S(N)? Are
. _ _S(N) there limits
- parallel efficiency: e(N) = — {0 it?

= Warning: These metrics are not performance metrics!

Parallel Programming 2020 2020-10-26

Assumptions for basic scalability models

= Scalable hardware: N times the iron can work N times faster
= Work is either fully parallelizable or not at all
= For the time being, assume a constant workload

|deal world:
All work is perfectly parallelizable
S(N) =N, e=1

CE

Parallel Programming 2020 2020-10-26

A simple speedup model for fixed workload

One worker normalized execution time: T(1) =s+p =1
s: runtime of purely serial part
p: runtime of perfectly parallelizable part

p=1-s

Parallel execution: T(N) = s + &

N

p/N

Parallel Programming 2020 2020-10-26

Amdahl’s Law (1967) — “Strong Scaling”

= Fixed workload speedup with s being the fraction of nonparallelizable work

S(N) T(l) 1 . =e==3=-0.1 s=0.01 e=e==s=0.001
- T(N) 1—s :
S + N . Z
» Parallel efficiency: e(N) = m i

1 2 3 4 5 6 7 8 9 10
workers

Gene M. Amdahl: Validity of the single processor approach to achieving large scale computing capabilities.
In Proceedings of the April 18-20, 1967, spring joint computer conference (AFIPS '67 (Spring)). Association
for Computing Machinery, New York, NY, USA, 483-485. DOI:10.1145/1465482.1465560

Parallel Programming 2020 2020-10-26

https://doi.org/10.1145/1465482.1465560

Fundamental limits in Amdahl's Law

= Asymptotic speedup

_ 1
lim S(N) == ;

= Asymptotic parallel efficiency

1\111—{20 e(N)=0 ;

- Asymptotically, nobody is doing anything except the worker that gets the
serial work!

= |n reality, it's even worse...

Parallel Programming 2020 2020-10-26 8

Strong scaling plus overhead

= Let ¢(N) be an overhead term that may include communication and/or
synchronization

= T(N)=s+%+c(N)

= What goes into c¢(N)? Typical examples: ¢(N) =
- Communication pattern = kN2 (all-to-all on bus network)
= Synchronization strategy = klog N (optimal synchronization)
= Message sizes = kN (one sends to all)
. _Z : :
Network structure " A+ kN 3 (Cartesian domain

decomposition,
nonblocking network)

Parallel Programming 2020 2020-10-26

Strong scaling with a particularly bad overnhead model

Assume c(N) = kN and T(1) = s + p, i.e., n0O communication with N =1

p=1-—s S

Parallel execution:

T(N) =s+%+kN

p/N kN

Parallel Programming 2020 2020-10-26

Strong scaling with linear overhead

s=0.01, k=0.01 ==e==s=0.001, k=0.05

= Linear overhead is hazardous —o=5=0.1, k=0

T(1) 1 : —

S(N) = —
1 - 4
TN) 54 N > + kN N
= Large-N behavior 2
N>1 ¢ !
> Sk (N) — —
workers

Parallel Programming 2020 2020-10-26 11

So, all is lost? Not quite!

= Communication is not necessarily serial and/or non-overlapping
= Nonblocking networks can transfer many messages concurrently
= Communication may be overlapped with useful work for some algorithms

= [ncreasing the amount of parallel work can mitigate the impact of the serial
work

7

Parallel Programming 2020 2020-10-26 12

A simple speedup model for scaled workload

= What if we could increase the parallel part of the work only?
- the larger p, the larger the speedup

= This is not possible for all applications, E
but for some

= “Weak scaling”

Parallel Programming 2020 2020-10-26 13

A simple speedup model for scaled workload

= Parallel workload grows linearly with N

> T(N)=s+ % = s + p, I.e., runtime stays constant

= Scalability metric?
- How much more per second can be done with N workers than with

one worker?

s+ p) Gustafson’s Law

S(N) = s+p) + (1 —-s)N (“weak scaling”)

John L. Gustafson: Reevaluating Amdahl's law. Commun. ACM 31, 5 (May 1988), 532-533.
DOI:10.1145/42411.42415

Parallel Programming 2020 2020-10-26 14

https://doi.org/10.1145/42411.42415

Gustafson’s Law for weak scaling

= Linear speedup (but not proportional unless s = 0) with N:
S(N)=s+ (1—s)N - unbounded speedup!

= Weak scaling is the solution to the Amdahl dilemma: Why should we build
massively parallel systems if all parallelism is limited by the serial fraction?

= Extension to communication?

%T(N)=5+%+C(N)=1+C(N)

Much more relaxed
__(s+pN)/(14c(N)) _ s+(1-s)N b
2> S(N) = (54p)/1 = e conditions on c(N)

Parallel Programming 2020 2020-10-26 15

How can we determine the model parameters?

= Manual analysis: Requires in-depth knowledge of hardware and program
= Curve fitting: Less insight, but also less cumbersome

- | o]
= Example: Strong scaling of 12| :,‘E °
hypothetical code on “Meggie” 1o g Pt
node @FAU (10 cores per socket, _ E‘ir,-"'
2 sockets per node) g T 7
= Use “extended Amdahl's” with kN & & ,'/ ¢ — = 5=0.075, k=0
overhead 4_\;’ © Measured
- /000
22(’ |
= Result: .|.|i.|.|.|.|.|.|_
Best fit is not a good fit at all o 20 s a0 0 60 70 80

Parallel Programming 2020 2020-10-26

Separation of scaling baselines is key!

= |ntra-socket scaling is not covered by the model

= Model assumes “scalable resources”

! Scaling baseline:
[| 1 core
1 1 1

5 10 15 20
cores

Model well suited
for internode
scaling!

Separating scaling baselines
IS Important in modeling!

Socket saturation
due to memory
bandwidth

Speedup

— — s=0, k=0.051

Scaling baseline:

_‘ 1 node

2 3 4

nodes

Parallel Programming 2020

17

FRIEDRICH-ALEXANDER

UNIVERSITAT _
ERLANGEN-NURNBERG

Scalability limitations beyond Amdahl’s with
communication

Amdahl generalized: load imbalance

time

-

= Load imbalance at sync points

= More specifically, execution time imbalance “

= p/N assumption no longer valid in general work / wait

work wait

= Hard to model in general, but two corner cases: worc Y wai

= A few “laggers” waste lots of resources SWME
- Single lagger > Amdahl’'s Law

= Afew “speeders” might be harmless \

= Tuning advice work
= Avoid sync points
= Turn laggers into speeders

I
work i
I

work wait

work

Sync point |

Parallel Programming 2020 2020-10-26 19

Resource bottlenecks

Amdahl's Law assumes perfect scalability of resources
Reality: Computer architecture is plagued by bottlenecks!

Example: array update loop
40

#pragma omp parallel for
for (i=0; i<10000000; ++i)

af[i] + s * c[i];

30

GB/s

a[i] =

] —

Amdahl's: s =0,c(N) =0

= Perfect speedup? No!
= Saturation because of memory _____—
5 6 7

bandwidth exhaustion 0
1 2 3

Threads

20

2020-10-26

10
8-core CPU (Intel Sandy Bridge) -

| |
8

Parallel Programming 2020

A more general view on resource bottlenecks

= What is the maximum performance when limited by a bottleneck?
= Resource bottleneck i delivers resources at maximum rate R/™**
= W; = needed amount of resources

I leax

Wi
max
R;

= Minimum runtime: T; =

= Multiple bottlenecks - multiple minimum runtimes: Tp,in = f(Ty, ... Ty,)

= Qverall performance: W

Pmax = T . -
min

~
()

Parallel Programming 2020 2020-10-26

21

A bottleneck model of computing

= Example: two bottlenecks

————————————————————————————————

e Tl [ra Tvsl [va Tl e Twal [Tl e Tl [Tl [Tl
#pragma omp parallel for Emlﬂmmmmm T
:—I_I_HI“_”_H_H_l
for (i=0; i<107; ++i) Mam-—l b
_ _ _ | — pmax _ 4OG yte
a[i] = a[i] s c[i]; | Momory] BW S

8-core CPU
(3 GHz Intel Sandy Bridge)

WBW =3X8X 107 byteS

2.4 x 10° bytes

Tpy =
40 Gbglte

0 ms

Parallel Programming 2020 2020-10-26 22

An optimistic bottleneck model

= How do we reconcile the multiple bottlenecks?
l.e., what is the functional form of f(Ty,...T,,)?

—> optimistic model (full overlap): f(Ty,...T,,) = max(Ty, ... T,;)
= Application to example: Tpip = max(Trops, Tew) = 6 ms

2x10” flops
6.0x1073 S

= Maximum performance (“light speed”): Pmax = = 3.3 Gflop/s

This is called the Roofline model. See also https://youtu.be/IrkNZG8MJI64

Parallel Programming 2020 2020-10-26 23

https://youtu.be/IrkNZG8MJ64

FRIEDRICH-ALEXANDER

UNIVERSITAT _
ERLANGEN-NURNBERG

Benchmarking:
Measuring and presenting performance

Benchmarking: two kinds (and a half)

Parallel Programming 2020 2020-10-26

Proper definition of benchmark cases

Benchmarking is a vital part of development and performance analysis

1. Define proper benchmark case(s) (input data sets)

Reflect(s) “production” workload

Tolerable runtime (minutes at most)

2. Document system settings and execution environment

Software: compilers, compiler options, library versions, OS version, ...
Hardware: CPU type, network, [... many more ...]

Runtime options: Threads/processes per node, affinity, large pages,
[... many more ...]

3. Document measurement methodology
Number of repetitions, statistical variations, ...

Parallel Programming 2020 2020-10-26

26

Performance and time

= Performance is a “higher is better” metric: P(N) = S(N) X P(1)
= How much work can be done per time unit?

Work: flops, iterations, “the problem,” ...
#if 'defined(POSIX C_SOURCE)

Time: wall-clock time #define POSIX C_SOURCE 199309L
#endif

#include <time.h>

Measuring performance:
[double get walltime() {

double s = get walltime(); Return struct timespec ts;
// do your work here time < clock gettime (CLOCK MONOTONIC, &ts);
double e = get walltime(); return (double)ts.tv_sec +
double p = work/ (e-s) ; stamp (double) ts.tv_nsec * 1l.e-9;
.}
= Caveat: For double get walltime () {
Timer resolution is finite! Fortran return get_walltime();

Parallel Programming 2020 2020-10-26 27

Popular blunders: runtime !'= performance

= Just presenting runtime is almost always a bad idea!

. . [
Insights hidden by
trivial dependency:
10000} “larger problems 2001
B need more time” 0
%) =
. 3
£ c
= £
3 —
T 1000F 2 100
:) [0}
Performance metric &
reveals interesting
behavior worth
investigating!
1005007000 2000 0500 7000 2000

Problem size Problem size

Parallel Programming 2020 2020-10-26 28

Popular blunders: speedup != performance

Speedup hides the “higher is better” quality when comparing different
systems or cases

45 180

40 -~ 160
Q
35 = 140
o 30 S 120
S = /
© 25 ~ 100
3 3)
S 20 S 80
%) / S
15 —a € 60
° Dq_!—) ® /
5 - 20
0 :

o

0 20 40 60 0 20 40 60

=@=NEC === Cluster # CPUs or nodes == NEC === Cluster # CPUs or nodes

Parallel Programming 2020 2020-10-26

29

Popular blunders: TMI bombs are no good

= Show only the data that is required to drive your point home

Ln;muhuﬂmm“l

mmnmmnlmm i

l_\ lﬂMM“hhM""
EL il
i»,u,ly,n!gi,u,'l},l,‘

BT

i

= You can always put the rest into an online reposﬂory (good thing!)

Ty
annbthih

Parallel Programming 2020

2020-10-26

30

More about how not to do it

Fooling the masses with performance results on parallel computers

https://blogs.fau.de/hager/archives/category/fooling-the-masses

https://blogs.fau.de/hager/£files/2018/08/FTM-GridKal8-c.pdf

Parallel Programming 2020 2020-10-26

31

https://blogs.fau.de/hager/archives/category/fooling-the-masses
https://blogs.fau.de/hager/files/2018/08/FTM-GridKa18-c.pdf

FRIEDRICH-ALEXANDER

UNIVERSITAT _
ERLANGEN-NURNBERG

Finding parallelism and
mapping it to the hardware

Finding parallelism

= ... may be simple or might be a challenge.
Example: summing up many numbers

/ Z =581 + S +S3+54+ S5+ Sg + -+ Sg99999 + S1000000

z = ((.. (((((s1ts2) +53) +84) +55) + 56) + *** + S999999) + S1000000)

Sequential summation

z = ((sy+s2) + (53 +54)) + ((55 +Sg) +=*) + - + (S999999 *+ 51000000))

(Stepwise) parallel summation

Parallel Programming 2020 2020-10-26 33

Finding parallelism: data parallelism on coarse level

= Example: domain decomposition (e.g., in Computational Fluid Dynamics)

= Mapping of 3D mesh to processes/threads
- Cartesian/unstructured grid

- Next-neighbor communication
by message passing

= Simple communication, load balancing
— Check for convergence |

| Initial configuration |
A
A\ 4

|Solve equations in each block|

!

| Exchange boundary cells |

l

Parallel Programming 2020 2020-10-26 34

Finding parallelism: functional parallelism on coarse level

= Example: functional decomposition (e.g., multi-physics codes)
= Different functional units of a program are mapped to different processors
= Every sub-task is different from the others and has different communication

requirements
= Problem: load balancing

Air flow

Example:

Climate model

T~

\ 4

Heat transfer

/

Cloud motion

Parallel Programming 2020

2020-10-26

35

Finding parallelism: data parallelism on intermediate level

= Example: work sharing in shared memory via threading
= Here: matrix-vector multiplication (dense MVM)

#pragma omp parallel for L] T T T
for (int r=0; r<rows; ++r) - Thread 0
for (int c=0; c<cols; ++c) R R -,
ylr] += m[r][c] * x[c]; | = + Thread 1

= Execute a complete kernel (“solver”) || -
on multiple threads, share data - ITlhfleﬁlldIZI

= “Loop parallelism”

= Programming techniques
= OpenMP threading, or any other threading model (e.g., POSIX threads)
= Auto-parallelizing compilers (don’t hold your breath)

Parallel Programming 2020 2020-10-26

Finding parallelism: instruction and data parallelism on fine level

» [nstruction-level parallelism = SIMD parallelism exploits parallel
exploits concurrency in data processing by instruction
Instruction streams = Examp|e: dense MVM

= Example: dense MVM

for (int r=0; r<rows; ++r) {

for (int r=0; r<rows; ++r) go =_Y1 =_g:; 1s - —

for (int c=0; c<cols; ++c) eri(intic=0i e<co f’ ct+=2) {
ylr] += ~ . yO0 += m[r] [c] x[c];
yl += m[r] [c+1l] * x[c+l];
. }
2 loa + 1 FMAIn mner loop vIr] += y0 + yi;
* Pipelining & superscalarity }

* Mostly automatic, done by = Done by compiler or programmer

hardware

. Compiler can help = Target: inner loops

Parallel Programming 2020 2020-10-26 37

Levels of parallelism in large parallel systems

o Core
= ILP, pipelining, SIMD
o Chip
T cores
°
Q
=
)
€ Node
chips, sockets, accelerators
3 Cluster E E i Eﬂ% %ﬂ%
A oo UL

Al0] A[L] A[2] A[3]
D O O ¢
B[0] B[1] B[2] B[3]
AR

clo] c[] c2] c3]

Parallel Programming 2020 2020-10-26

38

Take-home messages

= The available parallelism is usually limited
= Serial fraction, communication

= |f you do it right, unlimited parallelism might be an option
= Weak scaling, favorable communication

= Hardware bottlenecks are ubiquitous but constitute well-defined upper
performance limits

= A back-of-the-envelope calculation is better than nothing

= Measuring and presenting performance data is ridden with pitfalls

= Know your hardware and the parallelism it provides to your application

Parallel Programming 2020 2020-10-26

39

