
Elements of OpenMP and MPI

Reinhold Bader (LRZ)

Georg Hager (NHR@FAU)

Volker Weinberg (LRZ)

2PPHPS 2025 | Elements of OpenMP and MPI

Two Paradigms for Parallel Programming

 Distributed Memory
 message passing

 explicit programming required

 Special design:

 cache coherency protocol over
interconnect

 behaves like non-uniform shared
memory

 Shared Memory
 common address space for a number of

CPUs

 access efficiency may vary SMP,
(cc)NUMA
(memory access time depends on the
memory location relative to the
processor)

 many programming models

 potentially easier to handle

 hardware and OS support required

P P P P

Memory

3PPHPS 2025 | Elements of OpenMP and MPI

Two Paradigms for Parallel Programming
Distributed Memory

 Same program on each processor/machine
(SPMD) or
Multiple programs with consistent communication
structure (MPMD)

 Program written in a sequential language
 all variables process-local
 no implicit knowledge of data on other

processors

 Data exchange between processes
 send/receive messages via appropriate

library
 most tedious, but also the most flexible way

of parallelization

 Parallel library discussed here:
 Message Passing Interface, MPI

Shared Memory

 Single Program on single machine
 UNIX Process splits off threads, mapped to

CPUs for work distribution

 Data
 may be process-global or thread-local
 exchange of data not needed, or via suitable

synchronization mechanisms

 Programming models
 explicit threading (hard)
 directive-based threading via OpenMP

(easier)
 automatic parallelization (very easy, but

mostly not efficient)

4PPHPS 2025 | Elements of OpenMP and MPI

Standards-Based Parallelism
MPI Standard OpenMP Standard

https://www.mpi-forum.org/docs/ https://www.openmp.org/specifications/

5PPHPS 2025 | Elements of OpenMP and MPI

Two Paradigms for Parallel Programming
 MPI Standard

 MPI version 1.0 in May 1994

 MPI version 2.0 in July 1997

 MPI version 3.0 in September 2012

 MPI version 4.0 in June 2021

 MPI version 4.1 in November 2023.

 Base Languages

 Fortran

 C

 Resources

 http://www.mpi-forum.org

 OpenMP Standard

 OpenMP 1.0 in 1997 (Fortran) / 1998 (C, C++)

 OpenMP 3.0 (May 2008)

 tasking etc.

 OpenMP 4.0 (July 2013)

 SIMD, affinity policies, accelerator support

 OpenMP 5.0 (Nov 2018)

 two new tool interfaces, multilevel memory
systems

 OpenMP 6.0 (Nov 2024)

 improvements in usability and fine grain
control

 Base Languages

 Fortran

 C, C++

 Resources

 http://www.openmp.org

6PPHPS 2025 | Elements of OpenMP and MPI

MPI Standard

7PPHPS 2025 | Elements of OpenMP and MPI

OpenMP Standard

8PPHPS 2025 | Elements of OpenMP and MPI

Typical Parallelization Hierarchy

OpenMP
Principles of Directive Driven Shared Memory Parallelism

OpenMP Architecture Review Board (ARB)

The mission of the OpenMP ARB (Architecture Review Board) is to
standardize directive-based multi-language high-level parallelism that is
performant, productive and portable.

PPHPS 2025 | Elements of OpenMP and MPI 10

11PPHPS 2025 | Elements of OpenMP and MPI

Recent Books about OpenMP

12PPHPS 2025 | Elements of OpenMP and MPI

Recent Books about OpenMP

Covers all about Accelerator Programming, 2023

13PPHPS 2025 | Elements of OpenMP and MPI

Two Paradigms for Parallel Programming

 Operating system view:
 parallel work done by threads

 Programmer’s view:
 directives: comment lines in code, e.g.

 !$omp parallel

 #pragma omp parallel

 library routines, e.g.
 omp_get_num_threads()

 omp_get_thread_num()

 omp_get_max_threads()

 User’s view:
 environment variables determine:

resource allocation, scheduling strategies and other
(implementation-dependent) behaviour, e.g.
 OMP_NUM_THREADS

 OMP_SCHEDULE

 OMP_NESTED

14PPHPS 2025 | Elements of OpenMP and MPI

Two Paradigms for Parallel Programming
 Program start: only initial thread (formerly known as

master thread) runs

 Parallel region: team of worker threads is generated
(“fork”)

 Threads synchronize when leaving parallel region (“join”)

 Only initial thread executes sequential part (worker
threads persist, but are inactive)

 Task and data distribution possible via directives

 Nesting of parallel regions:
 allowed, but level of support implementation

dependent

 Usually optimal:
 one thread per processor core
 other resource mappings are allowed/possible

15PPHPS 2025 | Elements of OpenMP and MPI

Parallel region: Simplest Program Example: Fortran
program hello

use omp_lib

implicit none

integer :: nthr, myth

!$omp parallel private(myth)

!$omp single

nthr = omp_get_num_threads()

!$omp end single

myth = omp_get_thread_num()

write(*,*) "Hello from ", myth, "of ", nthr

!$omp end parallel

end program hello

 Parallel region directive:
 enclosed code executed by all threads

 may include subprogram calls („dynamic
region“)

 Special function calls:
 module omp_lib provides interface

 here: get number of threads and index of
executing thread

 Data scoping:
 uses a clause on the directive
 myth thread-local: private

 nthr process-global: shared
(will be discussed in more detail later)

16PPHPS 2025 | Elements of OpenMP and MPI

Parallel region: Simplest Program Example: C/C++
#include <stdio.h>
#include <omp.h>

int nthr, myth;

int main(int arc, char *argv[])

{

#pragma omp parallel private(myth)

{

#pragma omp single

nthr = omp_get_num_threads();

myth = omp_get_thread_num();

printf("Hello from %i of %i\n", myth, nthr);

}

}

 Parallel region directive:
 enclosed code executed by all threads

 may include subprogram calls („dynamic
region“)

 Special function calls:
 Include file <omp.h>

 here: get number of threads and index of
executing thread

 Data scoping:
 uses a clause on the directive
 myth thread-local: private

 nthr process-global: shared
(will be discussed in more detail later)

Compile Fortran (e.g. with Intel compiler):
ifx -qopenmp –o hello.exe hello.f90

Compile C (e.g. with Intel compiler):
icx -qopenmp –o hello.exe hello.f90

Run:
export OMP_NUM_THREADS=4

./hello.exe

Hello from 0 of 4

Hello from 2 of 4

Hello from 3 of 4

Hello from 1 of 4

Compile for serial run (e.g. with Intel compiler):
ifx -qopenmp-stubs –o hello.exe hello.f90

 special switch for „stub library“

ordering not
reproducible

17PPHPS 2025 | Elements of OpenMP and MPI

Compiling and Running an OpenMP Program
 Special compiler switch

 activates OpenMP directives
 generates threaded code
 further suboptions may be available
 each compiler has something different here

 OpenMP environment
 defines runtime behaviour
 here: number of threads used

 Serial functionality of program
 (dis)order of output

18PPHPS 2025 | Elements of OpenMP and MPI

OpenMP Fortran Syntax

 Specifications:

 Fortran 77 style

 Fortran 90 module (preferred)

 Directives:

 fixed form source:

free form source (preferred):

 Conditional compilation:

 In fixed form also sentinels *$, c$

 Continuation line:

include ”omp_lib.h”

use omp_lib

myid = 0
!$ myid = omp_get_thread_num()

!$OMP <directive> &
!$OMP <clause>

C$OMP <directive> [<clause [(<args>)]>, …] sentinel starting in column 1,
also : *$OMP, !$OMP

!$OMP <directive> [<clause [(<args>)]>, …]

19PPHPS 2025 | Elements of OpenMP and MPI

OpenMP C/C++ Syntax

 Include file:

 Preprocessor directive: uses pragma feature

 Conditional compilation: OpenMP switch sets preprocessor macro

 Continuation line:

#include <omp.h>

#pragma omp <directive> [clause …]

#ifdef _OPENMP

… /* do something */
#endif

#pragma omp directive \
clause

20PPHPS 2025 | Elements of OpenMP and MPI

OpenMP Syntax: Remarks on Clauses

 Many (but not all) OpenMP directives support clauses
 more than one may appear on a given directive

 Clauses specify additional information associated with the directive
 modification of directive’s semantics

 “Simplest example” from above:
 private(…) appears as clause to the parallel directive

 The specific clause(s) that can be used depend on the directive

21PPHPS 2025 | Elements of OpenMP and MPI

OpenMP Syntax: Structured Block

 Defined by braces in C/C++

 In Fortran:

 code between begin/end of an OpenMP
construct must be a complete, valid
Fortran block

 Single point of entry:
 no GOTO into block (Fortran),

no setjmp()to entry point (C)

 Single point of exit:
 RETURN, GOTO, EXIT outside block are

prohibited (Fortran)
 longjmp() and throw() must not violate

entry/exit rules (C, C++)
 exception: termination via STOP or exit()

 Block structure example:

 C version of simplest program

#include <omp.h>

int main() {
int numth = 1;

#pragma omp parallel

{
int myth = 0; /* private */

#ifdef _OPENMP
#pragma omp single

numth = omp_get_num_threads();
/* block above: one statement */
myth = omp_get_thread_num();

#endif
printf(“Hello from %i of %i\n”,\

myth,numth);

} /* end parallel */
}

Work Sharing in OpenMP (1): Fortran
 Making parallel regions useful …

 divide up work between threads

 Example:

 working on an array processed by a nested loop structure

 iteration space of directly nested loop is sliced

real :: a(ndim, ndim)
…
!$omp parallel
!$omp do
do j=1, ndim
do i=1, ndim

…
a(i, j) = …

end do
end do
!$omp end do
…

!$omp end parallel

j-loop is sliced

synchronization
between threads

further parallel
execution

22PPHPS 2025 | Elements of OpenMP and MPI

Work Sharing in OpenMP (1): C/C++
 Making parallel regions useful …

 divide up work between threads

 Example:

 working on an array processed by a nested loop structure

 iteration space of directly nested loop is sliced

float a[ndim][ndim];

int main(int arc, char *argv[])
{
#pragma omp parallel
{

#pragma omp for
for(int j=0;j<ndim;j++) {

for(int i=0;i<ndim;i++) {
a[i][j]= …;

}
}

…
}

}

j-loop is sliced

further parallel
execution

synchronization
between threads

23PPHPS 2025 | Elements of OpenMP and MPI

24PPHPS 2025 | Elements of OpenMP and MPI

Work Sharing in OpenMP (2)
 Synchronization behaviour:

 all threads (by default) wait for completion
at the end of the work sharing region
(„barrier“)

 following references and definitions using an
array element by other threads are therefore
OK.

 Slicing of iteration space:

 „loop scheduling“

 default behaviour is implementation
dependent

 usually as equal as possible chunks of largest
possible size

 Additional clauses on !$OMP DO / #pragma
omp for

 will be discussed in advanced OpenMP talk

 Fortran syntax:

 C/C++ syntax:

 Restrictions on loop structure:
 trip count must be computable at entry to

loop
disallowed: C style loops modifying the loop
variable, or otherwise violating the require-
ment, Fortran do while loop without loop
control;

 loop body with single entry and single exit
point

#pragma omp for [clause]
for (...) {

... // loop body
}

!$omp do [clause]
do ...

... // loop body
end do

25PPHPS 2025 | Elements of OpenMP and MPI

Memory Model

 Two kinds of memory exist in OpenMP Threads access globally shared
memory

 Data can be shared or private

 shared data – one instance of an
entity available to all threads

 private data – each per-thread copy
only available to thread that owns it

 Data transfer transparent to
programmer

 Synchronization takes place (is
mostly implicit)

 threadprivate variables
 see advanced OpenMP talk

26PPHPS 2025 | Elements of OpenMP and MPI

Data-Sharing Attributes

 By default most variables are shared
 local variables outside the scope of construct

 static/global (C/C++) or save/common (Fortran)
variables

 Except
 variables* defined inside the construct are private

 i.e. declared inside {}-block or BLOCK/END BLOCK

 variables* local to functions/routines called from within the region are private

 loop iteration variables of worksharing loops are private

* non-static (C/C++) or without save attribute (Fortran)

int s = 1;

#pragma omp parallel
{
int p = omp_get_thread_num();
printf("s=%d p=%d\n", s, p);

}

27PPHPS 2025 | Elements of OpenMP and MPI

Data-Sharing Attribute Clauses

 Clauses for explicitly specifying how a variable should be treated
 supported by several directives, e.g., parallel, do/for, single, sections, task, …

 Clauses:
 shared(var1, var2, …)

 private(var1, var2, …)

 private + special operation
 firstprivate(var1, var2, …)

 lastprivate, for do/for construct

 Change default:
 Fortran

 C/C++:

 best practice: default(none)
 every variable referenced must appear in a shared/private/… clause

 avoids incorrect assumptions about shared/private

default(shared|private|firstprivate|none)

default(shared|none)

28PPHPS 2025 | Elements of OpenMP and MPI

Scoping: Second-Simplest Example: Fortran

 Summation inside a loop

 Note: large workload inside loop improves
threaded performance

 require thread-individual variable for
partial sum calculated on each thread

 but: private copies of variables are
undefined at entry to, and become
undefined at exit of the parallel region

 therefore: collect partial sums to a
shared variable defined after the
worksharing region

 updates to shared variable must be
specially protected:

 use a critical region

 only one thread at a time may execute
(mutual exclusion)

(performance impact due to explicit
synchronization)

real :: s, stot
stot = 0.0
!$omp parallel private(s)
s = 0.0
!$omp do
do i=1, ndim

… ! workload
s = s + …

end do
!$omp end do

!$omp critical
stot = stot + s

!$omp end critical

!$omp end parallel

29PPHPS 2025 | Elements of OpenMP and MPI

Scoping: Second-Simplest Example: C/C++

 Summation inside a loop

 Note: large workload inside loop improves
threaded performance

 require thread-individual variable for
partial sum calculated on each thread

 but: private copies of variables are
undefined at entry to, and become
undefined at exit of the parallel region

 therefore: collect partial sums to a
shared variable defined after the
worksharing region

 updates to shared variable must be
specially protected:

 use a critical region

 only one thread at a time may execute
(mutual exclusion)

(performance impact due to explicit
synchronization)

float s, stot;
stot = 0.;

#pragma omp parallel private(s)
{

s = 0.;
#pragma omp for

for(int i=0;i<ndim;i++) {
… // workload
s = s + … ;

}
#pragma omp critical

{
stot = stot + s;

}
}

30PPHPS 2025 | Elements of OpenMP and MPI

Private Variables – Masking: Fortran

real :: s

s = …

!$omp parallel private(s)

s = …

… = … + s

!$omp end parallel

… = … + s

 Masking relevant for

• privatized variables defined in scope
outside the parallel region

31PPHPS 2025 | Elements of OpenMP and MPI

Private Variables – Masking: C/C++

float s;

s = … ;

#pragma omp parallel private(s)

{

s = … ;

… = … + s;

}

… = … + s;
 Masking relevant for

• privatized variables defined in scope
outside the parallel region

32PPHPS 2025 | Elements of OpenMP and MPI

The firstprivate Clause: Fortran

real :: s

s = …

!$omp parallel firstprivate(s)

… = … + s

!$omp end parallel

… = … + s

• Extension of private:

• value of master copy is transferred to private
variables

• restrictions: not a pointer, not assumed
shape, not a subobject, master copy not itself
private etc.

33PPHPS 2025 | Elements of OpenMP and MPI

The firstprivate Clause: C/C++

float s;

s = … ;

#pragma omp parallel firstprivate(s)

{

… = … + s;

}

… = … + s;

• Extension of private:

• value of master copy is transferred to private
variables

• restrictions: not a pointer, not assumed
shape, not a subobject, master copy not itself
private etc.

34PPHPS 2025 | Elements of OpenMP and MPI

The lastprivate Clause: Fortran

real :: s

s = …

!$omp parallel

!$omp do lastprivate(s)

do i = …

s = …

end do

!$omp end do

!$omp end parallel

… = … + s Extension of private:
• additional semantics for work sharing
• value from thread which executes last iteration

of loop is transferred back to master copy
(which must be allocated if it is a dynamic
entity)

• restrictions similar to firstprivate

on work
sharing
directive

35PPHPS 2025 | Elements of OpenMP and MPI

The lastprivate Clause: C/C++

float s;

s = …;

#pragma omp parallel

{

#pragma omp for lastprivate(s)

for(int i=0; i<ndim; i++) {

s = …;

}

}

… = … + s;

 When to use?
• as little as possible
• legacy code

 Extension of private:
• additional semantics for work sharing
• value from thread which executes last iteration

of loop is transferred back to master copy
(which must be allocated if it is a dynamic
entity)

• restrictions similar to firstprivate

on work
sharing
directive

36PPHPS 2025 | Elements of OpenMP and MPI

Reduction Operations (1): Fortran

real :: s

!$omp parallel

!$omp do reduction(+:s)

do i = …

…
s = s + …

end do

!$omp end do

… = … * s

!$omp end parallel

Note: this improves on the summation example

(no explicit critical region needed)

s is still
shared here

 At synchronization point:

• reduction operation is performed

• result is transferred to master copy
• restrictions similar to firstprivate

37PPHPS 2025 | Elements of OpenMP and MPI

Reduction Operations (1): C/C++

float s;

#pragma omp parallel

{

#pragma omp for reduction(+:s)

for(int i=0;i<ndim;i++) {

...;

s = s + …;

}

… = … * s;

}

Note: this improves on the summation example

(no explicit critical region needed)

s is still
shared here

 At synchronization point:

• reduction operation is performed

• result is transferred to master copy
• restrictions similar to firstprivate

38PPHPS 2025 | Elements of OpenMP and MPI

Reduction Operations (2): Fortran

 Initial value of reduction variable

• depends on operation

 Consistency required

 operation specified in clause vs. update
statement

 Multiple reductions:

 multiple scalars, or an array:

Initial ValueOperation

0+

0-

1*

.true..and.

.false..or.

.true..eqv.

.false..neqv.

min(type)MAX

max(type)MIN

all bits setIAND

0IEOR

0IOR

real :: x, y, z
!$OMP do reduction(+:x, y, z)

real :: a(n)
!$OMP do reduction(*:a)

!$OMP do reduction(+:x, y) &
!$OMP reduction(*:z)

39PPHPS 2025 | Elements of OpenMP and MPI

Reduction Operations (2): C/C++

 Initial value of reduction variable

• depends on operation

 Consistency required

 operation specified in clause vs. update
statement

 Multiple reductions:

 multiple scalars, or an array:

Initial ValueOperation

0+

0-

1*

~ 0&

0|

0^

1&&

0||

min(type)max

max(type)min

float x, y, z;
#pragma omp for reduction(+:x, y, z)

float a[n];
#pragma omp for reduction(*:a[0:n])

#pragma omp for reduction (+:a[0:n]) \
reduction (*:b[0:n],c[0:n])

lower
bound

length

MPI
Principles of Message Passing on Distributed Memory Architectures

MPI Architecture

 Operating system view:

 parallel work done by tasks

 Programmer’s view:

 library routines for

 coordination

 communication

 synchronization

 User’s view:

 MPI execution environment provides

 resource allocation

 startup method

 and other (implementation-
dependent) behaviour

41PPHPS 2025 | Elements of OpenMP and MPI

42PPHPS 2025 | Elements of OpenMP and MPI

MPI Parallel Execution

 Tasks run throughout program
execution

 all variables are local

 Startup phase:
 establishes communication context

(„communicator“) among all tasks

 Point-to-point data transfer:
 usually between pairs of tasks

 usually coordinated

 may be blocking or non-blocking

 explicit synchronization is needed for non-
blocking

 Collective communication:
 between all tasks or a subgroup of tasks

 MPI 2 blocking-only (→ MPI 3)

 reductions, scatter/gather operations

 Clean shutdown

43PPHPS 2025 | Elements of OpenMP and MPI

MPI C and Fortran Interfaces

 Required header files:
 C: #include <mpi.h>

 Fortran: include 'mpif.h'

 Fortran90: USE MPI

 Bindings:
 C: error = MPI_Xxxx(parameter,.....);

 Fortran: call MPI_XXXX(argument,...,ierror)

 MPI constants (global/common): All upper case in C

 Arrays:

 C: indexed from 0

 Fortran: indexed from 1

44PPHPS 2025 | Elements of OpenMP and MPI

MPI Error Handling

 Fortran MPI routines

 ierror argument — cannot be omitted!

 C MPI routines

 return an int — may be ignored

 Return value MPI_SUCCESS

 indicates that all went ok

 Default:

 abort parallel computation in case of other return values

 but can also define error handlers

45PPHPS 2025 | Elements of OpenMP and MPI

Initialization and Finalization (1)
 Each processor must start/terminate an MPI process

 Usually handled automatically
 More than one process per processor is mostly possible

 First call in MPI program: initialization of parallel machine
 Fortran: call MPI_INIT(ierror)
 C: MPI_Init(&argc, &argv);

 Last call: clean shutdown of parallel machine
 Fortran: call MPI_FINALIZE(ierror)
 C: MPI_Finalize();

 Only process with rank 0 (see later) is guaranteed to return from MPI_Finalize

 Stdout/stderr of each MPI process
 usually redirected to console where program was started
 many options possible, depending on implementation

46PPHPS 2025 | Elements of OpenMP and MPI

Initialization and Finalization (2)
 Frequent source of errors: MPI_Init() in C

C binding:

int MPI_Init(int *argc, char ***argv);

 If MPI_Init() is called in a function (bad idea anyway), this function must have pointers to the original
data:

void init_all(int *argc, char***argv) {
MPI_Init(argc, argv);
…

}
…
init_all(&argc, &argv);

 Depending on implementation, mistakes at this point might even go unnoticed until code is ported

47PPHPS 2025 | Elements of OpenMP and MPI

Communicator and Rank (1)

 MPI_Init defines "communicator" MPI_COMM_WORLD:

 MPI_COMM_WORLD defines the processes that belong to the parallel machine

 other communicators (subsets) are possible
 rank labels processes inside a communicator

48PPHPS 2025 | Elements of OpenMP and MPI

Communicator and Rank (2)

 The rank identifies each process within a communicator (e.g. MPI_COMM_WORLD):
 obtain rank in Fortran:

integer rank, ierror

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

 obtain rank in C:
int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 rank = 0, 1, 2, … , (number of MPI tasks – 1)

 Obtain number of MPI tasks in communicator:
 in Fortran:

integer size, ierror
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)

 in C:
int size;
MPI_Comm_size(MPI_COMM_WORLD, &size);

49PPHPS 2025 | Elements of OpenMP and MPI

Communicator and Rank (3)

 MPI_COMM_WORLD is

 effectively an MPI-global variable and required as argument for nearly all MPI calls
 rank

 is target label for MPI messages

 can drive user-defined directives what each process should do:

if (rank == 0) then

... ! do work for rank 0

else

... ! do work for other ranks

end if

if (rank == 0){

... // do work for rank 0

}

else {

... // do work for other ranks ***

}

Fortran C

50PPHPS 2025 | Elements of OpenMP and MPI

A Very Simple MPI Program: Fortran

program hello

use mpi

implicit none

integer :: rank, size, ierror

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

write(*,*) 'Hello World! I am ',rank,' of ',size

call MPI_FINALIZE(ierror)

end program

51PPHPS 2025 | Elements of OpenMP and MPI

A Very Simple MPI Program: C/C++

#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[]) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD,&size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello World! I am %i of %i\n", rank, size);

MPI_Finalize();

}

52PPHPS 2025 | Elements of OpenMP and MPI

Compiling and Running MPI Code

 Compile time:
• include files or module information file

needed

 Link time:
• MPI library required

 Most implementations
• provide mpif77, mpif90, mpicc and

mpiCC wrappers

• not standardized, so variations must be
expected e.g., with Intel-MPI (mpiifx,
mpiicx etc.)

• Startup facilities
• mpirun (legacy)

• mpiexec

• site and implementation dependent

 Compile:

 Fortran: mpiifx –o hello hello.f90

 C: mpiicx –o hello hello.c

 Run on 4 processors:

mpirun –np 4 ./hello or

mpiexec –n 4 ./hello

 Output:

Hello World! I am 3 of 4
Hello World! I am 1 of 4
Hello World! I am 0 of 4
Hello World! I am 2 of 4

order undefined

53PPHPS 2025 | Elements of OpenMP and MPI

MPI Process Communication
 Communication between two processes:

Sending / Receiving of MPI-Messages

 MPI-Message:

Array of elements of a particular MPI datatype

 MPI data types:

 basic data types

 derived data types

54PPHPS 2025 | Elements of OpenMP and MPI

Basic Fortran and C Data Types

MPI datatype FORTRAN datatype
MPI_CHARACTER CHARACTER(1)
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_BYTE
MPI_PACKED

MPI datatype C datatype
MPI_CHAR / MPI_SHORT signed char / short
MPI_INT / MPI_LONG signed int / long
MPI_UNSIGNED_CHAR / … unsigned char / …
MPI_FLOAT / MPI_DOUBLE float / double
MPI_LONG_DOUBLE long double
MPI_BYTE
MPI_PACKED

Most important basic data types:

Fortran C

55PPHPS 2025 | Elements of OpenMP and MPI

Basic Fortran and C Data Types in MPI 4.1

56PPHPS 2025 | Elements of OpenMP and MPI

MPI Data Types Cont’d

 MPI_BYTE: Eight binary digits

 hack value, do not use

 MPI_PACKED: can implement new data types however, it is more flexible to use …

 Derived data types: Built at run time from basic data types

 Data type matching: Same MPI data type in SEND and RECEIVE call

 type must match on both ends in order for the communication to take place

 Support for heterogeneous systems/clusters

 implementation-dependent

 automatic data type conversion between systems of differing architecture may be needed

57PPHPS 2025 | Elements of OpenMP and MPI

Point-to-Point Communication

 Communication between exactly two processes within the communicator

 Identification of source and destination via the rank within the communicator!

 Blocking: MPI call returns after completion of the corresponding send/receive operation

58PPHPS 2025 | Elements of OpenMP and MPI

Blocking Standard Send: MPI_Send

 Fortran: call MPI_SEND (buf, count, datatype, dest, tag, comm, ierror)

 C: MPI_Send (&buf, count, datatype, dest, tag, comm)

 buf / &buf: starting address of data buffer to be sent

 count: number of elements to be sent

 datatype: MPI data type of elements to be sent

 dest: rank of destination process

 tag: message marker

 comm: communicator shared by source & destination

 ierror: error code (Fortran-only)

 Completion of MPI_Send:
 status of dest is not defined – message may or may not have been received after return!

 Send buffer may be reused after MPI_Send returns

59PPHPS 2025 | Elements of OpenMP and MPI

MPI_Send Example

 Example:
send array of 10 integers to task no. 5

 Source and destination may coincide

• beware potential deadlocks!

integer count, dest, tag

integer, allocatable :: field(:)

…

count=10; dest=5; tag=0

allocate(field(count));

call MPI_SEND(field, count, MPI_INTEGER, &
dest, tag, MPI_COMM_WORLD, ierror)

int count, dest, tag;

int *field;

…

count=10; dest=5; tag=0;

field = (int*)malloc(count*sizeof(int));

MPI_Send(field, count, MPI_INT,
dest, tag, MPI_COMM_WORLD);

60PPHPS 2025 | Elements of OpenMP and MPI

Blocking Standard Receive: MPI_Recv

 MPI_Recv: 1. receive data

2. complete

 Fortran: call MPI_RECV (buf, count, datatype, source, tag, comm, status, ierror)

 C: MPI_Recv(&buf, count, datatype, source, tag, comm, &status)

 buf size of buffer must be size of message

 count maximum number of elements to receive

 source, tag wildcards may be used (MPI_ANY_SOURCE, MPI_ANY_TAG)

 status information from the message that was received
(is a complex object - see next slide)

61PPHPS 2025 | Elements of OpenMP and MPI

Handling Status Information

 MPI_status in Fortran

 Array of integers of size MPI_STATUS_SIZE

 index values for query: MPI_SOURCE,
MPI_TAG, MPI_ERROR

 MPI_status in C/C++

 Structure of type MPI_Status

 hand a reference to MPI_Recv

 component names for query:
status.MPI_SOURCE, status.MPI_TAG,
status.MPI_ERROR

 MPI status provides additional information about the message
 size, source, tag, error code – may not be otherwise known if wildcards are used
 can also use MPI_STATUS_IGNORE in some contexts

integer :: status(MPI_STATUS_SIZE) MPI_Status status;

• Inquiring message length needs an additional MPI call:
• Fortran: call MPI_GET_COUNT(status, datatype, count, ierror)
• C: MPI_Get_count(&status, datatype, &count);

• count is output argument
• datatype must be the same datatype used in the MPI call that

produced the status variable

62PPHPS 2025 | Elements of OpenMP and MPI

MPI_Recv Example: Fortran

 Example: receive array of REALs from any source

 Obtain number of actually received items:

integer count, countrecv, status(MPI_STATUS_SIZE)

real field(count)

...

call MPI_RECV(field, count, MPI_REAL,
& MPI_ANY_SOURCE, MPI_ANY_TAG,
& MPI_COMM_WORLD, status, ierror)

write(*,*) 'Received from ', status(MPI_SOURCE),
& ' with tag ', status(MPI_TAG)

 call MPI_GET_COUNT(status, MPI_REAL, countrecv, ierror)

63PPHPS 2025 | Elements of OpenMP and MPI

MPI_Recv Example: C/C++

 Example: receive array of floats from any source

 Obtain number of actually received items:

int count, countrecv;

MPI_Status status;

field = (float *)malloc(count*sizeof(float));

…

MPI_Recv(field, count, MPI_FLOAT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &status);

printf("Received from %i with tag %i count: %i \n",
status.MPI_SOURCE, status.MPI_TAG)

 MPI_Get_count(&status, MPI_FLOAT, &countrecv);

64PPHPS 2025 | Elements of OpenMP and MPI

Requirements for Point-to-Point Communication

For a communication to succeed:

 sender must specify a valid destination.

 receiver must specify a valid source rank (or
MPI_ANY_SOURCE).

 communicator must be the same (e.g.,
MPI_COMM_WORLD).

 tags must match.

 message datatypes must match.

 receiver's buffer must be large enough (otherwise result
is undefined!)

65PPHPS 2025 | Elements of OpenMP and MPI

Summary of Basic MPI API Calls

 Beginner's MPI procedure toolbox:

 MPI_Init let's get going

 MPI_Comm_size how many are we?

 MPI_Comm_rank who am I?

 MPI_Send send data to someone else

 MPI_Recv receive data from some-/anyone

 MPI_Get_count how many items have I received?

 MPI_Finalize finish off

 Standard send/receive calls provide most simple way of point-to-point communication

 Send/receive buffer may safely be reused after the call has completed

 MPI_Send must have a specific target/tag, MPI_Recv does not

66PPHPS 2025 | Elements of OpenMP and MPI

First Complete MPI Example in Fortran

program collect

use mpi

implicit none

integer :: i,size,rank,ierror, &
status(MPI_STATUS_SIZE)

integer :: number,sum

call MPI_INIT(ierror)

call MPI_COMM_RANK (MPI_COMM_WORLD,&
rank,ierror)

if(rank.eq.0) then
sum=0
call MPI_COMM_SIZE(MPI_COMM_WORLD,&

size,ierror)
do i=1,size-1

call MPI_RECV(number,1, &
MPI_INTEGER, MPI_ANY_SOURCE, &
MPI_ANY_TAG, MPI_COMM_WORLD, &
status, ierror)

sum=sum+number
enddo

write(*,*) 'The sum is ',sum

else

call MPI_SEND(rank,1,MPI_INTEGER, &

0, 0, MPI_COMM_WORLD, ierror)

endif

call MPI_FINALIZE(ierror)

end program

Write a parallel program in which a master
process collects some data (e.g., numbers to sum
up) from the others

67PPHPS 2025 | Elements of OpenMP and MPI

First Complete MPI Example in C

#include <mpi.h>

int main(int argc, char *argv[]) {

int i, size, rank;

int sum, number;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if(rank==0){
sum=0;
MPI_Comm_size(MPI_COMM_WORLD,&size);
for(i=0;i<size-1;i++) {

MPI_Recv(&number,1,MPI_INT,MPI_ANY_SOU
RCE ,MPI_ANY_TAG, MPI_COMM_WORLD,
&status);

printf("Got number: %i\n", number);
sum+=number;

}
printf("The sum is %i\n", sum);

}
else {
MPI_Send(&rank,1,MPI_INT, 0,
0,MPI_COMM_WORLD);

}
MPI_Finalize();

}

Write a parallel program in which a master
process collects some data (e.g., numbers to sum
up) from the others

68PPHPS 2025 | Elements of OpenMP and MPI

First Complete MPI Example

Remarks:
 gathering results from processes is a very common task in MPI – there are

more efficient ways to do this (see advanced talk).

 this is a reduction operation (summation). There are more efficient ways to do
this (see advanced talk).

 the 'master' process waits for one receive operation to be completed before the
next one is initiated. There are more efficient ways... You guessed it!

 ‘master-worker' schemes are quite common in MPI programming

 error checking is rarely done in MPI programs – debuggers are often more
efficient if something goes wrong

 every process has its own sum variable, but only the master process actually
uses it

