
Advanced OpenMP Programming

R. Bader (LRZ)

G. Hager (RRZE)

V. Weinberg (LRZ)

M. Wittmann (NHR@FAU)

Work Sharing Schemes

Loops and loop scheduling

Collapsing loop nests

Parallel sections

▪ Default scheduling:

▪ implementation dependent

▪ typical: largest possible chunks of as-equal-

as-possible size („static scheduling“)

▪ User-defined scheduling:

chunk: always a non-negative integer. If

omitted, has a schedule dependent default value

▪ Static scheduling

▪ schedule(static,10)

▪ minimal overhead (precalculated work

assignment)

▪ default chunk value: see left

▪ Dynamic scheduling

▪ schedule(dynamic, 10)

▪ after a thread has completed a chunk, it is

assigned a new one, until no chunks are left

▪ synchronization overhead

▪ default chunk value is 1

The schedule clause

© 2010-2023 OpenMP Programming 3

!$OMP do schedule(...)

iteration space

(threads color coded)

10 iterations

both threads take long to complete

their chunk (workload imbalance)
static

schedule(dynamic [,chunk])

guided

#pragma omp for schedule(...)

OpenMP Scheduling of simple for loops

© 2010-2023 OpenMP Programming 4

OMP_SCHEDULE=static

OMP_SCHEDULE=dynamic,10OMP_SCHEDULE=static,10

▪ Size of chunks in dynamic schedule

▪ too small → large overhead

▪ too large → load imbalance

▪ Guided scheduling: dynamically vary chunk size.

▪ Size of each chunk is proportional to the number of unassigned iterations divided by the number of

threads in the team, decreasing to chunk-size (default = 1).

▪ Chunk size:

▪ means minimum chunk size (except perhaps final chunk)

▪ default value is 1

▪ Both dynamic and guided scheduling useful for handling poorly balanced and unpredictable

workloads.

Guided scheduling

© 2010-2023 OpenMP Programming 5

iteration space

chunk = 7

▪ auto: automatic scheduling

▪ Programmer gives implementation the
freedom to use any possible mapping.

▪ Decided at run time:

▪ runtime:

▪ schedule is one of the above or the previous
two slides

▪ determine by either setting OMP_SCHEDULE,
and/or calling omp_set_schedule()
(overrides env. setting)

▪ find which is active by calling
omp_get_schedule()

▪ Examples:

▪ environment setting:

export OMP_SCHEDULE="guided,4"

./a.out

▪ call to API routine:

Deferred scheduling

© 2010-2023 OpenMP Programming 6

!$OMP do schedule(runtime)

call omp_set_schedule(omp_sched_dynamic,4)

!$OMP parallel

!$OMP do schedule(runtime)

do

…

end do

!$OMP end do

#pragma omp for schedule(runtime)

omp_set_schedule(omp_sched_dynamic, 4)

#pragma omp parallel

#pragma omp schedule(runtime)

for (…) { }

runtime scheduling and OMP_SCHEDULE is not set:

implementation chooses a schedule

▪ Collapse nested loops into a single

iteration space

▪ Restrictions:

▪ iteration space computable at entry to loop

(rectangular)

▪ CYCLE (Fortran) or continue (C/C++) only

in innermost loop

▪ Logical iteration space

▪ example: kmax=3, jmax=3

▪ this is what is divided up into chunks and

distributed among threads

▪ Sequential execution of the iterations in all

loops determines the order of iterations in

the collapsed iteration space

▪ Optimization effect

▪ may improve memory locality properties

▪ may reduce data traffic between cores

Collapsing loop nests

© 2010-2023 OpenMP Programming 8

!$OMP do collapse(2)

do k=1, kmax

do j=1, jmax

:

end do

end do

!$OMP end do

0 1 2 3 4 5 6 7 8

J 1 2 3 1 2 3 1 2 3

K 1 1 1 2 2 2 3 3 3

#pragma omp for collapse(2)

for (k=0; k<kmax; ++k)

for (j=0; j<jmax; ++j)

...

argument specifies

number of loop

nests to flatten

▪ Remember:

▪ an OpenMP for/do performs implicit

synchronization at loop completion

▪ Shooting yourself in the foot

▪ modified variables must not be accessed

unless explicit synchronization is performed

▪ use a barrier for this

Performance Tuning: the nowait clause

© 2010-2023 OpenMP Programming 9

!$omp parallel

!$omp do

do k=1, kmax_1

a(k) = a(k) + b(k)

end do

!$omp end do nowait

! code not involving

! r/w of a, writes to b

!$omp do

do k=1, kmax_2

c(k) = c(k) * d(k)

end do

!$omp end do

!$omp end parallel

do not

synchronize

Implicit

barrier

#pragma omp parallel

{

#pragma omp for nowait

for (int k = 0; k < kmax_1; ++k) {

a[k] += b[k]

}

/* code not involving */

/* r/w of a, writes to b */

#pragma omp for

for (int k = 0; k < kmax_2; ++k) {

c[k] *= d[k]

}

}

▪ Example: multiple loops in parallel region

▪ barrier construct is a stand-alone

directive

▪ barrier synchronizes all threads

▪ each barrier must be encountered by

all threads in the team or by non at all.

Explicit barrier synchronization

© 2010-2023 OpenMP Programming 10

!$omp parallel

!$omp do

do k=1, kmax_1

a(k) = a(k) + b(k)

end do

!$omp end do nowait

! code not involving

! r/w of a, writes to b

!$omp barrier

!$omp do

do k=1, kmax_1

a(k) = a(k) + b(k)

end do

!$omp end do

!$omp end parallel

do not

synchronize

#pragma omp parallel

{

#pragma omp for nowait

for (int k = 0; k < kmax_1; ++k) {

a[k] += b[k]

}

/* code not involving */

/* r/w of a, writes to b */

#pragma omp barrier

#pragma omp for

for (int k = 0; k < kmax_1; ++k) {

a[k] += b[k]

}

}

explicit

synchronization

▪ Non-iterative work-sharing construct

▪ distribute a set of structured blocks

▪ each block executed exactly once by one of

the threads in team

▪ Allowed clauses on sections:

▪ private, firstprivate,

lastprivate, reduction, nowait

▪ Restrictions:

▪ section directive must be within lexical

scope of sections directive

▪ sections directive binds to innermost

parallel region

▪ → only the threads executing the binding

parallel region participate in the execution of

the section blocks and the implicit barrier (if
not eliminated with nowait)

▪ Scheduling to threads

▪ implementation-dependent

▪ if there are more threads than code blocks:

excess threads wait at synchronization point

Parallel sections

© 2010-2023 OpenMP Programming 12

!$omp parallel

!$omp sections

!$omp section

! code block 1

!$omp section

! code block 2

…

!$omp end sections

!$omp end parallel

thread 0

thread 1

synchronization

▪ one thread only executes enclosed code block

▪ all other threads wait until block completes

execution

▪ allowed clauses: private, firstprivate,

copyprivate, nowait

▪ use for updates of shared entities, but …

▪ single – really a worksharing directive?

▪ copyprivate and nowait clauses: appear on

end single in Fortran, on single in C/C++

The single directive

© 2010-2023 OpenMP Programming 13

#pragma omp parallel

{

double s = …;

#pragma omp single copyprivate(s)

{

s = …

}

… = … + s

}

ti
m

e

fork:

T0 T1 T2 T3

join

private

s0 s1 s2 s3

s0 s1 s2 s3

copyprivate(s)

broadcasts s

!$omp single

s = …

!$omp end single copyprivate(s)

s2

▪ Example:

▪ is equivalent to

▪ Applies to most work-sharing

constructs

▪ do/for

▪ workshare

▪ sections

▪ Notes:

▪ clauses for work-sharing constructs can

appear on combined construct

▪ the reverse is not true

shared can only appear in a parallel region

▪ clauses on a work-sharing construct only

apply for the specific construct block

Combining regions and work sharing

© 2010-2023 OpenMP Programming 18

!$omp parallel

!$omp do

...

!$omp end do

!$omp end parallel

!$OMP parallel do

...

!$OMP end parallel do

#pragma omp parallel for

...

#pragma omp parallel

#pragma omp for

...

Vectorization with OpenMP SIMD

Acknowledgements: M. Klemm (OpenMP ARB), C. Terboven (RWTH Aachen)

▪ Width of SIMD (Single Instruction, Multiple Data) registers has been growing in the past:

SIMD on Intel Architecture

© 2010-2023 OpenMP Programming 20

▪ Support required vendor-specific extensions

▪ Programming models (e.g. Intel Cilk Plus)

▪ Compiler pragmas (e.g. #pragma vector)

▪ Low-level constructs (e.g. _mm_add_pd())

Before OpenMP 4.0

© 2010-2023 OpenMP Programming 21

#pragma omp parallel for

#pragma vector always

#pragma ivdep

for (int i = 0; i < n; i++) {

a[i] = b[i] + …;

}

You need to trust

your compiler to

do the right thing

▪ Vectorize a loop nest

▪ Cut loop into chunks that fit a SIMD vector register

▪ No parallelization of the loop body

▪ simd construct can be applied to a loop to indicate that the loop can be transformed

into a SIMD loop

▪ multiple iterations of the loop can be executed concurrently using SIMD instructions

▪ simd specifies that there are no dependencies among loop iterations

▪ see safelen clause

SIMD Loop Construct

© 2010-2023 OpenMP Programming 22

#pragma omp simd [clause, …]

for-loops

!$omp simd [clause, …]

do-loops

!$omp end simd

C/C++ Fortran

▪ private (var-list)

uninitialized vectors for variables in var-list

▪ reduction (op:var-list)

create private variables for var-list and apply reduction operator op at the end of the

construct

▪ simdlen (length)

length is treated as a hint that specifies the preferred number of iterations to be executed

concurrently

▪ safelen (length)

maximum number of iterations that can run concurrently without breaking a dependence

▪ linear (list[:linear-step])

the variable’s value is in relationship with the iteration number xi = xorig + i * linear-step

▪ aligned (list[:alignment])

specifies that the list items have a given alignment

▪ collapse (n)

collapse n nested loops into a single iteration space

SIMD Loop Construct: Clauses

© 2010-2023 OpenMP Programming 23

Examples of the SIMD construct

© 2010-2023 OpenMP Programming 24

#pragma omp simd

for (i=0; i<n); i++)

a[i] = b[i] + c[i];

#pragma omp simd reduction(+:t1) collapse(2)

for (i=0; i<n; i++)

for (j=0; j<m; j++)

t1 += func1(b[i], c[j]);

#pragma omp simd private(t1, t2)

for (i=0; i<n; i++) {

t1 = funca(b[i], c[i]);

t2 = funcb(b[i], c[i]);

a[i] = t1 + t2;

}

▪ Parallelize and vectorize a loop next

▪ Distribute a loop’s iteration space across a thread team

▪ Subdivide loop chunks to fit a SIMD vector register

▪ OpenMP 4.5. simplifies SIMD chunks:

▪ schedule(simd: static, n)

▪ Chooses chunk sizes that are multiples of the SIMD length

SIMD Worksharing Construct

© 2010-2023 OpenMP Programming 25

#pragma omp for simd [clause, …]

for-loops

!$omp do simd [clause, …]

do-loops

!$omp end

C/C++ Fortran

▪ Declare one or more functions to be compiled for calls from a SIMD loop

▪ You can think of this as a special kind of SIMD function prototype

▪ Compiler may generate multiple versions of a SIMD function and select the appropriate version to
invoke at a specific call-site in a simd construct

SIMD Function Vectorization

© 2010-2023 OpenMP Programming 26

#pragma omp declare simd

[clause, …]

function declaration/definitions

!$omp declare simd

(proc-name-list)

function/subroutine &

declaration/definitions

C/C++ Fortran

▪ simdlen (length)

generate function to support a given vector length (not a hint as for simd!)

▪ uniform (argument-list)

argument has a constant value between the iterations of a given loop

▪ inbranch

function is always called from inside an if statement

▪ notinbranch

function is never called from inside an if statement

▪ linear (list[:linear-step])

indicates that an argument passed to a function parameter has a linear relationship across
the concurrent invocations of a function (not a data-sharing clause as for simd!)

▪ aligned (list[:alignment])

declares that the value of the pointer variable argument has the specified byte alignment,

the SIMD version of the function may then use aligned vector memory accesses for the
pointer variable

SIMD Function Vectorization Clauses

© 2010-2023 OpenMP Programming 27

Example of SIMD Function Vectorization

© 2010-2023 OpenMP Programming 28

#pragma omp declare simd

double my_func (double b, double c)

{

double r;

r = b + c;

return r;

}

void simd_loop_function(double *a, double *b,

double *c, int n)

{

#pragma omp simd

for (int i=0; i<n; i+=2) {

a[i] = my_func(b[i], c[i]);

}

}
Call to my_func will

be to a SIMD variant

of the function.

Instructs the compiler

to generate at least

one additional SIMD

version of the function
my_func.

Synchronization

and its issues

Memory model

Additional directives

Performance issues

User-defined synchronization

shared

memory

▪ OpenMP Memory Model

▪ private (thread-local):

▪ no access by other threads

▪ shared: two views

▪ temporary view: thread has modified data in

its registers (or other intermediate device)

▪ content becomes inconsistent with that in cache/memory

▪ other threads: cannot know that their copy of data is invalid

Why do we need synchronization?

© 2010-2023 OpenMP Programming 30

T

T

T

T

two threads execute
a = a + 1

in same parallel region

→ race condition

processor registers

(different cores)

a

▪ Following results could be obtained on each thread

▪ a after completion of statement:

Thread 0 Thread 1

1 1

1 2

2 1

▪ may be different from run to run, depending on which thread is the last one

▪ after completion of parallel region, may obtain 1 or 2.

Possible results

© 2010-2023 OpenMP Programming 31

a = 0

Thread 0:

a = a + 1

Thread 1:

a = a + 1

▪ For threaded code without

synchronization this means

▪ multiple threads write to same memory

location

▪ resulting value is unspecified

▪ some threads read and another writes

▪ result on reading threads unspecified

▪ Flush Operation

▪ is performed on a set of (shared) variables

or on the whole thread-visible data state of a

program

→ flush-set

▪ discards temporary view:

→ modified values forced to

cache/memory

→ next read access must be from

cache/memory

▪ further memory operations only allowed

after all involved threads complete flush:

▪ restrictions on memory instruction

reordering (by compiler)

▪ Ensure consistent view of memory:

▪ assumption: want to write a data item with

first thread, read it with second

▪ order of execution required:

1. thread 1 writes to shared variable

2. thread 1 flushes variable

3. thread 2 flushes same variable

4. thread 2 reads variable

Consequences and (theoretical) remedies

© 2010-2023 OpenMP Programming 32

▪ OpenMP directive for explicit flushing

!$omp flush [(var1[,var2,…])]

▪ Stand-alone directive

▪ applicable to all variables with shared scope

▪ including: SAVE, COMMON/module globals, shared dummy arguments, shared pointer dereferences

▪ If no variables specified, the flush-set

▪ encompasses all shared variables

which are accessible in the scope of the FLUSH directive

▪ potentially slower

▪ Implicit flush operations (with no list) occur at:

▪ All explicit and implicit barriers

▪ Entry to and exit from critical regions

▪ Entry to and exit from lock routines

OpenMP flush syntax

© 2010-2023 OpenMP Programming 33

▪ Explicit via directive:

▪ the execution flow of each thread blocks upon reaching the barrier until all threads have reached the

barrier

▪ flush synchronization of all accessible shared variables happens before all threads continue

▪ after the barrier, all shared variables have consistent value visible to all threads

▪ barrier may not appear within work-sharing code block

▪ e.g. !$omp do block, since this would imply deadlock

▪ Implicit for some directives:

▪ at the beginning and end of parallel regions

▪ at the end of do, single, sections, workshare blocks unless a nowait clause is specified (where

allowed)

▪ all threads in the executing team are synchronized

▪ this is what makes these directives “easy-and-safe-to-use”

Barrier synchronization

© 2010-2023 OpenMP Programming 36

▪ Use a nowait clause

▪ on end do / end sections / end single / end workshare (Fortran)

▪ on for / sections / single (C/C++)

▪ removes the synchronization at end of block

▪ potential performance improvement

▪ especially if load imbalance occurs within construct)

▪ programmer’s responsibility to prevent races

Relaxing synchronization requirements

© 2010-2023 OpenMP Programming 37

▪ The critical and atomic directives:

▪ each thread arriving at the code block executes it (in contrast to single)

▪ mutual exclusion: only one at a time within code block

▪ atomic: code block must be a single line update of a scalar entity of intrinsic type with an intrinsic

operation

Critical regions

© 2010-2023 OpenMP Programming 38

!$omp critical

block

!$omp end critical

!$omp atomic

x = x <op> y

pragma omp critical

{ block }

pragma omp atomic

x = x <op> y ;

unary operator

also allowed
Fortran

C/C++

▪ Mutual exclusion is only assured for the statements inside the block

▪ i.e., subsequent threads executing the block are synchronized against each other

▪ If other statements access the shared variable, may be in trouble:

Synchronizing effect of critical regions

© 2010-2023 OpenMP Programming 39

▪ Race on read to x.

▪ A barrier is required before

this statement to assure that

all threads have executed

their atomic updates

#pragma omp parallel

{

:

#pragma omp atomic

x = x + y

:

a = f(x, …)

}

FortranC/C++

!$omp parallel

:

!$omp atomic

x = x + y

:

a = f(x, …)

!$omp end parallel

▪ Consider multiple updates

▪ same shared variable

▪ critical region is global: OK

▪ different shared variables

▪ mutual exclusion not required

▪ unnecessary loss of performance

▪ Solution:

▪ use named criticals

▪ mutual exclusion only if same name is used
for critical

▪ atomic is bound to updated variable

▪ problem does not occur

Named critical

© 2010-2023 OpenMP Programming 40

subroutine foo()

!$omp critical

x = x + y

!$omp end critical

thread 0

subroutine bar()

!$omp critical

x = x + z

!$omp end critical

thread 1

subroutine foo()

!$omp critical

x = x + y

!$omp end critical

subroutine bar()

!$omp critical

w = w + z

!$omp end critical

subroutine foo()

!$omp critical (foo_x)

x = x + y

!$omp end critical (foo_x)

subroutine bar()

!$omp critical (foo_w)

w = w + z

!$omp end critical (foo_w)

▪ Only thread zero (from the current team) executes the enclosed code block

▪ There is no implied barrier either on entry to, or exit from, the master construct. Other threads

continue without synchronization

▪ Not all threads must reach the construct

▪ if the master thread does not reach it, it will not be executed at all

▪ Equivalent to:

The master directive (depricated)

© 2010-2023 OpenMP Programming 41

!$omp master

block

!$omp end master

#pragma omp master

{ block }

Fortran C/C++

if (omp_get_thread_num() == 0) { … }

▪ only threads selected by the filter clause execute the structured block

▪ other threads in the team do not execute the associated structured block.

▪ If a filter clause is present on the construct and the parameter specifies the thread

number of the current thread in the current team then the current thread executes

the associated structured block.

▪ No implied barrier on entry to, or exit from, the masked construct.

The masked directive

© 2010-2023 OpenMP Programming 42

!$omp masked [filter(scalar-integer-expression)]

block

!$omp end masked

pragma omp masked [filter(integer-expression)]

{ block }

Fortran C/C++
≥ v5.1

!$OMP do ordered

do I=1,N

O1

!$OMP ordered

O2

!$OMP end ordered

O3

end do

!$OMP end do

▪ Statements must be within body of a loop

▪ directive acts similar to single

▪ threads do work ordered as in sequential execution

▪ execution in the order of the loop iterations

▪ requires ordered clause on enclosing do/for construct

▪ only effective if code is executed in parallel

▪ only one ordered region per loop

The ordered clause and directive

© 2010-2023 OpenMP Programming 43

i=1 i=2 i=3 i=N
...

O1
O1

O1
O2

O2

O2

O2

O3 O3

O3

O3
barrier

tim
e

...

O1

#pragma omp for ordered

for (i=0; i<N; ++i) {

O1

#pragma omp ordered

{ O2 }

O3

}

FortranC/C++

▪ Loop contains recursion

▪ dependency requires serialization

▪ only small part of loop (otherwise

performance issue)

▪ Loop contains I/O

▪ it is desired that output (file) be consistent

with serial execution

Two applications of ordered

© 2010-2023 OpenMP Programming 44

!$OMP do ordered

do I=2,N

... ! large block

!$OMP ordered

a(I) = a(I-1) + ...

!$OMP end ordered

end do

!$OMP end do

!$OMP do ordered

do I=1,N

... ! calculate a(I)

!$OMP ordered

write(unit,...) a(I)

!$OMP end ordered

end do

!$OMP end do

#pragma omp for ordered

for (i=1; i<N; ++i) {

... /* large block */

#pragma omp ordered

a[i] = a[i-1] + ...

}

#pragma omp for ordered

for (i=0; i<N; ++i) {

... /* calculate a[i] */

#pragma omp ordered

printf("%e ", a[i]);

}

}

F
o

rt
ra

n
C

/C
+

+

F
o

rt
ra

n
C

/C
+

+

▪ A shared lock variable can be used to implement specifically designed

synchronization mechanisms

▪ In the following, var is of type

▪ Fortran: integer(omp_lock_kind)

▪ C/C++: omp_lock_t

▪ OpenMP lock variables must be only accessed by the lock routines

▪ Mutual exclusion bound to objects

▪ more flexible than critical regions

Mutual exclusion with locks

© 2010-2023 OpenMP Programming 45

▪ An OpenMP lock can be in one of the following 3 stages:

▪ uninitialized

▪ unlocked

▪ locked

▪ The task that sets the lock is then said to own the lock.

▪ Only a task that sets the lock, can unset the lock, returning it to the unlocked stage.

▪ 2 types of locks are supported:

▪ simple locks

▪ Can only be locked if unlocked.

▪ A thread may not attempt to re-lock a lock it already has acquired.

▪ nestable locks

▪ Owning thread can lock multiple times

▪ Owning thread must unlock the same number of times it locked it

OpenMP locks

© 2010-2023 OpenMP Programming 46

▪ Fortran: omp_init_lock(var)

C/C++ omp_init_lock(omp_lock_t *var)

▪ initialize a lock

▪ initial state is unlocked

▪ what resources are protected by lock: defined by developer

▪ var not associated with a lock before this routine is called

▪ Fortran: omp_destroy_lock(var)

C/C++: omp_destroy_lock(omp_lock_t *var)

▪ disassociate var from lock

▪ precondition:

▪ var must have been initialized

▪ var must be in unlocked state

Lock routines (1)

© 2010-2023 OpenMP Programming 47

▪ Assuming: lock variable var has been initialized

▪ Fortran: omp_set_lock(var)

C/C++: void omp_set_lock(omp_lock_t *var)

▪ blocks if lock not available

▪ set ownership and continue execution if lock available

▪ Fortran: omp_unset_lock(var)

C/C++: void omp_unset_lock(omp_lock_t *var)

▪ release ownership of lock

▪ ownership must have been established before

▪ Fortran: logical function omp_test_lock(var)

C/C++: int omp_test_lock(omp_lock_t *var)

▪ does not block, tries to set ownership

▪ returns true if lock was set, false if not

▪ allows to do something else while lock is hold by another thread

Lock routines (2)

© 2010-2023 OpenMP Programming 48

Example for using locks

© 2010-2023 OpenMP Programming 49

use omp_lib

integer(omp_lock_kind) :: lock

call omp_init_lock(lock)

!$omp parallel

...

do while (.not. omp_test_lock(lock))

! work unrelated to lock protected

! resource

end do

! use lock protected resource

call omp_unset_lock(lock)

...

!$omp end parallel

call omp_destroy_lock(lock)

use omp_lib

integer(omp_lock_kind) :: lock

call omp_init_lock(lock)

!$omp parallel

...

call omp_set_lock(lock)

! use resource protected by lock

call omp_unset_lock(lock)

...

!$omp end parallel

call omp_destroy_lock(lock)

acts like a
critical

region

loop until lock

calling thread

hold lock

Example for using locks

© 2010-2023 OpenMP Programming 50

#inclue <omp.h>

omp_lock_t lock;

omp_init_lock(&lock)

#pragma omp parallel

{

...

while (!omp_test_lock(&lock)) {

/* work unrelated to lock

protected resource */

}

/* use lock protected

resource */

omp_unset_lock(&lock)

...

}

omp_destroy_lock(&lock)

#include <omp.h>

omp_lock_t lock;

omp_init_lock(&lock);

#pragma omp parallel

{

...

omp_set_lock(&lock)

/* use resource protected

by lock */

omp_unset_lock(&lock)

...

}

omp_destroy_lock(&lock)

acts like a
critical

region

loop until lock

calling thread

hold lock

▪ replace omp_*_lock by omp_*_nest_lock

▪ task owning a nestable lock may re-lock it multiple times

▪ a nestable lock is available if it is either unlocked

or

▪ it is already owned by the task executing
omp_set_nest_lock()or omp_test_nest_lock()

▪ re-locking increments nest count

▪ releasing the lock decrements nest count

▪ lock is unlocked once nest count is zero

Nestable Locks

© 2010-2023 OpenMP Programming 51

Tasking

Work sharing for irregular problems,

recursive problems

and information structures

Acknowledgements: M. Klemm (AMD) / L. Meadows / T. Mattson (Intel)

▪ Supports unstructured parallelism

▪ unbounded loops

▪ recursive functions

▪ Several scenarios are possible

▪ single creator, multiple creators, nested
tasks,

▪ All threads in the team are candidates to
execute tasks

▪ Example of unstructured parallelism

Task Execution Model

© 2010-2023 OpenMP Programming 64

while (<expr>) {

...

}

do while (<expr>

...

end do

void myfunc(<args>)

{

...

myfunc(<newargs>)

...

}

#pragma omp parallel

#pragma omp single

while (elem != NULL) {

#pragma omp task

compute(elem);

elem = elem->next;

}

The Execution Model

© 2010-2023 OpenMP Programming 65

Task queue

▪ Clauses:

▪ data environment:

▪ private, fistprivate,
default(shared|none),
in_reduction(r-id:list)

▪ Dependencies:

▪ depend(dep-type: list)

▪ Scheduler restriction:

▪ untied

▪ Scheduler hints:

▪ priority(priority-value)

▪ affinity(list)

▪ cutoff strategies:

▪ if(scalar-expression)

▪ mergable

▪ final(scalar-expression)

▪ Other clauses:

▪ allocate(allocator:] list)

▪ detach(event-handler)

The task Construct

© 2010-2023 OpenMP Programming 66

!$omp task [clause[[,] clause]...]

…structured-block…

!$omp end task

#pragma omp task [clause[[,] clause]...]

{structured-block}

▪ Deferring (or not) a unit of work (executable for any member of the team)

▪ Make OpenMP worksharing more flexible:

▪ allow the programmer to package code blocks and data items for execution

▪ this by definition is a task

▪ and assign these to an encountering thread

▪ possibly defer execution to a later time („work queue“)

▪ Introduced with OpenMP 3.0 and extended over time

▪ When a thread encounters a task construct, a task is generated from the code of

the associated structured block.

▪ Data environment of the task is created (according to the data-sharing attributes,

defaults, …)

▪ „Packaging of data“

▪ The encountering thread may immediately execute the task, or defer its execution.

In the latter case, any thread in the team may be assigned the task.

What is a Task?

© 2010-2023 OpenMP Programming 67

Example: Processing a Linked List

© 2010-2023 OpenMP Programming 68

typedef struct {

list *next;

contents *data;

} list;

void process_list(list *head)

{

#pragma omp parallel

{

#pragma omp single

{

list *p = head;

while(p) {

#pragma omp task

{ do_work(p->data); }

p = p->next;

}

} /* all tasks done */

}

}

#pragma omp parallel

{

#pragma omp single

{

while(p) {

#pragma omp task

{ /* taks code */ }

}

} /* all tasks done */

}

Typical task generation loop:

▪ Features of this example:

▪ one of the threads has the job of generating

all tasks

▪ synchronization: at the end of the single

block for all tasks created inside it

▪ no particular order between tasks is

enforced here

▪ data scoping default for task block:

▪ firstprivate

▪ iterating through p is fine

▪ this is the „packaging of data“ mentioned

earlier

▪ task region: includes call of do_work()

Example: Processing a Linked List

© 2010-2023 OpenMP Programming 69

typedef struct {

list *next;

contents *data;

} list;

void process_list(list *head)

{

#pragma omp parallel

{

#pragma omp single

{

list *p = head;

while (p) {

#pragma omp task

{ do_work(p->data); }

p = p->next;

}

} /* all tasks done */

}

}

▪ When if argument is false –

▪ task becomes an undeferred task

▪ task body is executed immediately by encountering thread

▪ all other semantics stay the same (data environment, synchronization) as for a „deferred“ task

▪ User-directed optimization:

▪ avoid overhead for deferring small tasks

▪ cache locality / memory affinity may be lost by doing so

The if Clause

© 2010-2023 OpenMP Programming 70

#pragma omp task if (sizeof(p->data) > threshold)

{ do_work(p->data); }

OpenMP Programming

Task Synchronization

© 2010-2023 71

▪ OpenMP barrier (implicit or explicit)

▪ All tasks created by any thread of the current team are
guaranteed to be completed at barrier exit

▪ Task barrier: taskwait

▪ Encountering task is suspended until child tasks are complete

▪ Applies to direct children only, not descendants!

Task Synchronization with barrier and taskwait

© 2010-2023 OpenMP Programming 72

#pragma omp barrier

#pragma omp taskwait

!$omp barrier

!$omp taskwait

FortranC/C++

FortranC/C++

#pragma omp parallel

#pragma omp single

{

while (elem != NULL) {

#pragma omp task

compute(elem);

elem = elem->next;

}

} /* impl. barrier */

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{ ... } /* A */

#pragma omp task

{ ... } /* B */

#pragma omp taskwait

...

} /* impl. barrier */

▪ taskgroup construct

▪ deep task synchronization

▪ attached to a structured block

▪ completion of all descendants of the

current task

▪ task synchronization point (TSP) at the

end, see later slides

Task Synchronization with taskgroup

© 2010-2023 OpenMP Programming 73

#pragma omp taskgroup [allocate] \

[task_reduction(list)]

{structured-block}

#pragma omp parallel

#pragma omp single

{

#pragma omp taskgroup

{

#pragma omp task

{ … }

#pragma omp task

{ … #C.1; #C.2; …}

} // end of taskgroup

}

wait for…

B C

C.1 C.2

A

A

B

C

Task Synchronization Constructs: Comparison

© 2010-2023 OpenMP Programming 74

Task Synchronization

Construct

Description

barrier Either an implicit, or explicit barrier.

taskwait Wait on the completion of child tasks of the

current task.

taskgroup Wait on the completion of child tasks of the

current task and their descendants.

▪ Example:

▪ Assure leaf-to-root traversal for a binary tree

▪ What if we run out of threads?

▪ Do we hang?

Example: Task Synchronization with taskwait

© 2010-2023 OpenMP Programming 76

void process_tree(tree *root)

{

if (root->left) {

#pragma omp task

{ process_tree(root->left); }

}

if (root->right) {

#pragma omp task

{ process_tree(root->right);}

}

#pragma omp taskwait

do_work(root->data);

}

▪ It is allowed for a thread to

▪ suspend a task during execution

▪ start (or resume) execution of another task (assigned to the same team)

▪ resume original task later

▪ Pre-condition:

▪ a task scheduling point (TSP) is reached

▪ Example from previous slide:

▪ the taskwait directive implies a task scheduling point

▪ Another example:

▪ very many tasks are generated

▪ implementation can suspend generation of tasks and start processing the existing queue

▪ Nearly all task scheduling points are implicit

▪ taskyield construct only explicit one

Task Switching

© 2010-2023 OpenMP Programming 77

▪ The point immediately following the generation of an explicit task.

▪ After the point of completion of a task region.

▪ At a taskyield directive.

▪ At a taskwait directive.

▪ At the end of a taskgroup region.

▪ At an implicit or explicit barrier directive.

Task Scheduling Points

© 2010-2023 OpenMP Programming 78

▪ Features of this example:

▪ generates a large number of tasks with

one thread and executes them with the

threads in the team

▪ implementation may reach its limit on

unassigned tasks

▪ if it does, the implementation is allowed to

cause the thread executing the task

generating loop to suspend its task at the

scheduling point and start executing

unassigned tasks.

▪ once the number of unassigned tasks is

sufficiently low, the thread may resume

executing of the task generating loop.

Example: Dealing with Large Number of Tasks

© 2010-2023 OpenMP Programming 79

#define LARGE_N 10000000

double item[LARGE_N]

extern void process(double);

int main()

{

#pragma omp parallel

{

#pragma omp single

{

for(int i = 0; i< LARGE_N; i++) {

#pragma omp task

process(item[i]);

}

}

return 0;

}

i is firstprivateitem is shared

task scheduling

point

▪ taskyield directive introduces an

explicit task scheduling point (TSP).

▪ May cause the calling task to be

suspended.

Example: The taskyield Directive

© 2010-2023 OpenMP Programming 80

#include <omp.h>

void something_useful();

void something_critical();

void foo(omp_lock_t * lock, int n)

{

for(int i = 0; i < n; i++) {

#pragma omp task

{

something_useful();

while (!omp_test_lock(lock)) {

#pragma omp taskyield

}

something_critical();

omp_unset_lock(lock);

}

}

}

The waiting task may be

suspended here and allow the

executing thread to perform

other work. This may also

avoid deadlock situations.

▪ Default behavior:

▪ a task assigned to a thread must be (eventually) completed by that thread

▪ task is tied to the thread

▪ Change this via the untied clause

▪ execution of task block may change to another thread

of the team at any task scheduling point

▪ implementation may add task scheduling points beyond those previously defined (outside

programmer‘s control!)

▪ Deployment of untied tasks

▪ starvation scenarios: running out of tasks while generating thread is still working on something

▪ Dangers:

▪ more care required (compared with tied tasks) wrt. scoping and synchronization

Task Switching: Tied and Untied Tasks

© 2010-2023 OpenMP Programming 81

#pragma omp task untied

structured-block

▪ Final Tasks

▪ use a final clause with a condition

▪ always undeferred,

▪ executed immediately by the

encountering thread

▪ reducing the overhead of placing tasks in the

“task pool”

▪ all tasks created inside final task region are

also final

▪ different from an if clause

▪ use omp_in_final() to test if task is final

▪ Merged Tasks

▪ using a mergeable clause may create a

merged task if it is undeferred or final

▪ a merged task has the same data

environment as its creating task region

▪ Clause was introduced to reduce data /

memory requirements

▪ Final and/or mergeable

▪ can be used for optimization purposes

▪ optimize wind-down phase of a recursive

algorithm

Final and mergeable Tasks

© 2010-2023 OpenMP Programming 82

OpenMP Programming

Task Data Scoping

© 2010-2023 84

▪ The task directive takes the following data attribute clauses that define the data

environment of the task:

▪ default (private | firstprivate | shared | none)

▪ private (list)

▪ firstprivate (list)

▪ shared (list)

Data Environment

© 2010-2023 OpenMP Programming 85

▪ Some rules from Parallel Regions apply:

▪ Static and global variables are shared

▪ Automatic storage (stack) variables are private

▪ The OpenMP Standard says:

▪ The data-sharing attributes of variables that are not listed in data attribute clauses of a task

construct, and are not predetermined according to the OpenMP rules, are implicitly determined as

follows:

▪ In a task construct, if no default clause is present:

a) a variable that is determined to be shared in all enclosing constructs, up to and including the

innermost enclosing parallel construct, is shared.

b) a variable whose data-sharing attribute is not determined by rule (a) is firstprivate.

Data Scoping

© 2010-2023 OpenMP Programming 86

int i = 0, j = 1;

#pragma omp parallel private(j)

#pragma omp single

{

int k = 0;

#pragma omp task

{ /* use i, j, k */ }

} firstprivate

shared

OpenMP Programming

Task Reductions

© 2010-2023 88

▪ taskgroup construct

▪ deep task synchronization

▪ attached to a structured block

▪ completion of all descendants of the

current task

▪ task synchronization point (TSP) at the

end, see later slides

Reminder: taskgroup construct

© 2010-2023 OpenMP Programming 89

#pragma omp taskgroup [allocate] \

[task_reduction(list)]

{structured-block}

#pragma omp parallel

#pragma omp single

{

#pragma omp taskgroup

{

#pragma omp task

{ … }

#pragma omp task

{ … #C.1; #C.2; …}

} // end of taskgroup

}

wait for…

B C

C.1 C.2

A

A

B

C

▪ Reduction operation

▪ perform some forms of recurrence calculations

▪ associative and commutative operators

▪ The taskgroup scoping reduction clause

▪ Register a new reduction at

▪ Computes the final result after

▪ The task in_reduction clause

▪ Task participates in a reduction operation

Task Reductions using the taskgroup Construct

© 2010-2023 OpenMP Programming 90

int res = 0;

node_t* node = head;

...

#pragma omp parallel

{

#pragma omp single

{

#pragma omp taskgroup \

task_reduction(+: res)

{

while (node) {

#pragma omp task \

in_reduction(+: res) \

firstprivate(node)

{

res += node->value;

}

node = node->next;

}

}

}

}

#pragma omp task in_reduction(op: list)

{structured-block}

#pragma omp taskgroup \

task_reduction(op: list)

{structured-block}

≥ v5.0

1

1

2

2

3

3

OpenMP Programming

Task Loops

© 2010-2023 91

▪ Difficult to determine grain

▪ 1 single iteration: to fine

▪ whole loop: no parallelism

▪ Manually transform the code

▪ blocking techniques

▪ Improving programmability

▪ OpenMP taskloop

Example: saxpy Kernel with OpenMP task

© 2010-2023 OpenMP Programming 92

#pragma omp parallel

#pragma omp single

for (int i=0; i<N; i+=TS) {

int ub = min(N, i+TS);

#pragma omp task shared(a, b, s)

for (int ii=i; ii<ub; ii++) {

a[ii] += b[ii] * s;

}

}

for (int i=0; i<N; ++i) {

a[i] += b[i] * s;

}

for (int i=0; i<N; i+=TS) {

int ub = min(N, i+TS);

for (int ii=i; ii<ub; ii++) {

a[ii] += b[ii] * s;

}

}

Outer loop iterates

across the tiles

Inner loop iterates within a tile

You have to rename

all your loop indices!

▪ Parallelize a loop using OpenMP tasks

▪ Cut loop into chunks

▪ Create a task for each loop chunk

▪ C/C++

▪ Fortran

▪ Loop iterations are distributed over the tasks.

▪ With simd the resulting loop uses SIMD instructions.

The taskloop Construct

© 2010-2023 OpenMP Programming 93

#pragma omp taskloop [simd] [clause[[,] clause],…]

for-loops

!$omp taskloop[simd] [clause[[,] clause],…]

do-loops

[!$omp end taskloop [simd]]

▪ taskloop constructs inherit clauses both from worksharing constructs and the task

construct

▪ shared, private

▪ firstprivate, lastprivate

▪ default

▪ collapse

▪ final, untied, mergeable

▪ allocate

▪ in_reduction / reduction

▪ grainsize(grain-size)

▪ Chunks have at least grain-size and maximally 2 × grain-size loop iterations

▪ num_tasks(num-tasks)

▪ Create num-tasks tasks for iterations of the loop

Clauses for the taskloop Construct

© 2010-2023 OpenMP Programming 94

▪ Easier to apply than manual

blocking:

▪ Compiler implements mechanical

transformation

▪ Less error-prone, more productive

Example: saxpy Kernel with OpenMP taskloop

© 2010-2023 OpenMP Programming 95

for (int i=0; i<N; ++i) {

a[i] += b[i] * s;

}

#pragma omp taskloop grainsize(TS)

for (int i=0; i<N; ++i) {

a[i] += b[i] * s;

}

taskloop
manual

blocking

#pragma omp parallel

#pragma omp single

for (int i=0; i<N; i+=TS) {

int ub = min(N, i+TS);

#pragma omp task shared(a, b, s)

for (int ii=i; ii<ub; ii++) {

a[ii] += b[ii] * s;

}

}

for (int i=0; i<N; i+=TS) {

int ub = min(N, i+TS);

for (int ii=i; ii<ub; ii++) {

a[ii] += b[ii] * s;

}

}

OpenMP Programming

Task Dependencies

© 2010-2023 96

▪ The task dependence is fulfilled when the predecessor task has completed

▪ in dependency-type:

The generated task will be a dependent task of all previously generated sibling tasks
that reference at least one of the list items in an out or inout clause.

▪ out and inout dependency-type:

The generated task will be a dependent task of all previously generated sibling tasks
that reference at least one of the list items in an in, out, or inout clause.

▪ mutexinoutset dependency-type:

Support mutually exclusive inout sets, requires ≥v5.0.

▪ The list items in a depend clause may include array sections.

The depend Clause

© 2010-2023 OpenMP Programming 97

#pragma omp task depend(dependency-type: list)

structured block

!$omp task depend(dependency-type: list)

structured block

!$omp end task

FortranC/C++

Task Synchronization with Dependencies

© 2010-2023 OpenMP Programming 98

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(in: x)

std::cout << x << std::endl;

#pragma omp task

long_running_task();

#pragma omp task depend(inout: x)

x++;

}

task 1

task 2

task 3

Example: Cholesky Factorization

© 2010-2023 OpenMP Programming 99

void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

#pragma omp task depend(inout: a[k][k])

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task depend(in: a[k][k]) \

depend(inout: a[k][i])

trsm(a[k][k], a[k][i], ts, ts);

}

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task depend(inout: a[j][i]) \

depend(in: a[k][i], a[k][j])

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task depend(inout: a[i][i])

depend(in: a[k][i])

syrk(a[k][i], a[i][i], ts, ts);

}

}

}

void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task

trsm(a[k][k], a[k][i], ts, ts);

}

#pragma omp taskwait

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task

syrk(a[k][i], a[i][i], ts, ts);

}

#pragma omp taskwait

}

}

nt

nt

ts

ts

ts

ts

