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Shared-Memory Computer Architecture



Shared memory
 Single address space for all 

processors/cores
 Cache coherent, i.e., changes in one 

cache will be communicated to all 
others for consistency

 Two basic variants: UMA and ccNUMA
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UMA vs. ccNUMA

[cache-coherent]
Uniform Memory Access

cache-coherent 
Non-Uniform Memory Access

All memory accessible by all 
cores with same latency and 
bandwidth

Latency and bandwidth vary 
depending on mutual position of 
core and memory
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Why ccNUMA?
 Many algorithms rely on high

Memory bandwidth:

𝑏𝑏 = 𝑉𝑉
𝑇𝑇

𝑉𝑉 data transferred over memory bus [byte]
𝑇𝑇 wallclock time [s]

 Advantage: Easier (cheaper) to build multiple domains with smaller 
bandwidth than one UMA domain with high bandwidth

 Disadvantage: Adds “topology” (non-uniformity in memory access, need to 
know where my threads are running)

𝑏𝑏 𝑏𝑏
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Shared vs. private caches
 Shared cache

 Fast communication path between cores
 Can also reduce synchronization overhead

 Less coherence overhead between cores 
connected to the same cache

 More cache for sequential applications
 Shared bandwidth  potential bottleneck

 Private caches
 No cache bandwidth bottleneck
 More overhead for cache coherence
 Single-threaded workloads leave a lot of 

cache unused
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Simultaneous multi-threading (SMT)
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SMT benefits and caveats
 Can provide better throughput if there is parallelism in the code

 i.e., more instructions executed per second
 This is not automatic – code must have multiple threads/processes
 “If in doubt, give it a try!”

 Almost all chip resources are shared among hardware threads
 Execution units, caches, memory interface
 Sharing these resources may prevent SMT from improving performance or even 

give a performance hit

 SMT introduces another layer of topology on top of it all
 Learn how to ignore it if necessary



8PPHPS 2024   |   Shared-Memory Architecture

A modern dual-socket node
 AMD “Rome” (Zen2) dual-socket 

system
 64 cores per socket (with SMT)
 8 cores per die, 8 dies per

socket
 Shared L3 cache for core quadruplets

(half dies)
 AMD “Infinity Fabric” between dies

and sockets
 Up to four ccNUMA domains per node

 Configurable NPS1, NPS2, NPS4
 Two DDR4 memory channels per

ccNUMA domain



The role of thread/process affinity
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STREAM benchmark on 2x24-core AMD Zen “Naples”
Anarchy vs. thread pinning

No pinning

“Compact” pinning (physical 
cores first, first socket first)

There are several reasons for caring 
about affinity:
 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

OpenMP-parallel
A(:)=B(:)+s*C(:)



Cache coherence
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Cache coherence in shared-memory computers
 Data in cache is only a copy of data in memory

 Data is always cached in blocks (“cache lines”) of, e.g., 64 bytes
 Multiple copies of same data on multiprocessor systems – consistency? 
 Without cache coherence, shared cache lines can become clobbered

 Cache coherence protocol keeps track of cache line (CL) status
 Simple protocol: MESI
 Cache line can be

 Modified
 Exclusive
 Shared
 Invalid
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Without cache coherence protocol

Memory
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Write-back to memory leads to 
incoherent data
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With cache coherence protocol

Memory
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1. Request exclusive
access to CL

2. Invalidate CL in C2
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Cache coherence
 Cache coherence can cause substantial overhead

 may reduce available bandwidth
 “False sharing” when multiple cores modify same CL frequently

 Different implementations
 Snoop: On modifying a CL, a CPU must broadcast its address to the whole 

system
 Directory, “snoop filter”: Hardware (“network”) keeps track of which CLs are 

where and filters coherence traffic
 Directory-based ccNUMA can reduce pain of  additional coherence traffic

 Multiple cores should never write frequently to the same cache line (“false 
sharing”)! Very bad performance may ensue.



17PPHPS 2024   |   Shared-Memory Architecture

Summary on shared-memory architecture
 Basic building block of all modern CPU-based clusters: shared-memory 

“compute node”
 Significant “topology” within the node

 Simultaneous multi-threading (hyper-threading)
 Shared/private caches
 Memory interfaces
 Sockets (“packages”)

 Topology has important performance implications
 Thread-core affinity (pinning) is decisive!

 Cache coherence mechanisms make programming easier
 In general, nothing to worry about except when you have to ;-) 



BACKUP: 
OpenMP-parallel sparse matrix-vector multiplication
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Sparse matrix-vector multiply (spMVM)
 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors with Nr
(number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

= + • Nr

General 
case: some 
indirect 
addressing 
required!



…
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CRS matrix storage scheme
column index

ro
w 

in
de

x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15198 12 … row_ptr[]

 val[] stores all the nonzeros
(length Nnz)

 col_idx[] stores the column index 
of each nonzero (length Nnz)

 row_ptr[] stores the starting 
index of each new row in val[]
(length: Nr)
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Case study: Sparse matrix-vector multiply
 Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Following slides: Performance data on one 24-core AMD Magny Cours node

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1 
c(i) = c(i) + val(j) * b(col_idx(j)) 
enddo
enddo

!$OMP parallel do

!$OMP end parallel do
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Application: Sparse matrix-vector multiply

Case 1: Large matrix

Intrasocket
bandwidth 
bottleneck

Good scaling 
across NUMA 

domains
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Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Case 2: Medium size

Intrasocket
bandwidth 
bottleneck

Working set 
fits in 

aggregate 
cache



24PPHPS 2024   |   Shared-Memory Architecture

Application: Sparse matrix-vector multiply

Case 3: Small size

No bandwidth 
bottleneck

Parallelization 
overhead 
dominates
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