NHRJFAU

Parallel Programming
of High-Performance Systems

A collaborative course of NHR@FAU and LRZ Garching

Georg Hager, Volker Weinberg, Ayesha Afzal, Markus Wittmann

Shared-Memory Computer Architecture

Shared memory

» Single address space for all

processors/cores
= Cache coherent, i.e., changes in one CPU cPU
cache will be communicated to all \
others for consistency Shared
Memory \
CPU CPU

= Two basic variants: UMA and ccNUMA

PPHPS 2024 | Shared-Memory Architecture

UMA vs. ccNUMA

[cache-coherent] cache-coherent

Uniform Memory Access Non-Uniform Memory Access

All memory accessible by all Latency and bandwidth vary

cores with same latency and depending on mutual position of q‘“’

bandwidth core and memory \6 *

K\
e“‘

P I[[fo fr [] ' "1; | '
0 -2 3 8 A i B ;
i | il | e — i cal
— 2] rv "M-"—'
[Me.m:ry J [Memory J [IMemory. J

PPHPS 2024 | Shared-Memory Architecture

Why ccNUMA?

" Memory bandwet: s @ﬂﬁ

__

%
b= [L)

I/ data transferred over memory bus [byte]
T wallclock time [s]

= Advantage: Easier (cheaper) to build multiple domains with smaller
bandwidth than one UMA domain with high bandwidth

= Disadvantage: Adds “topology” (non-uniformity in memory access, need to
know where my threads are running)

PPHPS 2024 | Shared-Memory Architecture 4

Shared vs. private caches

= Shared cache

= Fast communication path between cores i
- Can also reduce synchronization overhead ' c G

= Less coherence overhead between cores
connected to the same cache

= More cache for sequential applications
= Shared bandwidth - potential bottleneck

= Private caches
= No cache bandwidth bottleneck
= More overhead for cache coherence

= Single-threaded workloads leave a lot of
cache unused

v

Dominant today

PPHPS 2024 | Shared-Memory Architecture

Simultaneous multi-threading (SMT)

Execution units

[T 1 !
g - - L1D _‘ = Registers
© [] L] — L2 cache — Ll]
> L] | ||
© (] [] =—
E - T 1]
& (] L
@ M | cache _|
emory | | | |=—=] control
Y
o vyl R
3 I o %% ; L0 O
=] [] Z 7 L2 cache 7 _ cache
= % []) WZ%
> g~
 ga W = | AT
> 7 7 7 7 L1l
N % %, /A, 7, cache 7
Memory 7/// %A | — Control

PPHPS 2024 | Shared-Memory Architecture (c) NHR@FAU 2021

Execution units

SMT benefits and caveats

= Can provide better throughput if there is parallelism in the code
= i.e., more instructions executed per second
= This is not automatic — code must have multiple threads/processes
= “If in doubt, giveit a try!”

= Almost all chip resources are shared among hardware threads
= Execution units, caches, memory interface

= Sharing these resources may prevent SMT from improving performance or even
give a performance hit

= SMT introduces another layer of topology on top of it all
= Learn how to ignore it if necessary

PPHPS 2024 | Shared-Memory Architecture 7

A modern dual-socket node

= AMD “Rome” (Zen2) dual-socket
system
= 64 cores per socket (with SMT)

= 8 cores per die, 8 dies per
socket

= Shared L3 cache for core quadruplets
(half dies)

= AMD “Infinity Fabric” between dies
and sockets

= Up to four ccNUMA domains per node
= Configurable NPS1, NPS2, NPS4

= Two DDR4 memory channels per
ccNUMA domain

PPHPS 2024 | Shared-Memory Architecture 8

NHRJFAU

The role of thread/process affinity

STREAM benchmark on 2x24-core AMD Zen “Naples”

Anarchy vs. thread pinning

1407 T T I | 4
130) T . = LrpEE e o — YTEEE T
120~ 7 e e . o e el
g H3| [s[5| B3 =123 — 5 5 H3| [s[5| B3 3 (8
10— — E : = =To (oo [B— £ E : = o |EH
e] i = i e
g or l] S D i L2 T
g for I)] AR e e -
E 70—] = 55 :1,_;_ f_n_; §__ = = 55 :1,_;_ N §_
o L 4 E HE S| = = 5| g g HE S|]
fa |] = e T g
2 s, OpenMP-parallel . Ll ERE e L L L e 3L
40 A(:)=B(:)+s*C(:) B : - : -
30— . . —
ol No pinning 1 . .
ok 4 250 -
0_ | | | | | | |] N *"
0 10 O reads 40 0 ol “Compact’pinning (physical .~
_' cores first, first socketfirst) _.=
There are several reasons for caring £ sl o
about affinity: ER o
. . L E 100~ ‘."
Eliminating performance variation I -
Making use of architectural features 501~ o
Avoiding resource contention 0 I I B
0 10 20 4 threads 30 40

PPHPS 2024 | Shared-Memory Architecture

NHRJFAU

Cache coherence

Cache coherence in shared-memory computers

= Data in cache is only a copy of data in memory
= Data is always cached in blocks (“cache lines”) of, e.g., 64 bytes
= Multiple copies of same data on multiprocessor systems — consistency?
= Without cache coherence, shared cache lines can become clobbered

= Cache coherence protocol keeps track of cache line (CL) status
= Simple protocol: MESI

= Cache line can be
- Modified
- Exclusive
- Shared
- Invalid

PPHPS 2024 | Shared-Memory Architecture

13

Without cache coherence protocol

P1 P2

Load Al Load A2

Write Al=0 Write A2=0

Write-back to memory leads to
incoherent data

A1, A2 A1, A2 A1, A2

C1 & C2 entry can not be
merged to:

A1, A2

PPHPS 2024 | Shared-Memory Architecture

With cache coherence protocol

P2

Load Al Load A2
Write Al=0:

1. Request exclusive
access to CL

2. Invalidate CL in C2

3. Modify A1 in C1

Write A2=0:

1. Request exclusive
CL access
2. CL write back+ Invalidate
3. Load CL to C2
C2 is exclusive owner of CLL <= 4. Modify A2 in C2

PPHPS 2024 | Shared-Memory Architecture

15

Cache coherence

= Cache coherence can cause substantial overhead
= may reduce available bandwidth
= “False sharing” when multiple cores modify same CL frequently

= Different implementations

= Snoop: On modifying a CL, a CPU must broadcast its address to the whole
system

= Directory, “snoop filter’: Hardware (“network”) keeps track of which CLs are
where and filters coherence traffic

= Directory-based ccNUMA can reduce pain of additional coherence traffic

= Multiple cores should never write frequently to the same cache line (“false
sharing”)! Very bad performance may ensue.

PPHPS 2024 | Shared-Memory Architecture 16

Summary on shared-memory architecture

= Basic building block of all modern CPU-based clusters: shared-memory
“compute node”
= Significant “topology” within the node
« Simultaneous multi-threading (hyper-threading)
= Shared/private caches
= Memory interfaces
= Sockets (“packages”)
= Topology has important performance implications
= Thread-core affinity (pinning) is decisive!
= Cache coherence mechanisms make programming easier
= |[n general, nothing to worry about except when you have to ;-)

PPHPS 2024 | Shared-Memory Architecture 17

NHR JFAU Irz

BACKUP:
OpenMP-parallel sparse matrix-vector multiplication

Sparse matrix-vector multiply (spMVM)

= Key ingredient in some matrix diagonalization algorithms
= Lanczos, Davidson, Jacobi-Davidson

= Store only N, nonzero elements of matrix and RHS, LHS vectors with N,
(number of matrlx rows) entries

“‘Sparse”. N, ~ N
General
. case: some
> Nr indirect
addressing
required!
J

PPHPS 2024 | Shared-Memory Architecture

CRS matrix storage scheme

column index

1234..

>

AOWODN -

row index

val[] stores all the nonzeros
(length N,,)

col idx[] stores the column index
of each nonzero (length N,,)

row_ptr[] stores the starting

index of each new row in vall[]

(length: N,)

0 I A ey

[1]2]3]5[1]2[5[1[3[4[6]3[4]7[1]2]5]8] .. | col idx[]

[1[5[8]12]15/19

| row_ptr[]

PPHPS 2024 | Shared-Memory Architecture

20

Case study: Sparse matrix-vector multiply

= Strongly memory-bound for large data sets
= Streaming, with partially indirect access:

ISOMP parallel do

do i = 1,N,

do j = row ptr(i), row ptr(i+l) - 1
c(i) = c(1i) * b(col idx(]))

enddo

enddo

1SOMP end parallel do

= Usually many spMVMs required to solve a problem

= Following slides: Performance data on one 24-core AMD Magny Cours node

PPHPS 2024 | Shared-Memory Architecture

21

Application: Sparse matrix-vector multiply

o g
z u‘ o s z
g G
= o o 2o =
a || o 8
o &l o o 89 L
o) - = = g pra—
o (-
E- o o g E‘
£ E
S oo g 2
o o g
o o o g L
Intrasocket
bandwidth
bottleneck

MFLOPS/s

8000

7000

6000

5000

4000

3000

2000

1000

Case 1: Large matrix

cant, 62451x62451, non-zero: 4007383

CRS-magnycour:; ——

Good scaling
across NUMA
domains

L '] L ']
0 5 10 15 20 25
threads

PPHPS 2024 | Shared-Memory Architecture

22

Application: Sparse matrix-vector multiply
Strong scaling on one XE6 Magny-Cours node

Coherent HyperTransport (16xs8x)

e m‘ o [
m‘ o
z alle s z
g G
= o o g =
o o E
- &l o o 89 L
S s] M
st alla
z - S~ N z
£ E
2 S - W Y- R K 2
Sl - o 2
o s o o o L
Intrasocket
bandwidth
bottleneck

10000

9000

8000

7000

6000

5000

MFLOPS/s

4000

3000

2000

1000

Case 2: Medium size

mc2depi, 525825x525825, non-zero: 2100225

p. A

CRS-magnycour's +

Working set
fits in
aggregate
cache

threads

20

25

PPHPS 2024 | Shared-Memory Architecture

23

Application: Sparse matrix-vector multiply

Case 3;: Small size

o
z g n.\ o ¢ z rbs480a, 480x480, non-zero: 17088
£ £
2 =8 ou a5l 2 4500 T T T T
CRS-magnycours —
o o E
=08 o [~ MR
R LN 4000 | -
ol (s =t U 3500 |
o o g
z ojla 3 3000 |
E| =
2 ajla s 2 o
oo 2
e e | 9 2500
o o o
{ berenuedsmsdiineime | =
2000
No bandwidth Parallelization
bottleneck 1500 overhead T
dominates
1000 g -
500 L L L L
0 5 10 15 20 25
threads

PPHPS 2024 | Shared-Memory Architecture 24

	Parallel Programming �of High-Performance Systems
	Shared memory
	UMA vs. ccNUMA
	Why ccNUMA?
	Shared vs. private caches
	Simultaneous multi-threading (SMT)
	SMT benefits and caveats
	A modern dual-socket node
	The role of thread/process affinity
	STREAM benchmark on 2x24-core AMD Zen “Naples”�Anarchy vs. thread pinning
	Cache coherence
	Cache coherence in shared-memory computers
	Without cache coherence protocol
	With cache coherence protocol
	Cache coherence
	Summary on shared-memory architecture
	BACKUP: �OpenMP-parallel sparse matrix-vector multiplication�
	Sparse matrix-vector multiply (spMVM)
	CRS matrix storage scheme
	Case study: Sparse matrix-vector multiply
	Application: Sparse matrix-vector multiply
	Application: Sparse matrix-vector multiply�Strong scaling on one XE6 Magny-Cours node
	Application: Sparse matrix-vector multiply

