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Two Paradigms for Parallel Programming

 Distributed Memory
 message passing

 explicit programming required

 Special design: 

 cache coherency protocol over 
interconnect

 behaves like non-uniform shared 
memory

 Shared Memory
 common address space for a number of

CPUs

 access efficiency may vary  SMP, 
(cc)NUMA
(memory access time depends on the
memory location relative to the
processor)

 many programming models

 potentially easier to handle

 hardware and OS support required

P P P P

Memory
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Two Paradigms for Parallel Programming
Distributed Memory

 Same program on each processor/machine
(SPMD) or
Multiple programs with consistent communication
structure (MPMD)

 Program written in a sequential language
 all variables process-local
 no implicit knowledge of data on other 

processors

 Data exchange between processes
 send/receive messages via appropriate 

library
 most tedious, but also the most flexible way 

of parallelization

 Parallel library discussed here: 
 Message Passing Interface, MPI

Shared Memory

 Single Program on single machine
 UNIX Process splits off threads, mapped to

CPUs for work distribution

 Data
 may be process-global or thread-local
 exchange of data not needed, or via suitable

synchronization mechanisms

 Programming models
 explicit threading (hard)
 directive-based threading via OpenMP

(easier)
 automatic parallelization (very easy, but 

mostly not efficient)
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Standards-Based Parallelism
MPI Standard OpenMP Standard

https://www.mpi-forum.org/docs/ https://www.openmp.org/specifications/
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Two Paradigms for Parallel Programming
 MPI Standard

 MPI version 1.0 in May 1994

 MPI version 2.0 in July 1997

 MPI version 3.0 in September 2012

 MPI version 4.0 in June 2021

 MPI version 4.1 in November 2023.

 Base Languages

 Fortran

 C 

 Resources

 http://www.mpi-forum.org

 OpenMP Standard

 OpenMP 1.0 in 1997 (Fortran) / 1998 (C, C++)

 OpenMP 3.0 (May 2008) 

 tasking etc.

 OpenMP 4.0 (July 2013)

 SIMD, affinity policies, accelerator support

 OpenMP 5.0 (Nov 2018)

 two new tool interfaces, multilevel memory 
systems

 OpenMP 6.0 (Nov 2024)

 improvements in usability and fine grain 
control

 Base Languages

 Fortran

 C, C++

 Resources

 http://www.openmp.org
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MPI Standard
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OpenMP Standard
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Typical Parallelization Hierarchy



OpenMP
Principles of Directive Driven Shared Memory Parallelism



OpenMP Architecture Review Board (ARB)

The mission of the OpenMP ARB (Architecture Review Board) is to 
standardize directive-based multi-language high-level parallelism that is 
performant, productive and portable.
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Recent Books about OpenMP
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Recent Books about OpenMP

Covers all about Accelerator Programming, 2023
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Two Paradigms for Parallel Programming

 Operating system view:
 parallel work done by threads

 Programmer’s view:
 directives: comment lines in code, e.g.

 !$omp parallel

 #pragma omp parallel

 library routines, e.g.
 omp_get_num_threads()

 omp_get_thread_num()

 omp_get_max_threads() 

 User’s view:
 environment variables determine:

resource allocation, scheduling strategies and other 
(implementation-dependent) behaviour, e.g.
 OMP_NUM_THREADS

 OMP_SCHEDULE

 OMP_NESTED
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Two Paradigms for Parallel Programming
 Program start: only initial thread (formerly known as 

master thread) runs

 Parallel region: team of worker threads is generated
(“fork”)

 Threads synchronize when leaving parallel region (“join”)

 Only initial thread executes sequential part (worker 
threads persist, but are inactive)

 Task and data distribution possible via directives

 Nesting of parallel regions:
 allowed, but level of support implementation 

dependent

 Usually optimal: 
 one thread per processor core
 other resource mappings are allowed/possible
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Parallel region: Simplest Program Example: Fortran
program hello

use omp_lib

implicit none

integer :: nthr, myth

!$omp parallel private(myth)

!$omp single

nthr = omp_get_num_threads()

!$omp end single

myth = omp_get_thread_num()

write(*,*) "Hello from ", myth, "of ", nthr

!$omp end parallel

end program hello

 Parallel region directive:
 enclosed code executed by all threads

 may include subprogram calls („dynamic
region“)

 Special function calls:
 module omp_lib provides interface

 here: get number of threads and index of
executing thread

 Data scoping:
 uses a clause on the directive
 myth thread-local: private

 nthr process-global: shared
(will be discussed in more detail later)
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Parallel region: Simplest Program Example: C/C++ 
#include <stdio.h>
#include <omp.h>

int nthr, myth;

int main(int arc, char *argv[])

{

#pragma omp parallel private(myth)

{

#pragma omp single

nthr = omp_get_num_threads();

myth = omp_get_thread_num();

printf("Hello from %i of %i\n", myth, nthr);

}

}

 Parallel region directive:
 enclosed code executed by all threads

 may include subprogram calls („dynamic
region“)

 Special function calls:
 Include file <omp.h>

 here: get number of threads and index of
executing thread

 Data scoping:
 uses a clause on the directive
 myth thread-local: private

 nthr process-global: shared
(will be discussed in more detail later)



Compile Fortran (e.g. with Intel compiler):
ifx -qopenmp –o hello.exe hello.f90

Compile C (e.g. with Intel compiler):
icx -qopenmp –o hello.exe hello.f90

Run:
export OMP_NUM_THREADS=4

./hello.exe

Hello from 0 of 4

Hello from 2 of 4

Hello from 3 of 4

Hello from 1 of 4

Compile for serial run (e.g. with Intel compiler):
ifx -qopenmp-stubs –o hello.exe hello.f90 

 special switch for „stub library“

ordering not 
reproducible
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Compiling and Running an OpenMP Program
 Special compiler switch 

 activates OpenMP directives
 generates threaded code
 further suboptions may be available
 each compiler has something different here

 OpenMP environment
 defines runtime behaviour
 here: number of threads used

 Serial functionality of program
 (dis)order of output
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OpenMP Fortran Syntax

 Specifications:

 Fortran 77 style

 Fortran 90 module (preferred)

 Directives:

 fixed form source:

free form source (preferred):

 Conditional compilation:

 In fixed form also sentinels *$, c$

 Continuation line:

include ”omp_lib.h”

use omp_lib

myid = 0
!$ myid = omp_get_thread_num()

!$OMP <directive> &
!$OMP <clause>

C$OMP <directive> [<clause [(<args>)]>, …] sentinel starting in column 1, 
also : *$OMP, !$OMP

!$OMP <directive> [<clause [(<args>)]>, …]
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OpenMP C/C++ Syntax

 Include file:

 Preprocessor  directive:  uses pragma feature

 Conditional compilation: OpenMP switch sets preprocessor macro

 Continuation line:

#include <omp.h>

#pragma omp <directive> [clause …]

#ifdef _OPENMP

… /* do something */
#endif

#pragma omp directive \
clause



20PPHPS 2025    |    Elements of OpenMP and MPI 

OpenMP Syntax: Remarks on Clauses

 Many (but not all) OpenMP directives support clauses
 more than one may appear on a given directive

 Clauses specify additional information associated with the directive
 modification of directive’s semantics

 “Simplest example” from above: 
 private(…) appears as clause to the parallel directive

 The specific clause(s) that can be used depend on the directive
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OpenMP Syntax: Structured Block

 Defined by braces in C/C++ 

 In Fortran:

 code between begin/end of an OpenMP 
construct must be a complete, valid 
Fortran block

 Single point of entry:
 no GOTO into block (Fortran), 

no setjmp()to entry point (C)

 Single point of exit:
 RETURN, GOTO, EXIT outside block  are 

prohibited (Fortran)
 longjmp() and throw() must not violate 

entry/exit rules (C, C++)
 exception: termination via STOP or exit() 

 Block structure example: 

 C version of simplest program

#include <omp.h>

int main() {
int numth = 1;

#pragma omp parallel

{
int myth = 0; /* private */

#ifdef _OPENMP
#pragma omp single

numth = omp_get_num_threads();
/* block above: one statement */
myth = omp_get_thread_num(); 

#endif
printf(“Hello from %i of %i\n”,\

myth,numth);

} /* end parallel */ 
}



Work Sharing in OpenMP (1): Fortran
 Making parallel regions useful … 

 divide up work between threads

 Example: 

 working on an array processed by a nested loop structure

 iteration space of directly nested loop is sliced

real :: a(ndim, ndim)
… 
!$omp parallel 
!$omp do
do j=1, ndim
do i=1, ndim

…
a(i, j) = …

end do
end do
!$omp end do
…  

!$omp end parallel

j-loop is sliced

synchronization
between threads

further parallel 
execution
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Work Sharing in OpenMP (1): C/C++
 Making parallel regions useful … 

 divide up work between threads

 Example: 

 working on an array processed by a nested loop structure

 iteration space of directly nested loop is sliced

float a[ndim][ndim];

int main(int arc, char *argv[])
{
#pragma omp parallel
{

#pragma omp for
for(int j=0;j<ndim;j++) {

for(int i=0;i<ndim;i++) {
a[i][j]= …;

}
}

…
}

}

j-loop is sliced

further parallel 
execution

synchronization
between threads
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Work Sharing in OpenMP (2)
 Synchronization behaviour:

 all threads (by default) wait for completion
at the end of the work sharing region
(„barrier“)

 following references and definitions using an 
array element by other threads are therefore
OK.

 Slicing of iteration space:

 „loop scheduling“

 default behaviour is implementation
dependent

 usually as equal as possible chunks of largest
possible size

 Additional clauses on !$OMP DO / #pragma 
omp for

 will be discussed in advanced OpenMP talk

 Fortran syntax:

 C/C++ syntax:

 Restrictions on loop structure: 
 trip count must be computable at entry to 

loop 
disallowed: C style loops modifying the loop 
variable, or otherwise violating the require-
ment, Fortran do while loop without loop 
control;

 loop body with single entry and single exit 
point  

#pragma omp for [clause]
for ( ... )  {  

...   // loop body
}

!$omp do [clause]
do ...

...   // loop body
end do
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Memory Model

 Two kinds of memory exist in OpenMP  Threads access globally shared 
memory

 Data can be shared or private

 shared data – one instance of an 
entity available to all threads 

 private data – each per-thread copy 
only available  to thread that owns it

 Data transfer transparent to 
programmer

 Synchronization takes place (is 
mostly implicit)

 threadprivate variables
 see advanced OpenMP talk
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Data-Sharing Attributes

 By default most variables are shared
 local variables outside the scope of construct

 static/global (C/C++) or save/common (Fortran)
variables

 Except
 variables* defined inside the construct are private

 i.e. declared inside {}-block or BLOCK/END BLOCK

 variables* local to functions/routines called from within the region are private

 loop iteration variables of worksharing loops are private

* non-static (C/C++) or without save attribute (Fortran)

int s = 1;

#pragma omp parallel
{
int p = omp_get_thread_num();
printf("s=%d p=%d\n", s, p);

}
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Data-Sharing Attribute Clauses

 Clauses for explicitly specifying how a variable should be treated
 supported by several directives, e.g., parallel, do/for, single, sections, task, …

 Clauses:
 shared(var1, var2, …)

 private(var1, var2, …)

 private + special operation 
 firstprivate(var1, var2, …)

 lastprivate, for do/for construct

 Change default:
 Fortran

 C/C++:

 best practice: default(none)
 every variable referenced must appear in a shared/private/… clause

 avoids incorrect assumptions about shared/private

default(shared|private|firstprivate|none)

default(shared|none)
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Scoping: Second-Simplest Example: Fortran

 Summation inside a loop

 Note: large workload inside loop improves
threaded performance

 require thread-individual variable for
partial sum calculated on each thread

 but: private copies of variables are
undefined at entry to, and become
undefined at exit of the parallel region

 therefore: collect partial sums to a 
shared variable defined after the
worksharing region

 updates to shared variable must be
specially protected:

 use a critical region

 only one thread at a time may execute
(mutual exclusion)

(performance impact due to explicit 
synchronization)

real :: s, stot
stot = 0.0
!$omp parallel private(s)
s = 0.0 
!$omp do
do i=1, ndim

… ! workload
s = s + …

end do
!$omp end do

!$omp critical
stot = stot + s

!$omp end critical

!$omp end parallel
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Scoping: Second-Simplest Example: C/C++

 Summation inside a loop

 Note: large workload inside loop improves
threaded performance

 require thread-individual variable for
partial sum calculated on each thread

 but: private copies of variables are
undefined at entry to, and become
undefined at exit of the parallel region

 therefore: collect partial sums to a 
shared variable defined after the
worksharing region

 updates to shared variable must be
specially protected:

 use a critical region

 only one thread at a time may execute
(mutual exclusion)

(performance impact due to explicit 
synchronization)

float s, stot;
stot = 0.;

#pragma omp parallel private(s)
{

s = 0.;
#pragma omp for

for(int i=0;i<ndim;i++) {
… // workload
s = s + … ;

}
#pragma omp critical

{
stot = stot + s;

}
}
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Private Variables – Masking: Fortran

real :: s

s = …

!$omp parallel private(s) 

s = …

… = … + s

!$omp end parallel

… = … + s

 Masking relevant for

• privatized variables defined in scope
outside the parallel region
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Private Variables – Masking: C/C++

float s;

s = … ;

#pragma omp parallel private(s) 

{

s = … ;

… = … + s;

}

… = … + s;
 Masking relevant for

• privatized variables defined in scope
outside the parallel region
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The firstprivate Clause: Fortran

real :: s

s = …

!$omp parallel firstprivate(s) 

… = … + s

!$omp end parallel

… = … + s

• Extension of private:

• value of master copy is transferred to private 
variables

• restrictions: not a pointer, not assumed
shape, not a subobject, master copy not itself
private etc.
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The firstprivate Clause: C/C++

float s;

s = … ;

#pragma omp parallel firstprivate(s) 

{

… = … + s;

}

… = … + s;

• Extension of private:

• value of master copy is transferred to private 
variables

• restrictions: not a pointer, not assumed
shape, not a subobject, master copy not itself
private etc.
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The lastprivate Clause: Fortran

real :: s

s = …

!$omp parallel 

!$omp do lastprivate(s)

do i = …

s = … 

end do

!$omp end do

!$omp end parallel

… = … + s  Extension of private:
• additional semantics for work sharing
• value from thread which executes last iteration

of loop is transferred back to master copy
(which must be allocated if it is a dynamic
entity)

• restrictions similar to firstprivate

on work
sharing
directive
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The lastprivate Clause: C/C++

float s;

s = …;

#pragma omp parallel

{

#pragma omp for lastprivate(s)

for(int i=0; i<ndim; i++) {

s = …;

}

}

… = … + s;

 When to use?
• as little as possible
• legacy code

 Extension of private:
• additional semantics for work sharing
• value from thread which executes last iteration

of loop is transferred back to master copy
(which must be allocated if it is a dynamic
entity)

• restrictions similar to firstprivate

on work
sharing
directive
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Reduction Operations (1): Fortran

real :: s

!$omp parallel

!$omp do reduction(+:s)

do i = …

…
s = s + …

end do

!$omp end do

… = … * s  

!$omp end parallel

Note: this improves on the summation example

(no explicit critical region needed)

s is still 
shared here

 At synchronization point:

• reduction operation is performed

• result is transferred to master copy
• restrictions similar to firstprivate



37PPHPS 2025    |    Elements of OpenMP and MPI 

Reduction Operations (1): C/C++

float s;

#pragma omp parallel

{

#pragma omp for reduction(+:s)

for(int i=0;i<ndim;i++) {

...;

s = s + …;

}

… = … * s;

}

Note: this improves on the summation example

(no explicit critical region needed)

s is still 
shared here

 At synchronization point:

• reduction operation is performed

• result is transferred to master copy
• restrictions similar to firstprivate



38PPHPS 2025    |    Elements of OpenMP and MPI 

Reduction Operations (2): Fortran

 Initial value of reduction variable

• depends on operation

 Consistency required

 operation specified in clause vs. update 
statement

 Multiple reductions:

 multiple scalars, or an array:

Initial ValueOperation

0+

0-

1*

.true..and.

.false..or.

.true..eqv.

.false..neqv.

min(type)MAX

max(type)MIN

all bits setIAND

0IEOR

0IOR

real :: x, y, z
!$OMP do reduction(+:x, y, z)

real :: a(n)
!$OMP do reduction(*:a)

!$OMP do reduction(+:x, y) &
!$OMP    reduction(*:z)



39PPHPS 2025    |    Elements of OpenMP and MPI 

Reduction Operations (2): C/C++

 Initial value of reduction variable

• depends on operation

 Consistency required

 operation specified in clause vs. update 
statement

 Multiple reductions:

 multiple scalars, or an array:

Initial ValueOperation

0+

0-

1*

~ 0&

0|

0^

1&&

0||

min(type)max

max(type)min

float x, y, z;
#pragma omp for reduction(+:x, y, z)

float a[n];
#pragma omp for reduction(*:a[0:n])

#pragma omp for reduction (+:a[0:n]) \
reduction (*:b[0:n],c[0:n])

lower
bound

length



MPI
Principles of Message Passing on Distributed Memory Architectures



MPI Architecture

 Operating system view:

 parallel work done by tasks

 Programmer’s view:

 library routines for 

 coordination

 communication

 synchronization

 User’s view:

 MPI execution environment provides

 resource allocation

 startup method

 and other (implementation-
dependent) behaviour
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MPI Parallel Execution

 Tasks run throughout program 
execution

 all variables are local

 Startup phase:
 establishes communication context 

(„communicator“) among all tasks

 Point-to-point data transfer:
 usually between pairs of tasks

 usually coordinated

 may be blocking or non-blocking

 explicit synchronization is needed for non-
blocking

 Collective communication:
 between all tasks or a subgroup of tasks

 MPI 2 blocking-only (→ MPI 3)

 reductions, scatter/gather operations

 Clean shutdown
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MPI C and Fortran Interfaces

 Required header files: 
 C: #include <mpi.h>

 Fortran: include 'mpif.h'

 Fortran90: USE MPI

 Bindings:
 C: error = MPI_Xxxx(parameter,.....);

 Fortran: call MPI_XXXX(argument,...,ierror)

 MPI constants (global/common): All upper case in C

 Arrays:

 C: indexed from 0 

 Fortran: indexed from 1
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MPI Error Handling

 Fortran MPI routines

 ierror argument — cannot be omitted! 

 C MPI routines

 return an int — may be ignored

 Return value MPI_SUCCESS

 indicates that all went ok

 Default: 

 abort parallel computation in case of other return values

 but can also define error handlers
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Initialization and Finalization (1)
 Each processor must start/terminate an MPI process

 Usually handled automatically
 More than one process per processor is mostly possible

 First call in MPI program: initialization of parallel machine
 Fortran: call MPI_INIT(ierror)
 C: MPI_Init(&argc, &argv);

 Last call: clean shutdown of parallel machine
 Fortran: call MPI_FINALIZE(ierror)
 C: MPI_Finalize();

 Only process with rank 0 (see later) is guaranteed to return from MPI_Finalize

 Stdout/stderr of each MPI process
 usually redirected to console where program was started
 many options possible, depending on implementation
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Initialization and Finalization (2)
 Frequent source of errors: MPI_Init() in C

C binding:

int MPI_Init(int *argc, char ***argv);

 If MPI_Init() is called in a function (bad idea anyway), this function must have pointers to the original 
data:

void init_all(int *argc, char***argv) {
MPI_Init(argc, argv);
…

}
…
init_all(&argc, &argv);

 Depending on implementation, mistakes at this point might even go unnoticed until code is ported



47PPHPS 2025    |    Elements of OpenMP and MPI 

Communicator and Rank (1)

 MPI_Init defines "communicator" MPI_COMM_WORLD:

 MPI_COMM_WORLD defines the processes that belong to the parallel machine

 other communicators (subsets) are possible
 rank labels processes inside a communicator
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Communicator and Rank (2)

 The rank identifies each process within a communicator (e.g. MPI_COMM_WORLD):
 obtain rank in Fortran:

integer rank, ierror

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

 obtain rank in C:
int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 rank = 0, 1, 2, … , (number of MPI tasks – 1)

 Obtain number of MPI tasks in communicator: 
 in Fortran:

integer size, ierror
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)

 in C:
int size;
MPI_Comm_size(MPI_COMM_WORLD, &size);
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Communicator and Rank (3)

 MPI_COMM_WORLD is 

 effectively an MPI-global variable and required as argument for nearly all MPI calls
 rank

 is target label for MPI messages

 can drive user-defined directives what each process should do:

if (rank == 0) then

... ! do work for rank 0

else

... ! do work for other ranks

end if

if (rank == 0){

... // do work for rank 0

}

else {

... // do work for other ranks ***

}

Fortran C
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A Very Simple MPI Program: Fortran

program hello

use mpi

implicit none

integer :: rank, size, ierror

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

write(*,*) 'Hello World! I am ',rank,' of ',size

call MPI_FINALIZE(ierror)

end program
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A Very Simple MPI Program: C/C++

#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[]) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD,&size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello World! I am %i of %i\n", rank, size);

MPI_Finalize();

}
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Compiling and Running MPI Code

 Compile time:
• include files or module information file 

needed

 Link time:
• MPI library required

 Most implementations
• provide mpif77, mpif90, mpicc and 

mpiCC wrappers

• not standardized, so variations must be 
expected e.g., with Intel-MPI (mpiifx, 
mpiicx etc.)

• Startup facilities
• mpirun (legacy)

• mpiexec

• site and implementation dependent 

 Compile:

 Fortran: mpiifx –o hello hello.f90

 C: mpiicx –o hello hello.c

 Run on 4 processors:

mpirun –np 4 ./hello or

mpiexec –n 4 ./hello

 Output:

Hello World! I am 3 of 4
Hello World! I am 1 of 4
Hello World! I am 0 of 4
Hello World! I am 2 of 4

order undefined
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MPI Process Communication
 Communication between two processes:

Sending / Receiving of MPI-Messages

 MPI-Message:

Array of elements of a particular MPI datatype

 MPI data types:

 basic data types

 derived data types
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Basic Fortran and C Data Types

MPI datatype FORTRAN datatype 
MPI_CHARACTER CHARACTER(1) 
MPI_INTEGER INTEGER 
MPI_REAL REAL 
MPI_DOUBLE_PRECISION DOUBLE PRECISION 
MPI_COMPLEX COMPLEX 
MPI_LOGICAL LOGICAL 
MPI_BYTE   
MPI_PACKED   

 

MPI datatype C datatype 
MPI_CHAR / MPI_SHORT signed char / short 
MPI_INT / MPI_LONG signed int / long 
MPI_UNSIGNED_CHAR / … unsigned char / … 
MPI_FLOAT / MPI_DOUBLE float / double 
MPI_LONG_DOUBLE long double 
MPI_BYTE  
MPI_PACKED  

 

Most important basic data types:

Fortran C
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Basic Fortran and C Data Types in MPI 4.1
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MPI Data Types Cont’d

 MPI_BYTE: Eight binary digits

 hack value, do not use

 MPI_PACKED: can implement new data types  however, it is more flexible to use …

 Derived data types: Built at run time from basic data types 

 Data type matching: Same MPI data type in SEND and RECEIVE call

 type must match on both ends in order for the communication to take place

 Support for heterogeneous systems/clusters

 implementation-dependent

 automatic data type conversion between systems of differing architecture may be needed
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Point-to-Point Communication

 Communication between exactly two processes within the communicator

 Identification of source and destination via the rank within the communicator!

 Blocking: MPI call returns after completion of the corresponding send/receive operation
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Blocking Standard Send: MPI_Send

 Fortran: call MPI_SEND (buf, count, datatype, dest, tag, comm, ierror)

 C: MPI_Send (&buf, count, datatype, dest, tag, comm)

 buf / &buf: starting address of data buffer to be sent

 count: number of elements to be sent

 datatype: MPI data type of elements to be sent

 dest: rank of destination process

 tag: message marker

 comm: communicator shared by source & destination

 ierror: error code (Fortran-only)

 Completion of MPI_Send: 
 status of dest is not defined – message may or may not have been received after return!

 Send buffer may be reused after MPI_Send returns
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MPI_Send Example

 Example:
send array of 10 integers to task no. 5

 Source and destination may coincide

• beware potential  deadlocks!

integer count, dest, tag

integer, allocatable :: field(:)

…

count=10; dest=5; tag=0

allocate(field(count)); 

call MPI_SEND(field, count, MPI_INTEGER, &                    
dest, tag, MPI_COMM_WORLD, ierror)

int count, dest, tag;

int *field;

…

count=10; dest=5; tag=0;

field = (int*)malloc(count*sizeof(int)); 

MPI_Send(field, count, MPI_INT, 
dest, tag, MPI_COMM_WORLD);
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Blocking Standard Receive: MPI_Recv

 MPI_Recv: 1. receive data

2. complete 

 Fortran: call MPI_RECV (buf, count, datatype, source, tag, comm, status, ierror)

 C: MPI_Recv(&buf, count, datatype, source, tag, comm, &status)

 buf size of buffer must be  size of message

 count maximum number of elements to receive

 source, tag wildcards may be used (MPI_ANY_SOURCE, MPI_ANY_TAG)

 status information from the message that was received 
(is a complex object - see next slide) 
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Handling Status Information

 MPI_status in Fortran

 Array of integers of size MPI_STATUS_SIZE

 index values for query: MPI_SOURCE, 
MPI_TAG, MPI_ERROR

 MPI_status in C/C++

 Structure of type MPI_Status

 hand a reference to MPI_Recv

 component names for query: 
status.MPI_SOURCE, status.MPI_TAG, 
status.MPI_ERROR

 MPI status provides additional information about the message
 size, source, tag, error code – may not be otherwise known if wildcards are used
 can also use MPI_STATUS_IGNORE in some contexts

integer :: status(MPI_STATUS_SIZE) MPI_Status status;

• Inquiring message length needs an additional MPI call:
• Fortran: call MPI_GET_COUNT(status, datatype, count, ierror)
• C: MPI_Get_count(&status, datatype, &count);

• count is output argument
• datatype must be the same datatype used in the MPI call that

produced the status variable 
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MPI_Recv Example: Fortran

 Example: receive array of REALs from any source

 Obtain number of actually received items: 

integer count, countrecv, status(MPI_STATUS_SIZE)

real field(count)

...

call MPI_RECV(field, count, MPI_REAL, 
&  MPI_ANY_SOURCE, MPI_ANY_TAG,
& MPI_COMM_WORLD, status, ierror)

write(*,*) 'Received from ', status(MPI_SOURCE),
& ' with tag ', status(MPI_TAG)

 call MPI_GET_COUNT(status, MPI_REAL, countrecv, ierror)
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MPI_Recv Example: C/C++

 Example: receive array of floats from any source

 Obtain number of actually received items: 

int count, countrecv;

MPI_Status status;

field = (float *)malloc(count*sizeof(float));

… 

MPI_Recv(field, count, MPI_FLOAT, MPI_ANY_SOURCE, 
MPI_ANY_TAG, MPI_COMM_WORLD, &status);

printf("Received from %i with tag %i count: %i \n", 
status.MPI_SOURCE, status.MPI_TAG)

 MPI_Get_count(&status, MPI_FLOAT, &countrecv);
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Requirements for Point-to-Point Communication

For a communication to succeed:

 sender must specify a valid destination.

 receiver must specify a valid source rank (or 
MPI_ANY_SOURCE).

 communicator must be the same (e.g., 
MPI_COMM_WORLD).

 tags must match.

 message datatypes must match.

 receiver's buffer must be large enough (otherwise result 
is undefined!)
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Summary of Basic MPI API Calls

 Beginner's MPI procedure toolbox:

 MPI_Init let's get going

 MPI_Comm_size how many are we?

 MPI_Comm_rank who am I?

 MPI_Send send data to someone else

 MPI_Recv receive data from some-/anyone

 MPI_Get_count how many items have I received?

 MPI_Finalize finish off

 Standard send/receive calls provide most simple way of point-to-point communication

 Send/receive buffer may safely be reused after the call has completed

 MPI_Send must have a specific target/tag, MPI_Recv does not
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First Complete MPI Example in Fortran

program collect

use mpi

implicit none

integer :: i,size,rank,ierror, &    
status(MPI_STATUS_SIZE)

integer :: number,sum

call MPI_INIT(ierror)

call MPI_COMM_RANK (MPI_COMM_WORLD,& 
rank,ierror)

if(rank.eq.0) then
sum=0
call MPI_COMM_SIZE(MPI_COMM_WORLD,& 

size,ierror)
do i=1,size-1 

call MPI_RECV(number,1, &     
MPI_INTEGER, MPI_ANY_SOURCE, & 
MPI_ANY_TAG, MPI_COMM_WORLD, &
status, ierror)

sum=sum+number
enddo

write(*,*) 'The sum is ',sum

else

call MPI_SEND(rank,1,MPI_INTEGER, &  

0, 0, MPI_COMM_WORLD, ierror)

endif

call MPI_FINALIZE(ierror)

end program

Write a parallel program in which a master 
process collects some data (e.g., numbers to sum 
up) from the others
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First Complete MPI Example in C

#include <mpi.h>

int main(int argc, char *argv[]) {

int i, size, rank;

int sum, number;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if(rank==0){
sum=0;
MPI_Comm_size(MPI_COMM_WORLD,&size);
for(i=0;i<size-1;i++) {

MPI_Recv(&number,1,MPI_INT,MPI_ANY_SOU
RCE ,MPI_ANY_TAG, MPI_COMM_WORLD, 
&status);

printf("Got number: %i\n", number);
sum+=number;

}
printf("The sum is %i\n", sum);

}
else {
MPI_Send(&rank,1,MPI_INT, 0, 
0,MPI_COMM_WORLD);

}
MPI_Finalize();

}

Write a parallel program in which a master 
process collects some data (e.g., numbers to sum 
up) from the others
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First Complete MPI Example

Remarks:
 gathering results from processes is a very common task in MPI – there are 

more efficient ways to do this (see advanced talk).

 this is a reduction operation (summation). There are more efficient ways to do 
this (see advanced talk).

 the 'master' process waits for one receive operation to be completed before the 
next one is initiated. There are more efficient ways... You guessed it!

 ‘master-worker' schemes are quite common in MPI programming

 error checking is rarely done in MPI programs – debuggers are often more 
efficient if something goes wrong

 every process has its own sum variable, but only the master process actually 
uses it


