

Erlangen Regional Computing Center UNIVERSITÄT GREIFSWALD Wissen lockt. Seit 1456

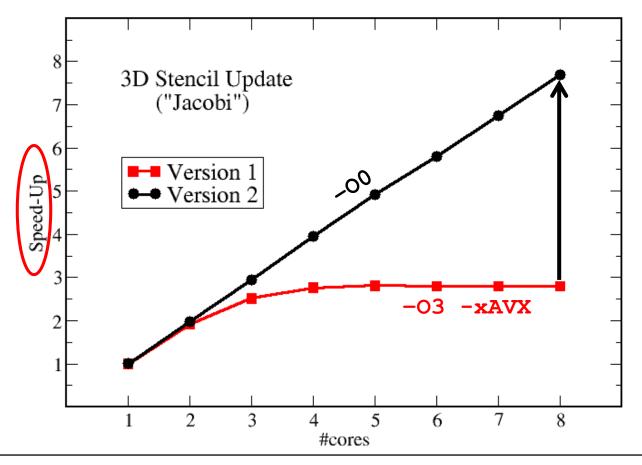
Winter term 2020/2021 Parallel Programming with OpenMP and MPI

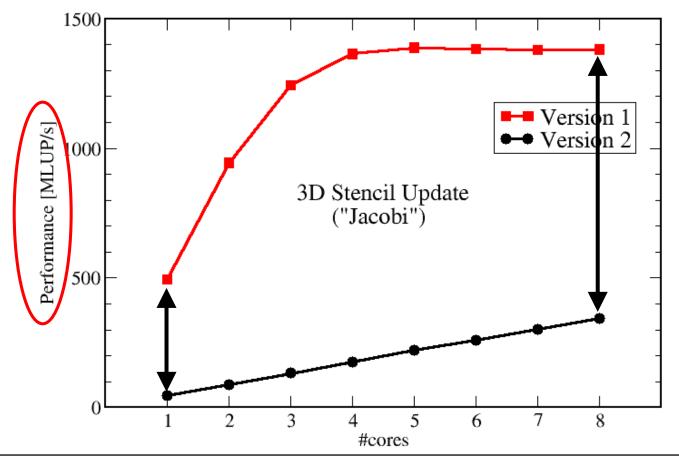
Dr. Georg Hager

Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universität Erlangen-Nürnberg Institute of Physics, Universität Greifswald

Assignment 2 discussion

"Slow computing"


Assume that a system (2) executes all code a factor of μ slower than a reference system (1):


$$S_{\mu}(N) = \frac{\mu}{\mu s + \frac{\mu(1-s)}{N} + kN} = \frac{1}{s + \frac{1-s}{N} + kN/\mu}$$

 $\rightarrow \mu > 1$ implies better speedup at same N

 \rightarrow "A machine with slow CPUs scales better"

Corollary: A slow code scales better, too! :-/

• Parallel loop with overhead of $T_o = 2000$ cy:

#pragma omp parallel for for(i=0; i<n; ++i) a[i] = a[i] + s * c[i];

- Machine: 8 cores, 3 GHz, $P_{peak} = 192$ Gflop/s, $b_s = 40$ Gbyte/s
- Execution time

$$T_{exec} = \frac{24 \times n \text{ byte}}{b_s} + T_o \rightarrow \text{Performance } P = \frac{2 \times n \text{ flops}}{T_{exec}} = \frac{2n \text{ flops}}{\frac{24n \text{ byte}}{b_s} + T_o}$$

• Asymptotic performance: $P_a = \frac{b_s}{12 \text{ byte/flop}}$

• Condition: $P(n) = \frac{1}{2}P_a$

Solve for n:

$$n = \frac{b_s T_o}{24 \text{ byte}} = 1111$$

• $\rightarrow n$ is linear in the overhead time and the memory bandwidth