
Winter term 2020/2021

Parallel Programming with OpenMP and MPI

Dr. Georg Hager
Erlangen Regional Computing Center (RRZE) at Friedrich-Alexander-Universität Erlangen-Nürnberg

Institute of Physics, Universität Greifswald

Lecture 4: Basics of OpenMP

2Parallel Programming 2020

Outline of course

▪ Basics of parallel computer architecture

▪ Basics of parallel computing

▪ Introduction to shared-memory programming with OpenMP

▪ OpenMP performance issues

▪ Introduction to the Message Passing Interface (MPI)

▪ Advanced MPI

▪ MPI performance issues

▪ Hybrid MPI+OpenMP programming

2020-11-02

Basics of OpenMP

2020-11-02Parallel Programming 2020

Introduction to OpenMP: Basics

▪ “Easy,” incremental and portable parallel programming of shared-memory
computers: OpenMP

▪ Original design goal: Data-level shared memory parallelism – many
extensions: Task parallelism, Accelerator offloading, SIMD support,…

▪ Standardized set of compiler directives & library functions:
http://www.openmp.org/

▪ FORTRAN, C and C++ interfaces are defined

▪ Supported by all current compilers

▪ Free tools are available

▪ B. Chapman, G. Jost, R. v. d. Pas: Using OpenMP. MIT Press, 2007, ISBN 978-0262533027

▪ R. v. d. Pas, E. Stotzer, C. Terboven: Using OpenMP – The Next Step. MIT Press, 2017, ISBN 978-0-262-53478-9

4

http://www.openmp.org/

2020-11-02Parallel Programming 2020

Introduction to OpenMP: Software Architecture

▪ Programmer’s view:

▪ Directives/pragmas in application

code

▪ (A few) library routines

▪ User’s view:

▪ Environment variables determine:

▪ resource allocation

▪ scheduling strategies and other

(implementation-dependent) behavior

▪ Operating system view:

▪ Parallel work done by OS threads

Application

Compiler

Directives

User

Environment

Variables

Runtime Library

Threads in OS

Cores in hardware

5

2020-11-02Parallel Programming 2020

Introduction to OpenMP: shared-memory model

◼ Threads:

◼ Spawned by a process

◼ Local register set, instruction

pointer, stack

◼ Shared global address space

◼ Data: shared or private

◼ shared data available to all

threads

◼ private data only available to

thread that owns it

◼ Data transfer: transparent to

programmer

private

Shared

Memory

T

T

T

T

private

private

Central concept of OpenMP programming: Threads

private

6

2020-11-02Parallel Programming 2020

Introduction to OpenMP: fork-join execution model

Program start:

one process (master thread) running

Parallel region: team of threads is generated (“fork”)

Synchronize when leaving parallel region (“join”)

Serial region:

only master executes

Thread # 0 1 2 3 4

7

2020-11-02Parallel Programming 2020

Introduction to OpenMP: General syntax in C/C++

▪ Compiler directive:

#pragma omp [directive [clause ...]]

structured block

▪ If OpenMP is not enabled by compiler → treated like comment

▪ Include file for API calls: #include <omp.h>

▪ Conditional compilation: Compiler’s OpenMP switch sets preprocessor
macro (acts like -D_OPENMP)

#ifdef _OPENMP

t = omp_get_thread_num();

#endif

8

2020-11-02Parallel Programming 2020

Introduction to OpenMP: General syntax in Fortran

▪ Each directive starts with sentinel in column 1:

▪ fixed source: !$OMP or C$OMP or *$OMP

▪ free source: !$OMP

followed by a directive and, optionally, clauses.

▪ API calls:

▪ F77: include file omp_lib.h, F90+: module omp_lib

▪ Conditional compilation of lines starting with !$ or C$ or *$ to ensure
compatibility with sequential execution

▪ Example:
myid = 0

!$ myid = omp_get_thread_num()

numthreads = 1

!$ numthreads = omp_get_num_threads()

9

2020-11-02Parallel Programming 2020

Introduction to OpenMP: parallel region

▪ #pragma omp parallel

structured block

▪ Makes structured block a parallel region: All code executed between start and

end of this region is executed by all threads

▪ This includes subroutine calls within the region

▪ END PARALLEL required in Fortran

#pragma omp parallel

printf(“Hello from %d of %d\n”,

omp_get_thread_num(), omp_get_num_threads());

10

of threads

in region

ID of calling

thread 0…n-1API functions

2020-11-02Parallel Programming 2020

Introduction to OpenMP: compile and run

▪ Activate OpenMP directives

▪ Intel: -qopenmp, GCC: -fopenmp

▪ Number of threads: Shell variable OMP_NUM_THREADS

▪ Ordering of output is not defined

▪ Avoid extensive output to stdout in parallel regions!

$ icc -qopenmp hello.c

$ OMP_NUM_THREADS=4 ./a.out

Hello from 0 of 4

Hello from 3 of 4

Hello from 1 of 4

Hello from 2 of 4

11

OpenMP data scoping

2020-11-02Parallel Programming 2020

Data scoping: Shared vs. private data

Data in a parallel region can be:

▪ private to each executing thread

→ each thread has its own local copy of data

▪ shared between threads

→ there is only one instance of data available to all threads

→ this does not mean that the instance is always visible to all threads!

OpenMP clause specifies scope of variables:
#pragma omp parallel private(var1, tmp) shared(eps)

private

Shared

Memory

T

T

T

T

private

private

private

15

2020-11-02 16Parallel Programming 2020

How is private data different from shared data?

▪ Local variables are kept on a stack (last-

in first-out memory)

▪ Every thread has a private stack area

▪ i.e., there is a global stack plus one local

stack for each thread

▪ Private data goes to private stacks

▪ Stack size is limited!

void f() {

int a;

float x,y;

...

#pragma omp parallel

{

int i;

float y; // masking shared y

...

}

}

i

y

<free>

<free>

stack pointer

local stack

i

y

<free>

<free>

stack pointer

local stack

i

y

<free>

<free>

stack pointer

local stack

i

y

<free>

<free>

stack pointer

local stack

a

x

y (top of stack)

<free>

stack pointer

M
e
m

o
ry

 a
d
d
re

s
s
e
s

shared stack

2020-11-02Parallel Programming 2020

Data scoping: Shared vs. private data

▪ Default: All data in a parallel region is shared

This includes global data (global/static variables, C++ class variables)

▪ Exceptions:

1. Loop variables of parallel (“sliced”) loops are private (cf. workshare constructs)

2. Local (stack) variables within parallel region

3. Local data within enclosed function calls are private unless declared static

▪ Stack size limits → may be necessary to make large arrays static

▪ If not possible → use heap [i.e., malloc(), new[], allocate()]

▪ OMP_STACKSIZE shell variable allows to set per-thread stack size

$ setenv OMP_STACKSIZE 100M

17

2020-11-02Parallel Programming 2020

Data scoping: private data example

C: Fortran 90+:

use omp_lib

integer myid, numthreads

...

myid = 0

numthreads = 1

!$omp parallel private(myid,numthreads)

!$ myid = omp_get_thread_num()

!$ numthreads = omp_get_num_threads()

print *,“I am ”,myid, &

“ of ”,numthreads

!$omp end parallel

include <omp.h>

...

int myid = 0, numthreads = 1;

#pragma omp parallel \

private(myid, numthreads)

{

#ifdef _OPENMP

myid = omp_get_thread_num();

numthreads = omp_get_num_threads();

#endif

printf(“I am %d of %d\n”,

myid, numthreads);

}

18

2020-11-02 19Parallel Programming 2020

Data scoping: alternative in C

include <omp.h>

...

#pragma omp parallel

{

int myid = 0, numthreads = 1;

#ifdef _OPENMP

myid = omp_get_thread_num();

numthreads = omp_get_num_threads();

#endif

printf(“I am %d of %d\n”,

myid, numthreads);

}

Local variables in structured block are

automatically private! → less need for

private clauses in C

Caveat: local variables are destroyed

(go out of scope) at end of block!

Data scoping: important side effects

▪ What happens if a variable is unintentionally shared?
▪ Nothing if it is just read

▪ Possibly hazardous if at least one thread writes to it

▪ Clause for specifying default scope: default(shared|private|none)

▪ Recommendation: Use
#pragma omp parallel default(none)

▪ to not overlook anything

▪ compiler complains about every variable that has no explicit scoping attribute

float x = 0.0;

#pragma omp parallel

{

x += some_work(...);

}

2020-11-02Parallel Programming 2020 20

“Race condition”

Data scoping: private variables and masking

double s;

s = ...;

#pragma omp parallel private(s)

{

s = ...;

... = ... + s;

}

... = ... + s;

ti
m

e

s

fork

T0 T1 T2 T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3s

persists

(inaccessible)

s
join

shared private

Masking privatized

variables defined in scope

outside the parallel region
shared value

recovered after region

initial values

undefined

But what happens if the initial value is required

within the parallel region?

2020-11-02Parallel Programming 2020 21

2020-11-02Parallel Programming 2020

The firstprivate clause

Extension of private:

value of master copy is transferred to
private variables

Restrictions: not a pointer, not
assumed shape, not a subobject,
master copy not itself private etc.

double s;

s = ...;

#pragma omp parallel firstprivate(s)

{

s += ...;

... = ... + s;

}

... = ... + s;

ti
m

e

s

fork

T0 T1 T2 T3

s

s

s0 s1 s2 s3

s0 s1 s2 s3s

persists

(inaccessible)

s
join

shared private

Global variable privatization:

threadprivate, copyprivate
clauses

shared value

recovered after region

22

OpenMP work sharing

2020-11-02Parallel Programming 2020

Worksharing: manual loop scheduling

▪ Work distribution by

thread ID

▪ Only works so easily

for canonical loops

▪ Load balancing very

hard

▪ Complex code

→ don’t do it.

#include

int tid, numth, bstart, bend, blen, N;

double a[N], b[N], c[N], d[N];

...

#pragma omp parallel private(tid, numth, bstart, bend, blen)

{

tid=0; numth=1;

#ifdef _OPENMP

tid = omp_get_thread_num();

numth = omp_get_num_threads();

#endif

blen = N/numth;

if(tid < N % numth) {

++blen; bstart = blen * tid;

} else

bstart = blen * tid + N % numth;

bend=bstart+blen-1;

for(i=bstart; i<=bend; ++i)

a[i] = b[i] + c[i] * d[i];

}

One consecutive

chunk of iterations

per thread

Actual work

26

Worksharing: parallel loop

▪ #pragma omp for [clauses]

declares that the following loop is to be distributed among threads

▪ Active only if encountered within a parallel region

▪ Loop counter of parallel loop is declared private implicitly

▪ Implicit thread synchronization (barrier) at end of parallel and at end of for

▪ Fortran: !$omp do [clauses]

int i, N;

double a[N], b[N], c[N], d[N];

...

#pragma omp parallel

{

#pragma omp for // parallelize loop

for(i=0; i<N; ++i)

a[i] = b[i] + c[i] * d[i];

}

2020-11-02Parallel Programming 2020 27

barriers here!

2020-11-02Parallel Programming 2020

Worksharing: combined construct

▪ #pragma omp parallel for

structured block

▪ Just easier to type…

▪ Fortran: !$omp parallel do / $!omp end parallel do

int i, N;

double a[N], b[N], c[N], d[N];

...

#pragma omp parallel for

for(i=0; i<N; ++i)

a[i] = b[i] + c[i] * d[i];

28

2020-11-02Parallel Programming 2020

Worksharing constructs

#pragma omp for

▪ Only the loop immediately following the directive is workshared

▪ Restrictions on parallel loops

▪ trip count must be computable (no do ... while)

▪ loop body with single entry and single exit point (no breaking out of loop)

▪ C++ random access iterator loops are supported:

29

#pragma omp for

for(auto i=v.begin(); i!=v.end(); ++i) {

(*i) *= 2.0;

}

2020-11-02Parallel Programming 2020

Worksharing constructs in general

▪ Distribute the execution of the enclosed code region among the members

of the team

▪ Must be enclosed dynamically within a parallel region

▪ No implied barrier on entry

▪ Implicit barrier at end of worksharing (unless nowait clause is specified)

▪ Directives

▪ for directive (C/C++), do directive (Fortran)

▪ section(s) directives (ignored here)

▪ workshare directive (Fortran 90 only – ignored here)

▪ Tasking (advanced)

30

2020-11-02 31Parallel Programming 2020

Worksharing constructs example

Example: matrix processing with nested loop structure

double a[ndim][ndim], b[ndim][ndim];

...

#pragma omp parallel

{

#pragma omp for

for(int j=1; j<ndim-1; ++j) {

for(int i=1; i<ndim-1; ++i)

a[j][i] = (b[j][i]+b[j][i]

+b[j][i]+b[j][i])*0.25;

}

#pragma omp for

for(int j=1; j<ndim-1; ++j) {

for(int i=1; i<ndim-1; ++i)

b[j][i] = (a[j][i]+a[j][i]

+a[j][i]+a[j][i])*0.25;

}

}

Th
re

ad
 3

Th
re

ad
 2

Th
re

ad
 1

Th
re

ad
 0

synchronization

j

i

Only these

loops are

parallel!

2020-11-02Parallel Programming 2020

Some workshare construct clauses

▪ Examples for workshare construct clauses:

▪ private, firstprivate, lastprivate

▪ nowait

▪ collapse(n)

▪ schedule(type [, chunk]) [see next slide]

▪ reduction(operator:list) [see later]

▪ There are some more…

▪ Implicit barrier at the end of loop unless nowait is specified

(barrier may be costly!)

▪ collapse: Fuse nested loops to a single (larger one) and parallelize it

▪ schedule clause specifies how iterations of the loop are distributed

among the threads of the team.

32

2020-11-02Parallel Programming 2020

Loop worksharing: the schedule clause

Within schedule(type [, chunk]), type can be one of the following:

▪ static: Iterations are divided into pieces of a size specified by chunk. The pieces are statically assigned

to threads in the team in a round-robin fashion in the order of the thread number.

Default chunk size: one contiguous piece for each thread.

▪ dynamic: Iterations are broken into pieces of a size specified by chunk. As each thread finishes a piece of

the iteration space, it dynamically obtains the next set of iterations. Default chunk size: 1.

▪ guided: The chunk size is reduced in an exponentially decreasing manner with each dispatched piece of

the iteration space.

chunk specifies the smallest piece (except possibly the last).

Default chunk size: 1. Initial chunk size is implementation dependent.

▪ runtime: The decision regarding scheduling is deferred until run time. The schedule type and chunk size

can be chosen at run time by setting the OMP_SCHEDULE environment variable.

▪ auto: Compiler/runtime decides

▪ Default schedule: implementation dependent

33

2020-11-02Parallel Programming 2020

Loop worksharing: the schedule clause

34

