
Parallel Programming
of High-Performance Systems
A collaborative course of NHR@FAU and LRZ Garching

Georg Hager, Volker Weinberg, Ayesha Afzal, Markus Wittmann

Shared-Memory Computer Architecture

Shared memory
 Single address space for all

processors/cores
 Cache coherent, i.e., changes in one

cache will be communicated to all
others for consistency

 Two basic variants: UMA and ccNUMA

Shared
Memory

CPU

CPU

CPU

CPU

PPHPS 2024 | Shared-Memory Architecture 2

3PPHPS 2024 | Shared-Memory Architecture

UMA vs. ccNUMA

[cache-coherent]
Uniform Memory Access

cache-coherent
Non-Uniform Memory Access

All memory accessible by all
cores with same latency and
bandwidth

Latency and bandwidth vary
depending on mutual position of
core and memory

4PPHPS 2024 | Shared-Memory Architecture

Why ccNUMA?
 Many algorithms rely on high

Memory bandwidth:

𝑏𝑏 = 𝑉𝑉
𝑇𝑇

𝑉𝑉 data transferred over memory bus [byte]
𝑇𝑇 wallclock time [s]

 Advantage: Easier (cheaper) to build multiple domains with smaller
bandwidth than one UMA domain with high bandwidth

 Disadvantage: Adds “topology” (non-uniformity in memory access, need to
know where my threads are running)

𝑏𝑏 𝑏𝑏

5PPHPS 2024 | Shared-Memory Architecture

Shared vs. private caches
 Shared cache

 Fast communication path between cores
 Can also reduce synchronization overhead

 Less coherence overhead between cores
connected to the same cache

 More cache for sequential applications
 Shared bandwidth potential bottleneck

 Private caches
 No cache bandwidth bottleneck
 More overhead for cache coherence
 Single-threaded workloads leave a lot of

cache unused

P
C

P
C

C

P
C

P
C

C C

MI

D
om

in
an

t t
od

ay

C C

C C

MI

6PPHPS 2024 | Shared-Memory Architecture

Simultaneous multi-threading (SMT)

St
an

da
rd

 c
or

e
2-

w
ay

 S
M

T
co

re

(c) NHR@FAU 2021

7PPHPS 2024 | Shared-Memory Architecture

SMT benefits and caveats
 Can provide better throughput if there is parallelism in the code

 i.e., more instructions executed per second
 This is not automatic – code must have multiple threads/processes
 “If in doubt, give it a try!”

 Almost all chip resources are shared among hardware threads
 Execution units, caches, memory interface
 Sharing these resources may prevent SMT from improving performance or even

give a performance hit

 SMT introduces another layer of topology on top of it all
 Learn how to ignore it if necessary

8PPHPS 2024 | Shared-Memory Architecture

A modern dual-socket node
 AMD “Rome” (Zen2) dual-socket

system
 64 cores per socket (with SMT)
 8 cores per die, 8 dies per

socket
 Shared L3 cache for core quadruplets

(half dies)
 AMD “Infinity Fabric” between dies

and sockets
 Up to four ccNUMA domains per node

 Configurable NPS1, NPS2, NPS4
 Two DDR4 memory channels per

ccNUMA domain

The role of thread/process affinity

10PPHPS 2024 | Shared-Memory Architecture

STREAM benchmark on 2x24-core AMD Zen “Naples”
Anarchy vs. thread pinning

No pinning

“Compact” pinning (physical
cores first, first socket first)

There are several reasons for caring
about affinity:
 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

OpenMP-parallel
A(:)=B(:)+s*C(:)

Cache coherence

13PPHPS 2024 | Shared-Memory Architecture

Cache coherence in shared-memory computers
 Data in cache is only a copy of data in memory

 Data is always cached in blocks (“cache lines”) of, e.g., 64 bytes
 Multiple copies of same data on multiprocessor systems – consistency?
 Without cache coherence, shared cache lines can become clobbered

 Cache coherence protocol keeps track of cache line (CL) status
 Simple protocol: MESI
 Cache line can be

 Modified
 Exclusive
 Shared
 Invalid

14PPHPS 2024 | Shared-Memory Architecture

Without cache coherence protocol

Memory

C1
P1

A1, A2

C2
P2

P1 P2

Load A1
Write A1=0

A1, A2

Load A2

Write A2=0

A1, A2

Bus

Write-back to memory leads to
incoherent data

A1, A2 A1, A2 A1, A2

C1 & C2 entry can not be
merged to:

A1, A2

15PPHPS 2024 | Shared-Memory Architecture

With cache coherence protocol

Memory

C1
P1

A1, A2

C2
P2 Load A1

Write A1=0:
Load A2

Write A2=0:

P2

A1, A2 A1, A2

Bus

t

1. Request exclusive
access to CL

2. Invalidate CL in C2

3. Modify A1 in C1

A1, A2

1. Request exclusive
CL access

2. CL write back+ Invalidate

3. Load CL to C2
4. Modify A2 in C2

A1, A2

A1, A2A1, A2

C2 is exclusive owner of CL

16PPHPS 2024 | Shared-Memory Architecture

Cache coherence
 Cache coherence can cause substantial overhead

 may reduce available bandwidth
 “False sharing” when multiple cores modify same CL frequently

 Different implementations
 Snoop: On modifying a CL, a CPU must broadcast its address to the whole

system
 Directory, “snoop filter”: Hardware (“network”) keeps track of which CLs are

where and filters coherence traffic
 Directory-based ccNUMA can reduce pain of additional coherence traffic

 Multiple cores should never write frequently to the same cache line (“false
sharing”)! Very bad performance may ensue.

17PPHPS 2024 | Shared-Memory Architecture

Summary on shared-memory architecture
 Basic building block of all modern CPU-based clusters: shared-memory

“compute node”
 Significant “topology” within the node

 Simultaneous multi-threading (hyper-threading)
 Shared/private caches
 Memory interfaces
 Sockets (“packages”)

 Topology has important performance implications
 Thread-core affinity (pinning) is decisive!

 Cache coherence mechanisms make programming easier
 In general, nothing to worry about except when you have to ;-)

BACKUP:
OpenMP-parallel sparse matrix-vector multiplication

19PPHPS 2024 | Shared-Memory Architecture

Sparse matrix-vector multiply (spMVM)
 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors with Nr
(number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

= + • Nr

General
case: some
indirect
addressing
required!

…

20PPHPS 2024 | Shared-Memory Architecture

CRS matrix storage scheme
column index

ro
w

in
de

x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15198 12 … row_ptr[]

 val[] stores all the nonzeros
(length Nnz)

 col_idx[] stores the column index
of each nonzero (length Nnz)

 row_ptr[] stores the starting
index of each new row in val[]
(length: Nr)

21PPHPS 2024 | Shared-Memory Architecture

Case study: Sparse matrix-vector multiply
 Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Following slides: Performance data on one 24-core AMD Magny Cours node

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
c(i) = c(i) + val(j) * b(col_idx(j))
enddo
enddo

!$OMP parallel do

!$OMP end parallel do

22PPHPS 2024 | Shared-Memory Architecture

Application: Sparse matrix-vector multiply

Case 1: Large matrix

Intrasocket
bandwidth
bottleneck

Good scaling
across NUMA

domains

23PPHPS 2024 | Shared-Memory Architecture

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Case 2: Medium size

Intrasocket
bandwidth
bottleneck

Working set
fits in

aggregate
cache

24PPHPS 2024 | Shared-Memory Architecture

Application: Sparse matrix-vector multiply

Case 3: Small size

No bandwidth
bottleneck

Parallelization
overhead
dominates

	Parallel Programming �of High-Performance Systems
	Shared memory
	UMA vs. ccNUMA
	Why ccNUMA?
	Shared vs. private caches
	Simultaneous multi-threading (SMT)
	SMT benefits and caveats
	A modern dual-socket node
	The role of thread/process affinity
	STREAM benchmark on 2x24-core AMD Zen “Naples”�Anarchy vs. thread pinning
	Cache coherence
	Cache coherence in shared-memory computers
	Without cache coherence protocol
	With cache coherence protocol
	Cache coherence
	Summary on shared-memory architecture
	BACKUP: �OpenMP-parallel sparse matrix-vector multiplication�
	Sparse matrix-vector multiply (spMVM)
	CRS matrix storage scheme
	Case study: Sparse matrix-vector multiply
	Application: Sparse matrix-vector multiply
	Application: Sparse matrix-vector multiply�Strong scaling on one XE6 Magny-Cours node
	Application: Sparse matrix-vector multiply

