
Advanced OpenMP Programming

R. Bader (LRZ)

G. Hager (NHR@FAU)

V. Weinberg (LRZ)

M. Wittmann

Work Sharing Schemes

Loops and loop scheduling

Collapsing loop nests

Parallel sections

 Default scheduling:
 implementation dependent

 typical: largest possible chunks of as-equal-
as-possible size („static scheduling“)

 User-defined scheduling:

chunk: always a non-negative integer. If
omitted, has a schedule dependent default value

 Static scheduling
 schedule(static,10)

 minimal overhead (precalculated work
assignment)

 Dynamic scheduling
 schedule(dynamic, 10)

 after a thread has completed a chunk, it is
assigned a new one, until no chunks are left

 synchronization overhead

 default chunk value is 1

The schedule clause

© 2010-2025 Advanced OpenMP Programming

!$OMP do schedule(...)

iteration space
(threads color coded)

10 iterations

both threads take long to complete
their chunk (workload imbalance)

static
schedule(dynamic [,chunk])

guided

#pragma omp for schedule(...)

OpenMP Scheduling of simple for loops

© 2010-2025 Advanced OpenMP Programming

OMP_SCHEDULE=static

OMP_SCHEDULE=dynamic,10OMP_SCHEDULE=static,10

 Size of chunks in dynamic schedule
 too small  large overhead

 too large  load imbalance

 Guided scheduling: dynamically vary chunk size.
 Size of each chunk is proportional to the number of unassigned iterations divided by the number of

threads in the team, decreasing to chunk-size (default = 1).

 Chunk size:
 means minimum chunk size (except perhaps final chunk)

 default value is 1

 Both dynamic and guided scheduling useful for handling poorly balanced and unpredictable
workloads.

Guided scheduling

© 2010-2025 Advanced OpenMP Programming

iteration space

chunk = 7

 auto: automatic scheduling
 Programmer gives implementation the

freedom to use any possible mapping.

 Decided at run time:

 runtime:
 determine by either setting OMP_SCHEDULE,

and/or calling omp_set_schedule()
(overrides env. setting)

 find which is active by calling
omp_get_schedule()

 Examples:
 environment setting:

export OMP_SCHEDULE="guided,4"

./a.out

 call to API routine:

Deferred scheduling

© 2010-2025 Advanced OpenMP Programming

!$OMP do schedule(runtime)
call omp_set_schedule(omp_sched_dynamic,4)
!$OMP parallel
!$OMP do schedule(runtime)

do
…

end do
!$OMP end do

#pragma omp for schedule(runtime)

omp_set_schedule(omp_sched_dynamic, 4)
#pragma omp parallel
#pragma omp schedule(runtime)

for (…) { }

runtime scheduling and OMP_SCHEDULE is not set:
implementation chooses a schedule

 Collapse nested loops into a single
iteration space

 Restrictions:
 iteration space computable at entry to loop

(rectangular)
 CYCLE (Fortran) or continue (C/C++) only

in innermost loop

 Logical iteration space
 example: kmax=3, jmax=3

 this is what is divided up into chunks and
distributed among threads

 Sequential execution of the iterations in all
loops determines the order of iterations in
the collapsed iteration space

 Optimization effect
 may improve memory locality properties

 may reduce data traffic between cores

Collapsing loop nests

© 2010-2025 Advanced OpenMP Programming

!$OMP do collapse(2)
do k=1, kmax

do j=1, jmax
:

end do
end do

!$OMP end do

876543210

321321321J

333222111K

#pragma omp for collapse(2)
for (k=0; k<kmax; ++k)

for (j=0; j<jmax; ++j)
...

argument specifies
number of loop
nests to flatten

 Remember:
 an OpenMP for/do performs implicit

synchronization at loop completion

 Shooting yourself in the foot
 modified variables must not be accessed

unless explicit synchronization is performed
 use a barrier for this

Performance Tuning: the nowait clause

© 2010-2025 Advanced OpenMP Programming

!$omp parallel
!$omp do

do k=1, kmax_1
a(k) = a(k) + b(k)

end do
!$omp end do nowait

! code not involving
! r/w of a, writes to b

!$omp do
do k=1, kmax_2

c(k) = c(k) * d(k)
end do

!$omp end do
!$omp end parallel

do not
synchronize

Implicit
barrier

#pragma omp parallel
{

#pragma omp for nowait
for (int k = 0; k < kmax_1; ++k) {

a[k] += b[k]
}
/* code not involving */
/* r/w of a, writes to b */
#pragma omp for
for (int k = 0; k < kmax_2; ++k) {

c[k] *= d[k]
}

}

 Example: multiple loops in parallel region

 barrier construct is a stand-alone
directive

 barrier synchronizes all threads

 each barrier must be encountered by
all threads in the team or by non at all.

Explicit barrier synchronization

© 2010-2025 Advanced OpenMP Programming

!$omp parallel
!$omp do

do k=1, kmax_1
a(k) = a(k) + b(k)

end do
!$omp end do nowait

! code not involving
! r/w of a, writes to b

!$omp barrier
!$omp do

do k=1, kmax_1
a(k) = a(k) + b(k)

end do
!$omp end do
!$omp end parallel

do not
synchronize

#pragma omp parallel
{

#pragma omp for nowait
for (int k = 0; k < kmax_1; ++k) {

a[k] += b[k]
}
/* code not involving */
/* r/w of a, writes to b */
#pragma omp barrier
#pragma omp for
for (int k = 0; k < kmax_1; ++k) {

a[k] += b[k]
}

}

explicit
synchronization

 Non-iterative work-sharing construct
 distribute a set of structured blocks

 each block executed exactly once by one of
the threads in team

 Allowed clauses on sections:
 private, firstprivate,
lastprivate, reduction, nowait

 Restrictions:
 section directive must be within lexical

scope of sections directive
 sections directive binds to innermost

parallel region

  only the threads executing the binding
parallel region participate in the execution of
the section blocks and the implicit barrier (if
not eliminated with nowait)

 Scheduling to threads
 implementation-dependent

 if there are more threads than code blocks:
excess threads wait at synchronization point

Parallel sections

© 2010-2025 Advanced OpenMP Programming

!$omp parallel
!$omp sections
!$omp section

! code block 1
!$omp section

! code block 2
…
!$omp end sections
!$omp end parallel

thread 0

thread 1

synchronization

 one thread only executes enclosed code block

 all other threads wait until block completes
execution

 allowed clauses: private, firstprivate,
copyprivate, nowait

 use for updates of shared entities, but …
 single – really a worksharing directive?

 copyprivate and nowait clauses: appear on
end single in Fortran, on single in C/C++

The single directive

© 2010-2025 Advanced OpenMP Programming

#pragma omp parallel
{
double s = …;
#pragma omp single copyprivate(s)
{

s = …
}
… = … + s

}

tim
e

fork:
T0 T1 T2 T3

join

private

s0 s1 s2 s3

s0 s1 s2 s3

copyprivate(s)
broadcasts s

!$omp single
s = …

!$omp end single copyprivate(s)

s2

 Implement a self-written work scheduler
 not the most efficient method  preferably use tasking (see later)

 one possible scheme:

Combining single with nowait

© 2010-2025 Advanced OpenMP Programming

: assign work for iteration 1
!$omp parallel
do iw=1, nwork

!$omp single
: ! assign work for iteration iw+1 to threads, “prefetching”
: ! (using a non-trivial amount of time e.g. I/O)

!$omp end single nowait
: ! other threads continue and work on iteration iw

!$omp barrier
end do ! iw

!$omp end parallel

no omp do!
all threads

execute this loop

/* assign work for iteration 1 */
#pragma omp parallel
for (int i = 0; i < nwork; ++i) {
#pragma omp single nowait
{
/* assign work for iteration i+1 to threads, "prefetching"
/* (using a non-trivial amount of time e.g. I/O) */
}
/* other threads continue and work on iteration
#pragma omp barrier

}

 Example:

 is equivalent to

 Applies to most work-sharing
constructs
 do/for

 Sections

 Workshare (Fortran only)

 Notes:
 clauses for work-sharing constructs can

appear on combined construct

 the reverse is not true
shared can only appear in a parallel region

Combining regions and work sharing

© 2010-2025 Advanced OpenMP Programming

!$omp parallel
!$omp do
...
!$omp end do
!$omp end parallel

!$OMP parallel do
...
!$OMP end parallel do

#pragma omp parallel for
...

#pragma omp parallel
#pragma omp for
...

Vectorization with OpenMP SIMD

Acknowledgements:

M. Klemm (OpenMP ARB), C. Terboven (RWTH Aachen)

 Width of SIMD (Single Instruction, Multiple Data) registers has been growing in the past:

SIMD on Intel Architecture

© 2010-2025 Advanced OpenMP Programming

 Support required vendor-specific extensions
 Programming models (e.g. Intel Cilk Plus)
 Compiler pragmas (e.g. #pragma vector)

 Low-level constructs (e.g. _mm_add_pd())

Before OpenMP 4.0

© 2010-2025 Advanced OpenMP Programming

#pragma omp parallel for
#pragma vector always
#pragma ivdep
for (int i = 0; i < n; i++) {

a[i] = b[i] + …;
}

You need to trust
your compiler to
do the right thing

 Vectorize a loop nest
 Cut loop into chunks that fit a SIMD vector register

 No parallelization of the loop body

 simd construct can be applied to a loop to indicate that the loop can be transformed
into a SIMD loop
 multiple iterations of the loop can be executed concurrently using SIMD instructions

 simd specifies that there are no dependencies among loop iterations
 see safelen clause

SIMD Loop Construct

© 2010-2025 Advanced OpenMP Programming

#pragma omp simd [clause, …]
for-loops

!$omp simd [clause, …]
do-loops
!$omp end simd

C/C++ Fortran

 private (var-list)
uninitialized vectors for variables in var-list

 reduction (op:var-list)
create private variables for var-list and apply reduction operator op at the end of the
construct

 simdlen (length)
length is treated as a hint that specifies the preferred number of iterations to be executed
concurrently

 safelen (length)
maximum number of iterations that can run concurrently without breaking a dependence

 linear (list[:linear-step])
the variable’s value is in relationship with the iteration number xi = xorig + i * linear-step

 aligned (list[:alignment])
specifies that the list items have a given alignment

 collapse (n)
collapse n nested loops into a single iteration space

SIMD Loop Construct: Clauses

© 2010-2025 Advanced OpenMP Programming

Examples of the SIMD construct

© 2010-2025 Advanced OpenMP Programming

#pragma omp simd
for (i=0; i<n); i++)

a[i] = b[i] + c[i];

#pragma omp simd reduction(+:t1) collapse(2)
for (i=0; i<n; i++)

for (j=0; j<m; j++)
t1 += func1(b[i], c[j]);

 Parallelize and vectorize a loop next
 Distribute a loop’s iteration space across a thread team

 Subdivide loop chunks to fit a SIMD vector register

 SIMD Function Vectorization
 Declare one or more functions to be compiled for calls from a SIMD loop

 Not covered in this course

SIMD Worksharing Construct

© 2010-2025 Advanced OpenMP Programming

#pragma omp for simd [clause, …]
for-loops

!$omp do simd [clause, …]
do-loops
!$omp end

C/C++ Fortran

Synchronization and its issues

Memory model

Additional directives

Performance issues

User-defined synchronization

shared
memory

 OpenMP Memory Model

 private (thread-local):
 no access by other threads

 shared: two views
 temporary view: thread has modified data in

its registers (or other intermediate device)

 content becomes inconsistent with that in cache/memory

 other threads: cannot know that their copy of data is invalid

Why do we need synchronization?

© 2010-2025 Advanced OpenMP Programming

T

T

T

T

two threads execute
a = a + 1
in same parallel region
 race condition

processor registers
(different cores)

a

 Following results could be obtained on each thread
 a after completion of statement:

Thread 0 Thread 1

1 1

1 2

2 1

 may be different from run to run, depending on which thread is the last one

 after completion of parallel region, may obtain 1 or 2.

Possible results

© 2010-2025 Advanced OpenMP Programming

a = 0

Thread 0:

a = a + 1

Thread 1:

a = a + 1

 For threaded code without
synchronization this means
 multiple threads write to same memory

location

 resulting value is unspecified

 some threads read and another writes

 result on reading threads unspecified

 Flush Operation
 is performed on a set of (shared) variables

or on the whole thread-visible data state of a
program

 flush-set

 discards temporary view:

 modified values forced to
cache/memory

 next read access must be from
cache/memory

 further memory operations only allowed
after all involved threads complete flush:

 restrictions on memory instruction
reordering (by compiler)

 Ensure consistent view of memory:
 assumption: want to write a data item with

first thread, read it with second

 order of execution required:

1. thread 1 writes to shared variable

2. thread 1 flushes variable

3. thread 2 flushes same variable

4. thread 2 reads variable

Consequences and (theoretical) remedies

© 2010-2025 Advanced OpenMP Programming

 OpenMP directive for explicit flushing

!$omp flush [(var1[,var2,…])]

 Stand-alone directive

 applicable to all variables with shared scope
 including: SAVE, COMMON/module globals, shared dummy arguments, shared pointer dereferences

 If no variables specified, the flush-set
 encompasses all shared variables

which are accessible in the scope of the FLUSH directive

 potentially slower

 Implicit flush operations (with no list) occur at:
 All explicit and implicit barriers

 Entry to and exit from critical regions

 Entry to and exit from lock routines

OpenMP flush syntax

© 2010-2025 Advanced OpenMP Programming

 Explicit via directive:
 the execution flow of each thread blocks upon reaching the barrier until all threads have reached the

barrier

 flush synchronization of all accessible shared variables happens before all threads continue

 after the barrier, all shared variables have consistent value visible to all threads

 barrier may not appear within work-sharing code block
 e.g. !$omp do block, since this would imply deadlock

 Implicit for some directives:
 at the beginning and end of parallel regions
 at the end of do, single, sections, workshare blocks unless a nowait clause is specified (where

allowed)

 all threads in the executing team are synchronized

 this is what makes these directives “easy-and-safe-to-use”

Barrier synchronization

© 2010-2025 Advanced OpenMP Programming

 Use a nowait clause
 on end do / end sections / end single / end workshare (Fortran)

 on for / sections / single (C/C++)

 removes the synchronization at end of block

 potential performance improvement

 especially if load imbalance occurs within construct)

 programmer’s responsibility to prevent races

Relaxing synchronization requirements

© 2010-2025 Advanced OpenMP Programming

 The critical and atomic directives:
 each thread arriving at the code block executes it (in contrast to single)

 mutual exclusion: only one at a time within code block
 atomic: code block must be a single line update of a scalar entity of intrinsic type with an intrinsic

operation

Critical regions

© 2010-2025 Advanced OpenMP Programming

!$omp critical

block

!$omp end critical

!$omp atomic

x = x <op> y

pragma omp critical

{ block }

pragma omp atomic

x = x <op> y ;

unary operator
also allowed

Fortran

C/C++

 Mutual exclusion is only assured for the statements inside the block
 i.e., subsequent threads executing the block are synchronized against each other

 If other statements access the shared variable, may be in trouble:

Synchronizing effect of critical regions

© 2010-2025 Advanced OpenMP Programming

 Race on read to x.

 A barrier is required before
this statement to assure that
all threads have executed
their atomic updates

#pragma omp parallel
{
:
#pragma omp atomic
x = x + y
:
a = f(x, …)

}

FortranC/C++

!$omp parallel
:

!$omp atomic
x = x + y
:
a = f(x, …)

!$omp end parallel

 Consider multiple updates
 same shared variable

 critical region is global: OK

 different shared variables

 mutual exclusion not required

 unnecessary loss of performance

 Solution:
 use named criticals

 mutual exclusion only if same name is used
for critical

 atomic is bound to updated variable
 problem does not occur

Named critical

© 2010-2025 Advanced OpenMP Programming

subroutine foo()
!$omp critical
x = x + y

!$omp end critical

thread 0

subroutine bar()
!$omp critical
x = x + z

!$omp end critical

thread 1

subroutine foo()
!$omp critical
x = x + y

!$omp end critical

subroutine bar()
!$omp critical
w = w + z

!$omp end critical

subroutine foo()
!$omp critical (foo_x)
x = x + y

!$omp end critical (foo_x)

subroutine bar()
!$omp critical (foo_w)
w = w + z

!$omp end critical (foo_w)

 Only thread zero (from the current team) executes the enclosed code block

 There is no implied barrier either on entry to, or exit from, the master construct. Other threads
continue without synchronization

 Not all threads must reach the construct
 if the master thread does not reach it, it will not be executed at all

 Equivalent to:

The master directive (depricated)

© 2010-2025 Advanced OpenMP Programming

!$omp master
block

!$omp end master

#pragma omp master
{ block }

Fortran C/C++

if (omp_get_thread_num() == 0) { … }

 only threads selected by the filter clause execute the structured block

 other threads in the team do not execute the associated structured block.

 If a filter clause is present on the construct and the parameter specifies the thread
number of the current thread in the current team then the current thread executes
the associated structured block.

 No implied barrier on entry to, or exit from, the masked construct.

The masked directive

© 2010-2025 Advanced OpenMP Programming

!$omp masked [filter(scalar-integer-expression)]

block
!$omp end masked

pragma omp masked [filter(integer-expression)]

{ block }

Fortran C/C++
≥ v5.1

!$OMP do ordered
do I=1,N

O1
!$OMP ordered

O2
!$OMP end ordered
O3

end do
!$OMP end do

 Statements must be within body of a loop
 directive acts similar to single

 threads do work ordered as in sequential execution

 execution in the order of the loop iterations
 requires ordered clause on enclosing do/for construct

 only effective if code is executed in parallel

 only one ordered region per loop

The ordered clause and directive

© 2010-2025 Advanced OpenMP Programming

i=1 i=2 i=3 i=N
...

O1 O1

O1
O2

O2

O2

O2

O3 O3

O3

O3
barrier

tim
e

...

O1

#pragma omp for ordered
for (i=0; i<N; ++i) {

O1
#pragma omp ordered
{ O2 }
O3

}

FortranC/C++

 Loop contains recursion
 dependency requires serialization

 only small part of loop (otherwise
performance issue)

 Loop contains I/O
 it is desired that output (file) be consistent

with serial execution

Two applications of ordered

© 2010-2025 Advanced OpenMP Programming

!$OMP do ordered
do I=2,N
... ! large block
!$OMP ordered

a(I) = a(I-1) + ...
!$OMP end ordered

end do
!$OMP end do

!$OMP do ordered
do I=1,N
... ! calculate a(I)
!$OMP ordered

write(unit,...) a(I)
!$OMP end ordered

end do
!$OMP end do

#pragma omp for ordered
for (i=1; i<N; ++i) {
... /* large block */
#pragma omp ordered
a[i] = a[i-1] + ...

}

#pragma omp for ordered
for (i=0; i<N; ++i) {
... /* calculate a[i] */
#pragma omp ordered

printf("%e ", a[i]);
}

}

F
or

tr
an

C
/C

+
+

F
or

tr
an

C
/C

+
+

 A shared lock variable can be used to implement specifically designed
synchronization mechanisms
 In the following, var is of type

 Fortran: integer(omp_lock_kind)

 C/C++: omp_lock_t

 OpenMP lock variables must be only accessed by the lock routines

 Mutual exclusion bound to objects
 more flexible than critical regions

Mutual exclusion with locks

© 2010-2025 Advanced OpenMP Programming

 An OpenMP lock can be in one of the following 3 stages:
 uninitialized

 unlocked

 locked

 The task that sets the lock is then said to own the lock.

 Only a task that sets the lock, can unset the lock, returning it to the unlocked stage.

 2 types of locks are supported:
 simple locks

 Can only be locked if unlocked.

 A thread may not attempt to re-lock a lock it already has acquired.

 nestable locks

 Owning thread can lock multiple times

 Owning thread must unlock the same number of times it locked it

OpenMP locks

© 2010-2025 Advanced OpenMP Programming

 Fortran: omp_init_lock(var)
C/C++ omp_init_lock(omp_lock_t *var)
 initialize a lock

 initial state is unlocked

 what resources are protected by lock: defined by developer
 var not associated with a lock before this routine is called

 Fortran: omp_destroy_lock(var)
C/C++: omp_destroy_lock(omp_lock_t *var)
 disassociate var from lock

 precondition:
 var must have been initialized

 var must be in unlocked state

Lock routines (1)

© 2010-2025 Advanced OpenMP Programming

 Assuming: lock variable var has been initialized

 Fortran: omp_set_lock(var)
C/C++: void omp_set_lock(omp_lock_t *var)
 blocks if lock not available

 set ownership and continue execution if lock available

 Fortran: omp_unset_lock(var)
C/C++: void omp_unset_lock(omp_lock_t *var)
 release ownership of lock

 ownership must have been established before

 Fortran: logical function omp_test_lock(var)
C/C++: int omp_test_lock(omp_lock_t *var)
 does not block, tries to set ownership

 returns true if lock was set, false if not

 allows to do something else while lock is hold by another thread

Lock routines (2)

© 2010-2025 Advanced OpenMP Programming

Lock routines

© 2010-2025 Advanced OpenMP Programming

Example for using locks

© 2010-2025 Advanced OpenMP Programming

use omp_lib
integer(omp_lock_kind) :: lock

call omp_init_lock(lock)

!$omp parallel
...
do while (.not. omp_test_lock(lock))

! work unrelated to lock protected
! resource

end do
! use lock protected resource
call omp_unset_lock(lock)
...

!$omp end parallel

call omp_destroy_lock(lock)

use omp_lib
integer(omp_lock_kind) :: lock

call omp_init_lock(lock)

!$omp parallel
...
call omp_set_lock(lock)
! use resource protected by lock
call omp_unset_lock(lock)
...

!$omp end parallel

call omp_destroy_lock(lock)

acts like a
critical

region

loop until lock
calling thread

hold lock

Example for using locks

© 2010-2025 Advanced OpenMP Programming

#inclue <omp.h>
omp_lock_t lock;

omp_init_lock(&lock)

#pragma omp parallel
{

...
while (!omp_test_lock(&lock)) {

/* work unrelated to lock
protected resource */

}
/* use lock protected

resource */
omp_unset_lock(&lock)
...

}

omp_destroy_lock(&lock)

#include <omp.h>
omp_lock_t lock;

omp_init_lock(&lock);

#pragma omp parallel
{
...
omp_set_lock(&lock)
/* use resource protected

by lock */
omp_unset_lock(&lock)
...

}

omp_destroy_lock(&lock)

acts like a
critical

region

loop until lock
calling thread

hold lock

 replace omp_*_lock by omp_*_nest_lock

 task owning a nestable lock may re-lock it multiple times
 a nestable lock is available if it is either unlocked

or

 it is already owned by the task executing
omp_set_nest_lock()or omp_test_nest_lock()

 re-locking increments nest count

 releasing the lock decrements nest count

 lock is unlocked once nest count is zero

Nestable Locks

© 2010-2025 Advanced OpenMP Programming

Tasking
Work sharing for irregular problems, recursive problems and information structures

Acknowledgements:

M. Klemm (AMD) / L. Meadows / T. Mattson (Intel)

 Supports unstructured parallelism
 unbounded loops

 recursive functions

 Several scenarios are possible
 single creator, multiple creators, nested

tasks,
 All threads in the team are candidates to

execute tasks

 Example of unstructured parallelism

Task Execution Model

© 2010-2025 Advanced OpenMP Programming

while (<expr>) {
...

}

do while (<expr>
...

end do

void myfunc(<args>)
{
...
myfunc(<newargs>)
...

}

#pragma omp parallel
#pragma omp single
while (elem != NULL) {

#pragma omp task
compute(elem);

elem = elem->next;
}

The Execution Model

© 2010-2025 Advanced OpenMP Programming

Task queue

 Clauses:
 data environment:

 private, fistprivate,
default(shared|none),
in_reduction(r-id:list)

 Dependencies:
 depend(dep-type: list)

 Scheduler restriction:
 untied

 Scheduler hints:
 priority(priority-value)
 affinity(list)

 cutoff strategies:
 if(scalar-expression)

 mergable

 final(scalar-expression)

 Other clauses:
 allocate(allocator:] list)

 detach(event-handler)

The task Construct

© 2010-2025 Advanced OpenMP Programming

!$omp task [clause[[,] clause]...]
…structured-block…
!$omp end task

#pragma omp task [clause[[,] clause]...]
{structured-block}

 Deferring (or not) a unit of work (executable for any member of the team)

 Make OpenMP worksharing more flexible:
 allow the programmer to package code blocks and data items for execution

 this by definition is a task

 and assign these to an encountering thread

 possibly defer execution to a later time („work queue“)

 Introduced with OpenMP 3.0 and extended over time

 When a thread encounters a task construct, a task is generated from the code of
the associated structured block.

 Data environment of the task is created (according to the data-sharing attributes,
defaults, …)
 „Packaging of data“

 The encountering thread may immediately execute the task, or defer its execution.
In the latter case, any thread in the team may be assigned the task.

What is a Task?

© 2010-2025 Advanced OpenMP Programming

Example: Processing a Linked List

© 2010-2025 Advanced OpenMP Programming

typedef struct {
list *next;
contents *data;

} list;

void process_list(list *head)
{

#pragma omp parallel
{

#pragma omp single
{

list *p = head;
while(p) {

#pragma omp task
{ do_work(p->data); }
p = p->next;

}
} /* all tasks done */

}
}

#pragma omp parallel
{
#pragma omp single
{

while(p) {
#pragma omp task
{ /* taks code */ }

}
} /* all tasks done */

}

Typical task generation loop:

 Features of this example:
 one of the threads has the job of generating

all tasks
 synchronization: at the end of the single

block for all tasks created inside it

 no particular order between tasks is
enforced here

 data scoping default for task block:
 firstprivate

 iterating through p is fine

 this is the „packaging of data“ mentioned
earlier

 task region: includes call of do_work()

Example: Processing a Linked List

© 2010-2025 Advanced OpenMP Programming

typedef struct {
list *next;
contents *data;

} list;

void process_list(list *head)
{

#pragma omp parallel
{

#pragma omp single
{

list *p = head;
while (p) {

#pragma omp task
{ do_work(p->data); }
p = p->next;

}
} /* all tasks done */

}
}

 When if argument is false –
 task becomes an undeferred task

 task body is executed immediately by encountering thread

 all other semantics stay the same (data environment, synchronization) as for a „deferred“ task

 User-directed optimization:
 avoid overhead for deferring small tasks

 cache locality / memory affinity may be lost by doing so

The if Clause

© 2010-2025 Advanced OpenMP Programming

#pragma omp task if (sizeof(p->data) > threshold)
{ do_work(p->data); }

 Task Synchronization
 Task Synchronization with barrier and taskwait

 Task Synchronization with taskgroup

 Task Switching
 The taskyield Directive

 Task Reductions
 Task Reductions using the taskgroup Construct

 Task Loops
 The taskloop Construct

 Task Dependencies
 The depend Clause

Further aspects of tasking not covered in detail

© 2010-2025 Advanced OpenMP Programming

 OpenMP Webpage https://www.openmp.org/

 Specification https://www.openmp.org/specifications/

 OpenMP Books https://www.openmp.org/resources/openmp-books/

 IWOMP Conference https://www.iwomp.org/
 IWOMP 2025 will be held in the week of Sep 29-Oct 3 in conjunction with EuroMPI and the MPI

Forum meetings.

 OpenMP Reference Guide (Cheat Sheet) https://www.openmp.org/resources/refguides/

OpenMP Resources

© 2010-2025 Advanced OpenMP Programming

