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Shared-Memory Computer Architecture




Shared memory

» Single address space for all

processors/cores
= Cache coherent, i.e., changes in one CPU cPU
cache will be communicated to all \
others for consistency Shared
Memory \
CPU CPU

= Two basic variants: UMA and ccNUMA
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UMA vs. ccNUMA
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Why ccNUMA?
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= Advantage: Easier (cheaper) to build multiple domains with smaller
bandwidth than one UMA domain with high bandwidth

= Disadvantage: Adds “topology” (non-uniformity in memory access, need to
know where my threads are running)
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Shared vs. private caches

= Shared cache

= Fast communication path between cores i
- Can also reduce synchronization overhead ' c G

= Less coherence overhead between cores
connected to the same cache

= More cache for sequential applications
= Shared bandwidth - potential bottleneck

= Private caches
= No cache bandwidth bottleneck
= More overhead for cache coherence

= Single-threaded workloads leave a lot of
cache unused

v

Dominant today
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Simultaneous multi-threading (SMT)

Execution units
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SMT benefits and caveats

= Can provide better throughput if there is parallelism in the code
= i.e., more instructions executed per second
= This is not automatic — code must have multiple threads/processes
= “If in doubt, giveit a try!”

= Almost all chip resources are shared among hardware threads
= Execution units, caches, memory interface

= Sharing these resources may prevent SMT from improving performance or even
give a performance hit

= SMT introduces another layer of topology on top of it all
= Learn how to ignore it if necessary
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A modern dual-socket node

= AMD “Rome” (Zen2) dual-socket
system
= 64 cores per socket (with SMT)

= 8 cores per die, 8 dies per
socket

= Shared L3 cache for core quadruplets
(half dies)

= AMD “Infinity Fabric” between dies
and sockets

= Up to four ccNUMA domains per node
= Configurable NPS1, NPS2, NPS4

= Two DDR4 memory channels per
ccNUMA domain
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The role of thread/process affinity




STREAM benchmark on 2x24-core AMD Zen “Naples”

Anarchy vs. thread pinning
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Cache coherence




Cache coherence in shared-memory computers

= Data in cache is only a copy of data in memory
= Data is always cached in blocks (“cache lines”) of, e.g., 64 bytes
= Multiple copies of same data on multiprocessor systems — consistency?
= Without cache coherence, shared cache lines can become clobbered

= Cache coherence protocol keeps track of cache line (CL) status
= Simple protocol: MESI

= Cache line can be
- Modified
- Exclusive
- Shared
- Invalid
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Without cache coherence protocol

P1 P2

Load Al Load A2

Write Al=0 Write A2=0

Write-back to memory leads to
incoherent data

A1, A2 A1, A2 A1, A2

C1 & C2 entry can not be
merged to:

A1, A2
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With cache coherence protocol

P2

Load Al Load A2
Write Al=0:

1. Request exclusive
access to CL

2. Invalidate CL in C2

3. Modify A1 in C1

Write A2=0:

1. Request exclusive
CL access
2. CL write back+ Invalidate
3. Load CL to C2
C2 is exclusive owner of CLL <= 4. Modify A2 in C2
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Cache coherence

= Cache coherence can cause substantial overhead
= may reduce available bandwidth
= “False sharing” when multiple cores modify same CL frequently

= Different implementations

= Snoop: On modifying a CL, a CPU must broadcast its address to the whole
system

= Directory, “snoop filter’: Hardware (“network”) keeps track of which CLs are
where and filters coherence traffic

= Directory-based ccNUMA can reduce pain of additional coherence traffic

= Multiple cores should never write frequently to the same cache line (“false
sharing”)! Very bad performance may ensue.
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Summary on shared-memory architecture

= Basic building block of all modern CPU-based clusters: shared-memory
“compute node”
= Significant “topology” within the node
« Simultaneous multi-threading (hyper-threading)
= Shared/private caches
= Memory interfaces
= Sockets (“packages”)
= Topology has important performance implications
= Thread-core affinity (pinning) is decisive!
= Cache coherence mechanisms make programming easier
= |[n general, nothing to worry about except when you have to ;-)
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BACKUP:
OpenMP-parallel sparse matrix-vector multiplication




Sparse matrix-vector multiply (spMVM)

= Key ingredient in some matrix diagonalization algorithms
= Lanczos, Davidson, Jacobi-Davidson

= Store only N, nonzero elements of matrix and RHS, LHS vectors with N,
(number of matrlx rows) entries

“‘Sparse”. N, ~ N
General
. case: some
> Nr indirect
addressing
required!
J
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CRS matrix storage scheme

column index

1234..

>

AOWODN -

row index

val[] stores all the nonzeros
(length N,,)

col idx[] stores the column index
of each nonzero (length N,,)

row_ptr[] stores the starting

index of each new row in vall[]

(length: N,)
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Case study: Sparse matrix-vector multiply

= Strongly memory-bound for large data sets
= Streaming, with partially indirect access:

ISOMP parallel do

do i = 1,N,

do j = row ptr(i), row ptr(i+l) - 1
c(i) = c(1i) * b(col idx(]))

enddo

enddo

1SOMP end parallel do

= Usually many spMVMs required to solve a problem

= Following slides: Performance data on one 24-core AMD Magny Cours node
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Application: Sparse matrix-vector multiply
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Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Coherent HyperTransport (16xs8x)
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Application: Sparse matrix-vector multiply

Case 3;: Small size
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