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Shared-Memory Computer Architecture



Shared memory
 Single address space for all 

processors/cores
 Cache coherent, i.e., changes in one 

cache will be communicated to all 
others for consistency

 Two basic variants: UMA and ccNUMA
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UMA vs. ccNUMA

[cache-coherent]
Uniform Memory Access

cache-coherent 
Non-Uniform Memory Access

All memory accessible by all 
cores with same latency and 
bandwidth

Latency and bandwidth vary 
depending on mutual position of 
core and memory
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Why ccNUMA?
 Many algorithms rely on high

Memory bandwidth:

𝑏𝑏 = 𝑉𝑉
𝑇𝑇

𝑉𝑉 data transferred over memory bus [byte]
𝑇𝑇 wallclock time [s]

 Advantage: Easier (cheaper) to build multiple domains with smaller 
bandwidth than one UMA domain with high bandwidth

 Disadvantage: Adds “topology” (non-uniformity in memory access, need to 
know where my threads are running)

𝑏𝑏 𝑏𝑏
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Shared vs. private caches
 Shared cache

 Fast communication path between cores
 Can also reduce synchronization overhead

 Less coherence overhead between cores 
connected to the same cache

 More cache for sequential applications
 Shared bandwidth  potential bottleneck

 Private caches
 No cache bandwidth bottleneck
 More overhead for cache coherence
 Single-threaded workloads leave a lot of 

cache unused
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Simultaneous multi-threading (SMT)
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SMT benefits and caveats
 Can provide better throughput if there is parallelism in the code

 i.e., more instructions executed per second
 This is not automatic – code must have multiple threads/processes
 “If in doubt, give it a try!”

 Almost all chip resources are shared among hardware threads
 Execution units, caches, memory interface
 Sharing these resources may prevent SMT from improving performance or even 

give a performance hit

 SMT introduces another layer of topology on top of it all
 Learn how to ignore it if necessary
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A modern dual-socket node
 AMD “Rome” (Zen2) dual-socket 

system
 64 cores per socket (with SMT)
 8 cores per die, 8 dies per

socket
 Shared L3 cache for core quadruplets

(half dies)
 AMD “Infinity Fabric” between dies

and sockets
 Up to four ccNUMA domains per node

 Configurable NPS1, NPS2, NPS4
 Two DDR4 memory channels per

ccNUMA domain



The role of thread/process affinity
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STREAM benchmark on 2x24-core AMD Zen “Naples”
Anarchy vs. thread pinning

No pinning

“Compact” pinning (physical 
cores first, first socket first)

There are several reasons for caring 
about affinity:
 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

OpenMP-parallel
A(:)=B(:)+s*C(:)



Cache coherence



13PPHPS 2024   |   Shared-Memory Architecture

Cache coherence in shared-memory computers
 Data in cache is only a copy of data in memory

 Data is always cached in blocks (“cache lines”) of, e.g., 64 bytes
 Multiple copies of same data on multiprocessor systems – consistency? 
 Without cache coherence, shared cache lines can become clobbered

 Cache coherence protocol keeps track of cache line (CL) status
 Simple protocol: MESI
 Cache line can be

 Modified
 Exclusive
 Shared
 Invalid
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Without cache coherence protocol

Memory
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Bus

Write-back to memory leads to 
incoherent data
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With cache coherence protocol

Memory
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P2 Load A1
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Load A2

Write A2=0:

P2
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1. Request exclusive
access to CL

2. Invalidate CL in C2

3. Modify A1 in C1

A1, A2

1. Request exclusive
CL access

2. CL write back+ Invalidate

3. Load CL to C2
4. Modify A2 in C2

A1, A2

A1, A2A1, A2

C2 is exclusive owner of CL
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Cache coherence
 Cache coherence can cause substantial overhead

 may reduce available bandwidth
 “False sharing” when multiple cores modify same CL frequently

 Different implementations
 Snoop: On modifying a CL, a CPU must broadcast its address to the whole 

system
 Directory, “snoop filter”: Hardware (“network”) keeps track of which CLs are 

where and filters coherence traffic
 Directory-based ccNUMA can reduce pain of  additional coherence traffic

 Multiple cores should never write frequently to the same cache line (“false 
sharing”)! Very bad performance may ensue.
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Summary on shared-memory architecture
 Basic building block of all modern CPU-based clusters: shared-memory 

“compute node”
 Significant “topology” within the node

 Simultaneous multi-threading (hyper-threading)
 Shared/private caches
 Memory interfaces
 Sockets (“packages”)

 Topology has important performance implications
 Thread-core affinity (pinning) is decisive!

 Cache coherence mechanisms make programming easier
 In general, nothing to worry about except when you have to ;-) 



BACKUP: 
OpenMP-parallel sparse matrix-vector multiplication
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Sparse matrix-vector multiply (spMVM)
 Key ingredient in some matrix diagonalization algorithms

 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors with Nr
(number of matrix rows) entries

 “Sparse”: Nnz ~ Nr

= + • Nr

General 
case: some 
indirect 
addressing 
required!



…
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CRS matrix storage scheme
column index

ro
w 

in
de

x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15198 12 … row_ptr[]

 val[] stores all the nonzeros
(length Nnz)

 col_idx[] stores the column index 
of each nonzero (length Nnz)

 row_ptr[] stores the starting 
index of each new row in val[]
(length: Nr)
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Case study: Sparse matrix-vector multiply
 Strongly memory-bound for large data sets

 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Following slides: Performance data on one 24-core AMD Magny Cours node

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1 
c(i) = c(i) + val(j) * b(col_idx(j)) 
enddo
enddo

!$OMP parallel do

!$OMP end parallel do
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Application: Sparse matrix-vector multiply

Case 1: Large matrix

Intrasocket
bandwidth 
bottleneck

Good scaling 
across NUMA 

domains
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Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Case 2: Medium size

Intrasocket
bandwidth 
bottleneck

Working set 
fits in 

aggregate 
cache
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Application: Sparse matrix-vector multiply

Case 3: Small size

No bandwidth 
bottleneck

Parallelization 
overhead 
dominates
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