
Elements of OpenMP and MPI

Reinhold Bader (LRZ)

Georg Hager (NHR@FAU)

Volker Weinberg (LRZ)

2PPHPS 2025 | Elements of OpenMP and MPI

Two Paradigms for Parallel Programming

 Distributed Memory
 message passing

 explicit programming required

 Special design:

 cache coherency protocol over
interconnect

 behaves like non-uniform shared
memory

 Shared Memory
 common address space for a number of

CPUs

 access efficiency may vary  SMP,
(cc)NUMA
(memory access time depends on the
memory location relative to the
processor)

 many programming models

 potentially easier to handle

 hardware and OS support required

P P P P

Memory

3PPHPS 2025 | Elements of OpenMP and MPI

Two Paradigms for Parallel Programming
Distributed Memory

 Same program on each processor/machine
(SPMD) or
Multiple programs with consistent communication
structure (MPMD)

 Program written in a sequential language
 all variables process-local
 no implicit knowledge of data on other

processors

 Data exchange between processes
 send/receive messages via appropriate

library
 most tedious, but also the most flexible way

of parallelization

 Parallel library discussed here:
 Message Passing Interface, MPI

Shared Memory

 Single Program on single machine
 UNIX Process splits off threads, mapped to

CPUs for work distribution

 Data
 may be process-global or thread-local
 exchange of data not needed, or via suitable

synchronization mechanisms

 Programming models
 explicit threading (hard)
 directive-based threading via OpenMP

(easier)
 automatic parallelization (very easy, but

mostly not efficient)

4PPHPS 2025 | Elements of OpenMP and MPI

Standards-Based Parallelism
MPI Standard OpenMP Standard

https://www.mpi-forum.org/docs/ https://www.openmp.org/specifications/

5PPHPS 2025 | Elements of OpenMP and MPI

Two Paradigms for Parallel Programming
 MPI Standard

 MPI version 1.0 in May 1994

 MPI version 2.0 in July 1997

 MPI version 3.0 in September 2012

 MPI version 4.0 in June 2021

 MPI version 4.1 in November 2023.

 Base Languages

 Fortran

 C

 Resources

 http://www.mpi-forum.org

 OpenMP Standard

 OpenMP 1.0 in 1997 (Fortran) / 1998 (C, C++)

 OpenMP 3.0 (May 2008)

 tasking etc.

 OpenMP 4.0 (July 2013)

 SIMD, affinity policies, accelerator support

 OpenMP 5.0 (Nov 2018)

 two new tool interfaces, multilevel memory
systems

 OpenMP 6.0 (Nov 2024)

 improvements in usability and fine grain
control

 Base Languages

 Fortran

 C, C++

 Resources

 http://www.openmp.org

6PPHPS 2025 | Elements of OpenMP and MPI

MPI Standard

7PPHPS 2025 | Elements of OpenMP and MPI

OpenMP Standard

8PPHPS 2025 | Elements of OpenMP and MPI

Typical Parallelization Hierarchy

OpenMP
Principles of Directive Driven Shared Memory Parallelism

OpenMP Architecture Review Board (ARB)

The mission of the OpenMP ARB (Architecture Review Board) is to
standardize directive-based multi-language high-level parallelism that is
performant, productive and portable.

PPHPS 2025 | Elements of OpenMP and MPI 10

11PPHPS 2025 | Elements of OpenMP and MPI

Recent Books about OpenMP

12PPHPS 2025 | Elements of OpenMP and MPI

Recent Books about OpenMP

Covers all about Accelerator Programming, 2023

13PPHPS 2025 | Elements of OpenMP and MPI

Two Paradigms for Parallel Programming

 Operating system view:
 parallel work done by threads

 Programmer’s view:
 directives: comment lines in code, e.g.

 !$omp parallel

 #pragma omp parallel

 library routines, e.g.
 omp_get_num_threads()

 omp_get_thread_num()

 omp_get_max_threads()

 User’s view:
 environment variables determine:

resource allocation, scheduling strategies and other
(implementation-dependent) behaviour, e.g.
 OMP_NUM_THREADS

 OMP_SCHEDULE

 OMP_NESTED

14PPHPS 2025 | Elements of OpenMP and MPI

Two Paradigms for Parallel Programming
 Program start: only initial thread (formerly known as

master thread) runs

 Parallel region: team of worker threads is generated
(“fork”)

 Threads synchronize when leaving parallel region (“join”)

 Only initial thread executes sequential part (worker
threads persist, but are inactive)

 Task and data distribution possible via directives

 Nesting of parallel regions:
 allowed, but level of support implementation

dependent

 Usually optimal:
 one thread per processor core
 other resource mappings are allowed/possible

15PPHPS 2025 | Elements of OpenMP and MPI

Parallel region: Simplest Program Example: Fortran
program hello

use omp_lib

implicit none

integer :: nthr, myth

!$omp parallel private(myth)

!$omp single

nthr = omp_get_num_threads()

!$omp end single

myth = omp_get_thread_num()

write(*,*) "Hello from ", myth, "of ", nthr

!$omp end parallel

end program hello

 Parallel region directive:
 enclosed code executed by all threads

 may include subprogram calls („dynamic
region“)

 Special function calls:
 module omp_lib provides interface

 here: get number of threads and index of
executing thread

 Data scoping:
 uses a clause on the directive
 myth thread-local: private

 nthr process-global: shared
(will be discussed in more detail later)

16PPHPS 2025 | Elements of OpenMP and MPI

Parallel region: Simplest Program Example: C/C++
#include <stdio.h>
#include <omp.h>

int nthr, myth;

int main(int arc, char *argv[])

{

#pragma omp parallel private(myth)

{

#pragma omp single

nthr = omp_get_num_threads();

myth = omp_get_thread_num();

printf("Hello from %i of %i\n", myth, nthr);

}

}

 Parallel region directive:
 enclosed code executed by all threads

 may include subprogram calls („dynamic
region“)

 Special function calls:
 Include file <omp.h>

 here: get number of threads and index of
executing thread

 Data scoping:
 uses a clause on the directive
 myth thread-local: private

 nthr process-global: shared
(will be discussed in more detail later)

Compile Fortran (e.g. with Intel compiler):
ifx -qopenmp –o hello.exe hello.f90

Compile C (e.g. with Intel compiler):
icx -qopenmp –o hello.exe hello.f90

Run:
export OMP_NUM_THREADS=4

./hello.exe

Hello from 0 of 4

Hello from 2 of 4

Hello from 3 of 4

Hello from 1 of 4

Compile for serial run (e.g. with Intel compiler):
ifx -qopenmp-stubs –o hello.exe hello.f90

 special switch for „stub library“

ordering not
reproducible

17PPHPS 2025 | Elements of OpenMP and MPI

Compiling and Running an OpenMP Program
 Special compiler switch

 activates OpenMP directives
 generates threaded code
 further suboptions may be available
 each compiler has something different here

 OpenMP environment
 defines runtime behaviour
 here: number of threads used

 Serial functionality of program
 (dis)order of output

18PPHPS 2025 | Elements of OpenMP and MPI

OpenMP Fortran Syntax

 Specifications:

 Fortran 77 style

 Fortran 90 module (preferred)

 Directives:

 fixed form source:

free form source (preferred):

 Conditional compilation:

 In fixed form also sentinels *$, c$

 Continuation line:

include ”omp_lib.h”

use omp_lib

myid = 0
!$ myid = omp_get_thread_num()

!$OMP <directive> &
!$OMP <clause>

C$OMP <directive> [<clause [(<args>)]>, …] sentinel starting in column 1,
also : *$OMP, !$OMP

!$OMP <directive> [<clause [(<args>)]>, …]

19PPHPS 2025 | Elements of OpenMP and MPI

OpenMP C/C++ Syntax

 Include file:

 Preprocessor directive: uses pragma feature

 Conditional compilation: OpenMP switch sets preprocessor macro

 Continuation line:

#include <omp.h>

#pragma omp <directive> [clause …]

#ifdef _OPENMP

… /* do something */
#endif

#pragma omp directive \
clause

20PPHPS 2025 | Elements of OpenMP and MPI

OpenMP Syntax: Remarks on Clauses

 Many (but not all) OpenMP directives support clauses
 more than one may appear on a given directive

 Clauses specify additional information associated with the directive
 modification of directive’s semantics

 “Simplest example” from above:
 private(…) appears as clause to the parallel directive

 The specific clause(s) that can be used depend on the directive

21PPHPS 2025 | Elements of OpenMP and MPI

OpenMP Syntax: Structured Block

 Defined by braces in C/C++

 In Fortran:

 code between begin/end of an OpenMP
construct must be a complete, valid
Fortran block

 Single point of entry:
 no GOTO into block (Fortran),

no setjmp()to entry point (C)

 Single point of exit:
 RETURN, GOTO, EXIT outside block are

prohibited (Fortran)
 longjmp() and throw() must not violate

entry/exit rules (C, C++)
 exception: termination via STOP or exit()

 Block structure example:

 C version of simplest program

#include <omp.h>

int main() {
int numth = 1;

#pragma omp parallel

{
int myth = 0; /* private */

#ifdef _OPENMP
#pragma omp single

numth = omp_get_num_threads();
/* block above: one statement */
myth = omp_get_thread_num();

#endif
printf(“Hello from %i of %i\n”,\

myth,numth);

} /* end parallel */
}

Work Sharing in OpenMP (1): Fortran
 Making parallel regions useful …

 divide up work between threads

 Example:

 working on an array processed by a nested loop structure

 iteration space of directly nested loop is sliced

real :: a(ndim, ndim)
…
!$omp parallel
!$omp do
do j=1, ndim
do i=1, ndim

…
a(i, j) = …

end do
end do
!$omp end do
…

!$omp end parallel

j-loop is sliced

synchronization
between threads

further parallel
execution

22PPHPS 2025 | Elements of OpenMP and MPI

Work Sharing in OpenMP (1): C/C++
 Making parallel regions useful …

 divide up work between threads

 Example:

 working on an array processed by a nested loop structure

 iteration space of directly nested loop is sliced

float a[ndim][ndim];

int main(int arc, char *argv[])
{
#pragma omp parallel
{

#pragma omp for
for(int j=0;j<ndim;j++) {

for(int i=0;i<ndim;i++) {
a[i][j]= …;

}
}

…
}

}

j-loop is sliced

further parallel
execution

synchronization
between threads

23PPHPS 2025 | Elements of OpenMP and MPI

24PPHPS 2025 | Elements of OpenMP and MPI

Work Sharing in OpenMP (2)
 Synchronization behaviour:

 all threads (by default) wait for completion
at the end of the work sharing region
(„barrier“)

 following references and definitions using an
array element by other threads are therefore
OK.

 Slicing of iteration space:

 „loop scheduling“

 default behaviour is implementation
dependent

 usually as equal as possible chunks of largest
possible size

 Additional clauses on !$OMP DO / #pragma
omp for

 will be discussed in advanced OpenMP talk

 Fortran syntax:

 C/C++ syntax:

 Restrictions on loop structure:
 trip count must be computable at entry to

loop
disallowed: C style loops modifying the loop
variable, or otherwise violating the require-
ment, Fortran do while loop without loop
control;

 loop body with single entry and single exit
point

#pragma omp for [clause]
for (...) {

... // loop body
}

!$omp do [clause]
do ...

... // loop body
end do

25PPHPS 2025 | Elements of OpenMP and MPI

Memory Model

 Two kinds of memory exist in OpenMP  Threads access globally shared
memory

 Data can be shared or private

 shared data – one instance of an
entity available to all threads

 private data – each per-thread copy
only available to thread that owns it

 Data transfer transparent to
programmer

 Synchronization takes place (is
mostly implicit)

 threadprivate variables
 see advanced OpenMP talk

26PPHPS 2025 | Elements of OpenMP and MPI

Data-Sharing Attributes

 By default most variables are shared
 local variables outside the scope of construct

 static/global (C/C++) or save/common (Fortran)
variables

 Except
 variables* defined inside the construct are private

 i.e. declared inside {}-block or BLOCK/END BLOCK

 variables* local to functions/routines called from within the region are private

 loop iteration variables of worksharing loops are private

* non-static (C/C++) or without save attribute (Fortran)

int s = 1;

#pragma omp parallel
{
int p = omp_get_thread_num();
printf("s=%d p=%d\n", s, p);

}

27PPHPS 2025 | Elements of OpenMP and MPI

Data-Sharing Attribute Clauses

 Clauses for explicitly specifying how a variable should be treated
 supported by several directives, e.g., parallel, do/for, single, sections, task, …

 Clauses:
 shared(var1, var2, …)

 private(var1, var2, …)

 private + special operation
 firstprivate(var1, var2, …)

 lastprivate, for do/for construct

 Change default:
 Fortran

 C/C++:

 best practice: default(none)
 every variable referenced must appear in a shared/private/… clause

 avoids incorrect assumptions about shared/private

default(shared|private|firstprivate|none)

default(shared|none)

28PPHPS 2025 | Elements of OpenMP and MPI

Scoping: Second-Simplest Example: Fortran

 Summation inside a loop

 Note: large workload inside loop improves
threaded performance

 require thread-individual variable for
partial sum calculated on each thread

 but: private copies of variables are
undefined at entry to, and become
undefined at exit of the parallel region

 therefore: collect partial sums to a
shared variable defined after the
worksharing region

 updates to shared variable must be
specially protected:

 use a critical region

 only one thread at a time may execute
(mutual exclusion)

(performance impact due to explicit
synchronization)

real :: s, stot
stot = 0.0
!$omp parallel private(s)
s = 0.0
!$omp do
do i=1, ndim

… ! workload
s = s + …

end do
!$omp end do

!$omp critical
stot = stot + s

!$omp end critical

!$omp end parallel

29PPHPS 2025 | Elements of OpenMP and MPI

Scoping: Second-Simplest Example: C/C++

 Summation inside a loop

 Note: large workload inside loop improves
threaded performance

 require thread-individual variable for
partial sum calculated on each thread

 but: private copies of variables are
undefined at entry to, and become
undefined at exit of the parallel region

 therefore: collect partial sums to a
shared variable defined after the
worksharing region

 updates to shared variable must be
specially protected:

 use a critical region

 only one thread at a time may execute
(mutual exclusion)

(performance impact due to explicit
synchronization)

float s, stot;
stot = 0.;

#pragma omp parallel private(s)
{

s = 0.;
#pragma omp for

for(int i=0;i<ndim;i++) {
… // workload
s = s + … ;

}
#pragma omp critical

{
stot = stot + s;

}
}

30PPHPS 2025 | Elements of OpenMP and MPI

Private Variables – Masking: Fortran

real :: s

s = …

!$omp parallel private(s)

s = …

… = … + s

!$omp end parallel

… = … + s

 Masking relevant for

• privatized variables defined in scope
outside the parallel region

31PPHPS 2025 | Elements of OpenMP and MPI

Private Variables – Masking: C/C++

float s;

s = … ;

#pragma omp parallel private(s)

{

s = … ;

… = … + s;

}

… = … + s;
 Masking relevant for

• privatized variables defined in scope
outside the parallel region

32PPHPS 2025 | Elements of OpenMP and MPI

The firstprivate Clause: Fortran

real :: s

s = …

!$omp parallel firstprivate(s)

… = … + s

!$omp end parallel

… = … + s

• Extension of private:

• value of master copy is transferred to private
variables

• restrictions: not a pointer, not assumed
shape, not a subobject, master copy not itself
private etc.

33PPHPS 2025 | Elements of OpenMP and MPI

The firstprivate Clause: C/C++

float s;

s = … ;

#pragma omp parallel firstprivate(s)

{

… = … + s;

}

… = … + s;

• Extension of private:

• value of master copy is transferred to private
variables

• restrictions: not a pointer, not assumed
shape, not a subobject, master copy not itself
private etc.

34PPHPS 2025 | Elements of OpenMP and MPI

The lastprivate Clause: Fortran

real :: s

s = …

!$omp parallel

!$omp do lastprivate(s)

do i = …

s = …

end do

!$omp end do

!$omp end parallel

… = … + s  Extension of private:
• additional semantics for work sharing
• value from thread which executes last iteration

of loop is transferred back to master copy
(which must be allocated if it is a dynamic
entity)

• restrictions similar to firstprivate

on work
sharing
directive

35PPHPS 2025 | Elements of OpenMP and MPI

The lastprivate Clause: C/C++

float s;

s = …;

#pragma omp parallel

{

#pragma omp for lastprivate(s)

for(int i=0; i<ndim; i++) {

s = …;

}

}

… = … + s;

 When to use?
• as little as possible
• legacy code

 Extension of private:
• additional semantics for work sharing
• value from thread which executes last iteration

of loop is transferred back to master copy
(which must be allocated if it is a dynamic
entity)

• restrictions similar to firstprivate

on work
sharing
directive

36PPHPS 2025 | Elements of OpenMP and MPI

Reduction Operations (1): Fortran

real :: s

!$omp parallel

!$omp do reduction(+:s)

do i = …

…
s = s + …

end do

!$omp end do

… = … * s

!$omp end parallel

Note: this improves on the summation example

(no explicit critical region needed)

s is still
shared here

 At synchronization point:

• reduction operation is performed

• result is transferred to master copy
• restrictions similar to firstprivate

37PPHPS 2025 | Elements of OpenMP and MPI

Reduction Operations (1): C/C++

float s;

#pragma omp parallel

{

#pragma omp for reduction(+:s)

for(int i=0;i<ndim;i++) {

...;

s = s + …;

}

… = … * s;

}

Note: this improves on the summation example

(no explicit critical region needed)

s is still
shared here

 At synchronization point:

• reduction operation is performed

• result is transferred to master copy
• restrictions similar to firstprivate

38PPHPS 2025 | Elements of OpenMP and MPI

Reduction Operations (2): Fortran

 Initial value of reduction variable

• depends on operation

 Consistency required

 operation specified in clause vs. update
statement

 Multiple reductions:

 multiple scalars, or an array:

Initial ValueOperation

0+

0-

1*

.true..and.

.false..or.

.true..eqv.

.false..neqv.

min(type)MAX

max(type)MIN

all bits setIAND

0IEOR

0IOR

real :: x, y, z
!$OMP do reduction(+:x, y, z)

real :: a(n)
!$OMP do reduction(*:a)

!$OMP do reduction(+:x, y) &
!$OMP reduction(*:z)

39PPHPS 2025 | Elements of OpenMP and MPI

Reduction Operations (2): C/C++

 Initial value of reduction variable

• depends on operation

 Consistency required

 operation specified in clause vs. update
statement

 Multiple reductions:

 multiple scalars, or an array:

Initial ValueOperation

0+

0-

1*

~ 0&

0|

0^

1&&

0||

min(type)max

max(type)min

float x, y, z;
#pragma omp for reduction(+:x, y, z)

float a[n];
#pragma omp for reduction(*:a[0:n])

#pragma omp for reduction (+:a[0:n]) \
reduction (*:b[0:n],c[0:n])

lower
bound

length

MPI
Principles of Message Passing on Distributed Memory Architectures

MPI Architecture

 Operating system view:

 parallel work done by tasks

 Programmer’s view:

 library routines for

 coordination

 communication

 synchronization

 User’s view:

 MPI execution environment provides

 resource allocation

 startup method

 and other (implementation-
dependent) behaviour

41PPHPS 2025 | Elements of OpenMP and MPI

42PPHPS 2025 | Elements of OpenMP and MPI

MPI Parallel Execution

 Tasks run throughout program
execution

 all variables are local

 Startup phase:
 establishes communication context

(„communicator“) among all tasks

 Point-to-point data transfer:
 usually between pairs of tasks

 usually coordinated

 may be blocking or non-blocking

 explicit synchronization is needed for non-
blocking

 Collective communication:
 between all tasks or a subgroup of tasks

 MPI 2 blocking-only (→ MPI 3)

 reductions, scatter/gather operations

 Clean shutdown

43PPHPS 2025 | Elements of OpenMP and MPI

MPI C and Fortran Interfaces

 Required header files:
 C: #include <mpi.h>

 Fortran: include 'mpif.h'

 Fortran90: USE MPI

 Bindings:
 C: error = MPI_Xxxx(parameter,.....);

 Fortran: call MPI_XXXX(argument,...,ierror)

 MPI constants (global/common): All upper case in C

 Arrays:

 C: indexed from 0

 Fortran: indexed from 1

44PPHPS 2025 | Elements of OpenMP and MPI

MPI Error Handling

 Fortran MPI routines

 ierror argument — cannot be omitted!

 C MPI routines

 return an int — may be ignored

 Return value MPI_SUCCESS

 indicates that all went ok

 Default:

 abort parallel computation in case of other return values

 but can also define error handlers

45PPHPS 2025 | Elements of OpenMP and MPI

Initialization and Finalization (1)
 Each processor must start/terminate an MPI process

 Usually handled automatically
 More than one process per processor is mostly possible

 First call in MPI program: initialization of parallel machine
 Fortran: call MPI_INIT(ierror)
 C: MPI_Init(&argc, &argv);

 Last call: clean shutdown of parallel machine
 Fortran: call MPI_FINALIZE(ierror)
 C: MPI_Finalize();

 Only process with rank 0 (see later) is guaranteed to return from MPI_Finalize

 Stdout/stderr of each MPI process
 usually redirected to console where program was started
 many options possible, depending on implementation

46PPHPS 2025 | Elements of OpenMP and MPI

Initialization and Finalization (2)
 Frequent source of errors: MPI_Init() in C

C binding:

int MPI_Init(int *argc, char ***argv);

 If MPI_Init() is called in a function (bad idea anyway), this function must have pointers to the original
data:

void init_all(int *argc, char***argv) {
MPI_Init(argc, argv);
…

}
…
init_all(&argc, &argv);

 Depending on implementation, mistakes at this point might even go unnoticed until code is ported

47PPHPS 2025 | Elements of OpenMP and MPI

Communicator and Rank (1)

 MPI_Init defines "communicator" MPI_COMM_WORLD:

 MPI_COMM_WORLD defines the processes that belong to the parallel machine

 other communicators (subsets) are possible
 rank labels processes inside a communicator

48PPHPS 2025 | Elements of OpenMP and MPI

Communicator and Rank (2)

 The rank identifies each process within a communicator (e.g. MPI_COMM_WORLD):
 obtain rank in Fortran:

integer rank, ierror

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

 obtain rank in C:
int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 rank = 0, 1, 2, … , (number of MPI tasks – 1)

 Obtain number of MPI tasks in communicator:
 in Fortran:

integer size, ierror
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)

 in C:
int size;
MPI_Comm_size(MPI_COMM_WORLD, &size);

49PPHPS 2025 | Elements of OpenMP and MPI

Communicator and Rank (3)

 MPI_COMM_WORLD is

 effectively an MPI-global variable and required as argument for nearly all MPI calls
 rank

 is target label for MPI messages

 can drive user-defined directives what each process should do:

if (rank == 0) then

... ! do work for rank 0

else

... ! do work for other ranks

end if

if (rank == 0){

... // do work for rank 0

}

else {

... // do work for other ranks ***

}

Fortran C

50PPHPS 2025 | Elements of OpenMP and MPI

A Very Simple MPI Program: Fortran

program hello

use mpi

implicit none

integer :: rank, size, ierror

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

write(*,*) 'Hello World! I am ',rank,' of ',size

call MPI_FINALIZE(ierror)

end program

51PPHPS 2025 | Elements of OpenMP and MPI

A Very Simple MPI Program: C/C++

#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[]) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD,&size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello World! I am %i of %i\n", rank, size);

MPI_Finalize();

}

52PPHPS 2025 | Elements of OpenMP and MPI

Compiling and Running MPI Code

 Compile time:
• include files or module information file

needed

 Link time:
• MPI library required

 Most implementations
• provide mpif77, mpif90, mpicc and

mpiCC wrappers

• not standardized, so variations must be
expected e.g., with Intel-MPI (mpiifx,
mpiicx etc.)

• Startup facilities
• mpirun (legacy)

• mpiexec

• site and implementation dependent

 Compile:

 Fortran: mpiifx –o hello hello.f90

 C: mpiicx –o hello hello.c

 Run on 4 processors:

mpirun –np 4 ./hello or

mpiexec –n 4 ./hello

 Output:

Hello World! I am 3 of 4
Hello World! I am 1 of 4
Hello World! I am 0 of 4
Hello World! I am 2 of 4

order undefined

53PPHPS 2025 | Elements of OpenMP and MPI

MPI Process Communication
 Communication between two processes:

Sending / Receiving of MPI-Messages

 MPI-Message:

Array of elements of a particular MPI datatype

 MPI data types:

 basic data types

 derived data types

54PPHPS 2025 | Elements of OpenMP and MPI

Basic Fortran and C Data Types

MPI datatype FORTRAN datatype
MPI_CHARACTER CHARACTER(1)
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_BYTE
MPI_PACKED

MPI datatype C datatype
MPI_CHAR / MPI_SHORT signed char / short
MPI_INT / MPI_LONG signed int / long
MPI_UNSIGNED_CHAR / … unsigned char / …
MPI_FLOAT / MPI_DOUBLE float / double
MPI_LONG_DOUBLE long double
MPI_BYTE
MPI_PACKED

Most important basic data types:

Fortran C

55PPHPS 2025 | Elements of OpenMP and MPI

Basic Fortran and C Data Types in MPI 4.1

56PPHPS 2025 | Elements of OpenMP and MPI

MPI Data Types Cont’d

 MPI_BYTE: Eight binary digits

 hack value, do not use

 MPI_PACKED: can implement new data types  however, it is more flexible to use …

 Derived data types: Built at run time from basic data types

 Data type matching: Same MPI data type in SEND and RECEIVE call

 type must match on both ends in order for the communication to take place

 Support for heterogeneous systems/clusters

 implementation-dependent

 automatic data type conversion between systems of differing architecture may be needed

57PPHPS 2025 | Elements of OpenMP and MPI

Point-to-Point Communication

 Communication between exactly two processes within the communicator

 Identification of source and destination via the rank within the communicator!

 Blocking: MPI call returns after completion of the corresponding send/receive operation

58PPHPS 2025 | Elements of OpenMP and MPI

Blocking Standard Send: MPI_Send

 Fortran: call MPI_SEND (buf, count, datatype, dest, tag, comm, ierror)

 C: MPI_Send (&buf, count, datatype, dest, tag, comm)

 buf / &buf: starting address of data buffer to be sent

 count: number of elements to be sent

 datatype: MPI data type of elements to be sent

 dest: rank of destination process

 tag: message marker

 comm: communicator shared by source & destination

 ierror: error code (Fortran-only)

 Completion of MPI_Send:
 status of dest is not defined – message may or may not have been received after return!

 Send buffer may be reused after MPI_Send returns

59PPHPS 2025 | Elements of OpenMP and MPI

MPI_Send Example

 Example:
send array of 10 integers to task no. 5

 Source and destination may coincide

• beware potential deadlocks!

integer count, dest, tag

integer, allocatable :: field(:)

…

count=10; dest=5; tag=0

allocate(field(count));

call MPI_SEND(field, count, MPI_INTEGER, &
dest, tag, MPI_COMM_WORLD, ierror)

int count, dest, tag;

int *field;

…

count=10; dest=5; tag=0;

field = (int*)malloc(count*sizeof(int));

MPI_Send(field, count, MPI_INT,
dest, tag, MPI_COMM_WORLD);

60PPHPS 2025 | Elements of OpenMP and MPI

Blocking Standard Receive: MPI_Recv

 MPI_Recv: 1. receive data

2. complete

 Fortran: call MPI_RECV (buf, count, datatype, source, tag, comm, status, ierror)

 C: MPI_Recv(&buf, count, datatype, source, tag, comm, &status)

 buf size of buffer must be  size of message

 count maximum number of elements to receive

 source, tag wildcards may be used (MPI_ANY_SOURCE, MPI_ANY_TAG)

 status information from the message that was received
(is a complex object - see next slide)

61PPHPS 2025 | Elements of OpenMP and MPI

Handling Status Information

 MPI_status in Fortran

 Array of integers of size MPI_STATUS_SIZE

 index values for query: MPI_SOURCE,
MPI_TAG, MPI_ERROR

 MPI_status in C/C++

 Structure of type MPI_Status

 hand a reference to MPI_Recv

 component names for query:
status.MPI_SOURCE, status.MPI_TAG,
status.MPI_ERROR

 MPI status provides additional information about the message
 size, source, tag, error code – may not be otherwise known if wildcards are used
 can also use MPI_STATUS_IGNORE in some contexts

integer :: status(MPI_STATUS_SIZE) MPI_Status status;

• Inquiring message length needs an additional MPI call:
• Fortran: call MPI_GET_COUNT(status, datatype, count, ierror)
• C: MPI_Get_count(&status, datatype, &count);

• count is output argument
• datatype must be the same datatype used in the MPI call that

produced the status variable

62PPHPS 2025 | Elements of OpenMP and MPI

MPI_Recv Example: Fortran

 Example: receive array of REALs from any source

 Obtain number of actually received items:

integer count, countrecv, status(MPI_STATUS_SIZE)

real field(count)

...

call MPI_RECV(field, count, MPI_REAL,
& MPI_ANY_SOURCE, MPI_ANY_TAG,
& MPI_COMM_WORLD, status, ierror)

write(*,*) 'Received from ', status(MPI_SOURCE),
& ' with tag ', status(MPI_TAG)

 call MPI_GET_COUNT(status, MPI_REAL, countrecv, ierror)

63PPHPS 2025 | Elements of OpenMP and MPI

MPI_Recv Example: C/C++

 Example: receive array of floats from any source

 Obtain number of actually received items:

int count, countrecv;

MPI_Status status;

field = (float *)malloc(count*sizeof(float));

…

MPI_Recv(field, count, MPI_FLOAT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &status);

printf("Received from %i with tag %i count: %i \n",
status.MPI_SOURCE, status.MPI_TAG)

 MPI_Get_count(&status, MPI_FLOAT, &countrecv);

64PPHPS 2025 | Elements of OpenMP and MPI

Requirements for Point-to-Point Communication

For a communication to succeed:

 sender must specify a valid destination.

 receiver must specify a valid source rank (or
MPI_ANY_SOURCE).

 communicator must be the same (e.g.,
MPI_COMM_WORLD).

 tags must match.

 message datatypes must match.

 receiver's buffer must be large enough (otherwise result
is undefined!)

65PPHPS 2025 | Elements of OpenMP and MPI

Summary of Basic MPI API Calls

 Beginner's MPI procedure toolbox:

 MPI_Init let's get going

 MPI_Comm_size how many are we?

 MPI_Comm_rank who am I?

 MPI_Send send data to someone else

 MPI_Recv receive data from some-/anyone

 MPI_Get_count how many items have I received?

 MPI_Finalize finish off

 Standard send/receive calls provide most simple way of point-to-point communication

 Send/receive buffer may safely be reused after the call has completed

 MPI_Send must have a specific target/tag, MPI_Recv does not

66PPHPS 2025 | Elements of OpenMP and MPI

First Complete MPI Example in Fortran

program collect

use mpi

implicit none

integer :: i,size,rank,ierror, &
status(MPI_STATUS_SIZE)

integer :: number,sum

call MPI_INIT(ierror)

call MPI_COMM_RANK (MPI_COMM_WORLD,&
rank,ierror)

if(rank.eq.0) then
sum=0
call MPI_COMM_SIZE(MPI_COMM_WORLD,&

size,ierror)
do i=1,size-1

call MPI_RECV(number,1, &
MPI_INTEGER, MPI_ANY_SOURCE, &
MPI_ANY_TAG, MPI_COMM_WORLD, &
status, ierror)

sum=sum+number
enddo

write(*,*) 'The sum is ',sum

else

call MPI_SEND(rank,1,MPI_INTEGER, &

0, 0, MPI_COMM_WORLD, ierror)

endif

call MPI_FINALIZE(ierror)

end program

Write a parallel program in which a master
process collects some data (e.g., numbers to sum
up) from the others

67PPHPS 2025 | Elements of OpenMP and MPI

First Complete MPI Example in C

#include <mpi.h>

int main(int argc, char *argv[]) {

int i, size, rank;

int sum, number;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if(rank==0){
sum=0;
MPI_Comm_size(MPI_COMM_WORLD,&size);
for(i=0;i<size-1;i++) {

MPI_Recv(&number,1,MPI_INT,MPI_ANY_SOU
RCE ,MPI_ANY_TAG, MPI_COMM_WORLD,
&status);

printf("Got number: %i\n", number);
sum+=number;

}
printf("The sum is %i\n", sum);

}
else {
MPI_Send(&rank,1,MPI_INT, 0,
0,MPI_COMM_WORLD);

}
MPI_Finalize();

}

Write a parallel program in which a master
process collects some data (e.g., numbers to sum
up) from the others

68PPHPS 2025 | Elements of OpenMP and MPI

First Complete MPI Example

Remarks:
 gathering results from processes is a very common task in MPI – there are

more efficient ways to do this (see advanced talk).

 this is a reduction operation (summation). There are more efficient ways to do
this (see advanced talk).

 the 'master' process waits for one receive operation to be completed before the
next one is initiated. There are more efficient ways... You guessed it!

 ‘master-worker' schemes are quite common in MPI programming

 error checking is rarely done in MPI programs – debuggers are often more
efficient if something goes wrong

 every process has its own sum variable, but only the master process actually
uses it

