
An Introduction to Message Passing and Parallel
Programming with MPI

Alireza Ghasemi and Georg Hager

Erlangen National High Performance Computing Center

Volker Weinberg

Leibniz Supercomputing Centre (LRZ)

A collaborative course of NHR@FAU and LRZ Garching

19.02.2025 2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Introduction to MPI: Agenda

▪ Pint-to-point communication: Blocking

▪ Point-to-point communication: Nonblocking

▪ Helper functions

▪ Collectives

▪ Datatypes

Point-to-Point Communication

Blocking

19.02.2025 4PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Blocking communication

▪ Definition: a blocking communication does not return until the message

data and envelope have been safely stored away so that the sender is

free to modify the send buffer after return.

▪ The term blocking may be confusing. Indeed based on the definition

above, one can infer:

▪ The call to a send procedure does not obstruct the flow of the program at

that line of the code up to the completion of the communication. Therefore,

a blocking sender may return when the transmission of the message may

be:

▪ not yet started

▪ ongoing

▪ completed (less likely)

19.02.2025 5PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Single-round ping-pong
#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv) {

int ierr, irank, nrank, COUNT=1000;

MPI_Status status;

double *d=malloc(COUNT * sizeof(double));

ierr=MPI_Init(&argc,&argv);

ierr=MPI_Comm_rank(MPI_COMM_WORLD,&irank);

ierr=MPI_Comm_size(MPI_COMM_WORLD,&nrank);

if(irank==0) for(int i=0;i<COUNT;i++) d[i]=100.0;

if(irank==1) for(int i=0;i<COUNT;i++) d[i]=200.0;

printf("BEFORE: nrank,irank,d = %5d%5d%8.1f\n",nrank,irank,d[0]);

if(irank==0) {

MPI_Send(d,COUNT,MPI_DOUBLE,1,0,MPI_COMM_WORLD);

MPI_Recv(d,COUNT,MPI_DOUBLE,1,0,MPI_COMM_WORLD,&status);

}

else if(irank==1) {

MPI_Recv(d,COUNT,MPI_DOUBLE,0,0,MPI_COMM_WORLD,&status);

MPI_Send(d,COUNT,MPI_DOUBLE,0,0,MPI_COMM_WORLD);

}

printf("AFTER: nrank,irank,d = %5d%5d%8.1f\n",nrank,irank,d[0]);

ierr=MPI_Finalize();

}

▪ First rank 0 sends and rank 1

receives, then the opposite:

▪ Final value of d at rank 0?

rank 0 rank 1

ping

pong

ping

pong

19.02.2025 6PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

The message passing paradigm

Let’s consider changing the order of send and receive in rank 1, i.e. both ranks

call first MPI_SEND and then MPI_RECV:

if(irank==0) {

MPI_Send(d,COUNT,MPI_DOUBLE,1,0,MPI_COMM_WORLD);

MPI_Recv(d,COUNT,MPI_DOUBLE,1,0,MPI_COMM_WORLD,&status);

}

else if(irank==1) {

MPI_Send(d,COUNT,MPI_DOUBLE,0,0,MPI_COMM_WORLD);

MPI_Recv(d,COUNT,MPI_DOUBLE,0,0,MPI_COMM_WORLD,&status);

}

mpirun –n 2 ./a.out 10 # OK

mpirun –n 2 ./a.out 100 # OK

mpirun –n 2 ./a.out 1000 # OK

mpirun –n 2 ./a.out 10000 # OK

mpirun –n 2 ./a.out ???????? # at some array length DEADLOCK occurs

Executing with different values of COUNT:

▪ Is DEADLOCK expected?

▪ Final value of d at rank 0?

19.02.2025 7PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Communication modes

▪ There are four send communication modes:

▪ There is only one receive communication mode:

• Standard: MPI_Recv

Mode Binding

Synchronous MPI_Ssend

Buffered (asynchronous) MPI_Bsend

Standard MPI_Send

Ready MPI_Rsend

19.02.2025 8.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Synchronous send: MPI_Ssend

▪ It can be started whether or not a matching receive was posted

▪ It will complete successfully only if a matching receive is posted

▪ Send buffer can be reused

▪ Receiver has reached a certain point in its execution

19.02.2025 8.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Synchronous send: MPI_Ssend

▪ It can be started whether or not a matching receive was posted

▪ It will complete successfully only if a matching receive is posted

▪ Send buffer can be reused

▪ Receiver has reached a certain point in its execution

Tips

• Useful for debugging

• Serialization

• High latency

(synchronization overhead)

• Best bandwidth

Match?

no

Match?

yes

MPI

process A MPI_SSEND (blocking) continues

MPI

completed

process B MPI_RECV (blocking) continues

time

19.02.2025 9.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Standard send: MPI_Send

▪ It can be started whether or not a matching receive was posted

▪ It may complete before a matching receive is posted

▪ Send buffer can be reused

▪ The operation is local or nonlocal

▪ It buffers or sends synchronously: message size, MPI implementation, etc.

19.02.2025 9.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Standard send: MPI_Send

▪ It can be started whether or not a matching receive was posted

▪ It may complete before a matching receive is posted

▪ Send buffer can be reused

▪ The operation is local or nonlocal

▪ It buffers or sends synchronously: message size, MPI implementation, etc.

MPI

process A MPI_SEND (blocking) Continues

MPI

process B

Match? Buffer?

MPI_RECV (blocking) continues

time

Synchronous?

Tips

• Deadlock may occur

• Minimal transfer time

The standard send is the
standard choice for you!

19.02.2025 10PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Point-to-Point Communication MPI_SEND/MPI_RECV
▪ Sending/Receiving at the same time is a common use case

▪ e.g.: shift messages, ring topologies, ghost cell exchange

▪ MPI_Send/MPI_Recv: pairs are not reliable!

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

10 2 3

//my left neighbor

left=(rank-1)%size;

//my right neighbor

right=(rank+1)%size;

MPI_Send(sendbuf,n,type,right,tag,comm);

MPI_Recv(recvbuf,n,type,left,tag,comm,status);

▪ How to avoid potential

deadlock?

19.02.2025 11PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Point-to-Point Communication MPI_SENDRECV
▪ Syntax: simple combination of send and receive arguments:

MPI_Sendrecv(buffer_send, sendcount, sendtype, dest, sendtag,

buffer_recv, recvcount, recvtype, source, recvtag,

comm, MPI_Status * status)

▪ MPI takes care, thereby no deadlocks occur:
// Rank left from myself
left = (rank – 1 + size) % size;
// Rank right from myself
right = (rank + 1) % size;
MPI_Sendrecv(buffer_send, n, MPI_INT, right, 0,

buffer_recv, n, MPI_INT, left, 0,
MPI_COMM_WORLD, status);

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

10 2 3

▪ disjoint send/receive

buffers

▪ can have different

count & data type

▪ blocking call

19.02.2025 12.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Point-to-Point Communication MPI_SENDRECV
▪ useful for open chains/non-circular shifts:

// Rank left from myself.
left = rank – 1; if (left < 0) { left = MPI_PROC_NULL; }
// Rank right from myself.
right = rank + 1; if (right >= size) {right = MPI_PROC_NULL; }
MPI_Sendrecv(buffer_send, n, MPI_INT, right, 0,

buffer_recv, n, MPI_INT, left, 0, MPI_COMM_WORLD, &status);

19.02.2025 12.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Point-to-Point Communication MPI_SENDRECV
▪ useful for open chains/non-circular shifts:

// Rank left from myself.
left = rank – 1; if (left < 0) { left = MPI_PROC_NULL; }
// Rank right from myself.
right = rank + 1; if (right >= size) {right = MPI_PROC_NULL; }
MPI_Sendrecv(buffer_send, n, MPI_INT, right, 0,

buffer_recv, n, MPI_INT, left, 0, MPI_COMM_WORLD, &status);

receive buffer

send buffer send buffer

receive buffer

send buffer

receive buffer

10 2 3

▪ MPI_PROC_NULL as source/destination acts as no-op

▪ send/recv with MPI_PROC_NULL return immediately, buffers are not altered

▪ MPI_Sendrecv matches with simple *send/*recv point-to-point calls

19.02.2025 13.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Ghost Cell Exchange with MPI_Sendrecv
Domain distributed to ranks here 4 x 3

ranks each rank gets one tile

19.02.2025 13.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Ghost Cell Exchange with MPI_Sendrecv
Domain distributed to ranks here 4 x 3

ranks each rank gets one tile

Each ranks tile is surrounded by

ghost cells, representing the

cells of the neighbors

ghost cells

19.02.2025 13.3PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Ghost Cell Exchange with MPI_Sendrecv
Domain distributed to ranks here 4 x 3

ranks each rank gets one tile

After each sweep over a tile perform ghost cell exchange,

i.e. update ghost cells with new values of neighbor cells

Each ranks tile is surrounded by

ghost cells, representing the

cells of the neighbors

ghost cells

19.02.2025 13.4PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Ghost Cell Exchange with MPI_Sendrecv
Domain distributed to ranks here 4 x 3

ranks each rank gets one tile

After each sweep over a tile perform ghost cell exchange,

i.e. update ghost cells with new values of neighbor cells

send buffer sb send buffer sb

receive buffer rbreceive buffer rb

Each ranks tile is surrounded by

ghost cells, representing the

cells of the neighbors

ghost cells

Possible implementation:
1. copy new data into contiguous send buffer

2. send/receive new data to/from the neighbor

3. copy new data into ghost cells

MPI_Sendrecv(

sb, …, i,

rb, …, i, …)

MPI_Sendrecv(

sb, …, j,

rb, …, j, …)
ji

step 2 step 2

19.02.2025 14PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Blocking Point-to-Point Communication: Summary

▪ Blocking MPI communication calls:

▪ send/receive buffer can safely be reused when a blocking call returns

▪ Blocking send has 4 communication modes:

1. Synchronous 2. Buffered 3. Standard 4. Ready

▪ Blocking Receive has only one communication mode: MPI_Recv

▪ Blocking calls can lead to deadlocks

▪ Shift operations: keep eye on deadlocks and serialization

▪ MPI_Sendrecv: combined send and receive

▪ MPI ensures no deadlocks occur

▪ MPI_Sendrecv_replace: useful when only one single buffer is required

Point-to-Point Communication

Nonblocking

19.02.2025 16.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Nonblocking point-to-point communication

▪ Call to a nonblocking send/recv procedure returns straight away. It avoids

synchronization so that the following opportunities can be exploited:

▪ Avoiding certain deadlocks

▪ Truly bidirectional commun.

▪ Avoid idle time:

▪ Overlapping communication and

computation but not guaranteed by

the standard

19.02.2025 16.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Nonblocking point-to-point communication

▪ Call to a nonblocking send/recv procedure returns straight away. It avoids

synchronization so that the following opportunities can be exploited:

MPI

process A

MPI_ISEND (nonblocking)

MPI

process B

MPI_IRECV (blocking)

continues

time

R1 Computation R2

R1 R2

continues

R1 R2Computation

▪ Avoiding certain deadlocks

▪ Truly bidirectional commun.

▪ Avoid idle time:

▪ Overlapping communication and

computation but not guaranteed by

the standard

19.02.2025 17PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Standard nonblocking send/receive

▪ MPI_Isend(sendbuf, count, datatype, dest, tag,

comm, MPI_Request * request);

MPI_Irecv(recvbuf, count, datatype, source, tag,

comm, MPI_Request * request);

request: pointer to variable of type MPI_Request,

will be associated with the corresponding operation

▪ Do not reuse sendbuf/recvbuf before MPI_Isend/MPI_Irecv has
been completed!

▪ Return of a nonblocking call does not imply completion

▪ MPI_Irecv has no status argument
▪ obtained later during completion via MPI_Wait*/MPI_Test*

Be careful!

19.02.2025 18PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Nonblocking send and receive variants

▪ Completion

▪ Return of MPI_I* call does not imply completion

▪ Check for completion via MPI_Wait* / MPI_Test*

▪ Semantics identical to blocking call combined with a “wait”

nonblocking MPI

function

blocking

MPI function
type completes when

MPI_Isend MPI_Send synchronous or

buffered

depends on type

MPI_Ibsend MPI_Bsend buffered buffer has been copied

MPI_Issend MPI_Ssend synchronous remote starts receive

MPI_Irecv MPI_Recv -- message was received

19.02.2025 19PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Test for completion

Two test modes:

▪ Blocking

▪ MPI_Wait*: Wait until the communication has been completed and buffer can

safely be reused

▪ Nonblocking

▪ MPI_Test*: Return true (false) if the communication has (not) completed

Despite the naming, the modes both pertain to nonblocking point-to-point

communication!

19.02.2025 20PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Test for completion – single request

▪ Test one communication handle for completion:

MPI_Wait(MPI_Request * request, MPI_Status * status);

MPI_Test(MPI_Request * request, int * flag,

MPI_Status * status);

request: request handle of type MPI_Request

status: status object of type MPI_Status (cf. MPI_Recv)

flag: variable of type int to test for success

▪ MPI_Wait waits until the communication has been completed and

buffer can safely be reused: Blocking

▪ MPI_Test returns TRUE (FALSE) if the communication has (not)

completed: Nonblocking

19.02.2025 21PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Use of wait/test

MPI_Request request;

MPI_Status status;

MPI_Isend(send_buffer,count,MPI_CHAR,

dst,0,MPI_COMM_WORLD,&request);

// do some work…

// do not use send_buffer

MPI_Wait(&request, &status);

// send_buffer can now be used safely

MPI_Request request;

MPI_Status status;

int flag;

MPI_Isend(send_buffer,count,MPI_CHAR,

dst,0,MPI_COMM_WORLD,&request);

do {

// do some work…

// do not use send_buffer

MPI_Test(&request, &flag, &status);

} while (!flag);

// send_buffer can now be used safely

MPI_Wait MPI_Test

Nonblocking communication:

▪ Return from function != completion

▪ Each initiated operation must have a

matching wait/test!

loop

19.02.2025 22PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Wait for completion – all requests in a list

▪ MPI can handle multiple communication requests

▪ Wait/Test for completion of multiple requests:

MPI_Waitall(int count, MPI_Request requests[],

MPI_Status statuses[]);

MPI_Testall(int count, MPI_Request requests[],

int *flag, MPI_Status statuses[]);

▪ Waits for/Tests if all provided requests have been completed

19.02.2025 23PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Use of MPI_Waitall

MPI_Request requests[2];

MPI_Status statuses[2];

MPI_Isend(send_buffer, …, &(requests[0]));

MPI_Irecv(recv_buffer, …, &(requests[1]));

// do some work…

MPI_Waitall(2, requests, statuses)

// Isend & Irecv have been completed

Arrays of

requests and

statuses

number of elements in

the arrays

Requests can be from one or multiple send/receive operations or combination of them!

19.02.2025 24PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Ghost Cell Exchange: nonblocking PtP Communication

▪ Ghost cell exchange: communication using nonblocking send/recv can be

initiated with all neighbors at once.

Possible implementation:

1. Copy new data into contiguous send buffers

2. Start nonblocking receives/sends from/to

corresponding neighbors

3. Wait with MPI_Waitall for all obtained

requests to complete

4. Copy new data into ghost cells

19.02.2025 25PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Other Ways of Testing for Completion

▪ Examine the completion of multiple requests:

▪ MPI_Waitall

▪ MPI_Testall

▪ MPI_Waitany

▪ MPI_Testany

▪ MPI_Waitsome

▪ MPI_Testsome

▪ Completed requests are automatically set to MPI_REQUEST_NULL

Helper functions

and

Semantics

19.02.2025 27.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Semantics

▪ Message order preservation (guaranteed inside a communicator)

0 1

19.02.2025 27.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Semantics

▪ Message order preservation (guaranteed inside a communicator)

0 1
msg 1

19.02.2025 27.3PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Semantics

▪ Message order preservation (guaranteed inside a communicator)

0 1
msg 1msg 2

19.02.2025 27.4PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Semantics

▪ Message order preservation (guaranteed inside a communicator)

0 1
msg 1msg 2

same communicator

(e.g. MPI_COMM_WORLD)

19.02.2025 28PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Useful MPI Calls: MPI_WTIME

▪ Returns seconds since one point in past time

▪ Use only for computation of time differences

▪ Returns time resolution in seconds,

• e.g. if resolution is 1ms MPI_Wtick() returns 1e-3

▪ No ierror argument in Fortran: both modules mpi and mpi _f08

▪ Typically clocks from different ranks are not synchronized

double MPI_Wtime()

time_start = MPI_Wtime()

// … working …

duration = MPI_Wtime() – time_start

double MPI_Wtick()

19.02.2025 29PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Useful MPI Calls: MPI_ABORT

▪ MPI_Abort forces an MPI program to terminate:

▪ Aborts all processes in communicator

▪ errorcode will be handed as exit value to calling environment

▪ Safe and well-defined way of terminating an MPI program (if implemented

correctly)

▪ In general, if something unexpected happens, try to shut down your MPI

program the standard way (MPI_Finalize())

int MPI_Abort(MPI_Comm comm, int errorcode)

19.02.2025 30PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Questions?

Collective Communication in MPI

19.02.2025 32PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Collective Communication Introduction

▪ Operations including all ranks of a communicator

▪ All ranks must call the function!

▪ Blocking calls: buffer can be reused after return

▪ Nonblocking calls with MPI-3.0

▪ Cannot interfere with point-to-point communication

• Completely separate modes of operation!

▪ Data type matching

▪ No tags

▪ Sent message must fill receive buffer (count is exact)

▪ Typically MPI libraries provide optimized implementations for operations

▪ Do not write your own collectives using PtP calls!

19.02.2025 33PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Collective Communication Introduction

▪ May or may not synchronize the processes

▪ Types of collective calls:

• Synchronization (barrier)

• Data movement (broadcast, scatter, gather, all to all)

• Collective computation/operations (reduction)

▪ MPI_*v bindings: allow for unequal data size across ranks

19.02.2025 34PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Collective Communication Synchronization

▪ Explicit synchronization of all ranks from specified
communicator

MPI_Barrier(comm);

▪ Ranks only return from call after every rank has
called the function

▪ MPI_Barrier: rarely needed

▪ Debugging

19.02.2025 35.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Collective Communication Broadcast

▪ Send buffer contents from one rank (“root”) to all ranks

MPI_Bcast(buf, count, datatype, int root, comm);

▪ No restrictions on which rank is root – often rank 0

19.02.2025 35.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Collective Communication Broadcast

▪ Send buffer contents from one rank (“root”) to all ranks

MPI_Bcast(buf, count, datatype, int root, comm);

▪ No restrictions on which rank is root – often rank 0

1 2 3buffer

count = 3

MPI_Bcast(buffer, 3, MPI_INT, 1, MPI_COMM_WORLD)

int

1 2 3 1 2 3 1 2 3 1 2 3buffer

0 1 2 3rank
root

Before ->

After ->

19.02.2025 36PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Collective Communication Scatter

▪ Send every i-th chunk of an array to the i-th rank

MPI_Scatter(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,

root, comm);

▪ Root and comm must be the same on all processes

▪ Type signature of send and receive variables must match

▪ Usually, sendcount = recvcount because sendtype = recvtype

▪ This is the length of the chunk

▪ sendbuf is ignored on non-root ranks because there is nothing to send

19.02.2025 37.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

MPI_Scatter

sendbuf

MPI_Scatter(sendbuf, 2, MPI_INT, recvbuf, 2, MPI_INT,

root, MPI_COMM_WORLD)

int
0 1 2rank

root

recvbuf

1 2 3 4 5 6

19.02.2025 37.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

MPI_Scatter

sendbuf

MPI_Scatter(sendbuf, 2, MPI_INT, recvbuf, 2, MPI_INT,

root, MPI_COMM_WORLD)

int
0 1 2rank

root

recvbuf

sendbuf

recvbuf

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

19.02.2025 38PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Collective Communication Gather

▪ Receive a message from each rank and place i-th rank’s message at i-th

position in receive buffer

MPI_Gather(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,

root, comm)

▪ Root and comm must be the same on all processes

▪ Type signature of send and receive variables must match

▪ Usually, sendcount = recvcount because sendtype = recvtype

▪ recvbuf is ignored on non-root ranks because there is nothing to receive

19.02.2025 39.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

MPI_Gather

recvbuf

MPI_Gather(sendbuf, 2, MPI_INT, recvbuf, 2, MPI_INT,

root, MPI_COMM_WORLD)

int
0 1 2rank root

sendbuf 1 2 3 4 5 6

19.02.2025 39.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

MPI_Gather

recvbuf

MPI_Gather(sendbuf, 2, MPI_INT, recvbuf, 2, MPI_INT,

root, MPI_COMM_WORLD)

int
0 1 2rank root

sendbuf

recvbuf

sendbuf

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

19.02.2025 40PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Collective Communication MPI_ALLGATHER

▪ Combination of gather and broadcast

MPI_Allgather(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,

comm);

▪ Why not just use gather followed by a broadcast instead?

▪ MPI_Gather(…,root=i,…) then MPI_Bcast(…,root=i,…)

▪ MPI library has more options for optimization

▪ General assumption: MPI_Allgather is faster than using separate

MPI_Gather followed by MPI_Bcast

There is no MPI_Allscatter!!!

19.02.2025 41.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

MPI_Allgather

MPI_Allgather() (no root required)

0 1 2rank

sendbuf

recvbuf

a b c d e f

19.02.2025 41.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

MPI_Allgather

MPI_Allgather() (no root required)

0 1 2rank

sendbuf

recvbuf

recvbuf

a b c d e f

a c eb d f a c eb d fa c eb d f

In this example: sendcount=recvcount=2

19.02.2025 42PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Collective Communication MPI_ALLTOALL

▪ MPI_Alltoall: For all ranks, send i-th chunk to i-th rank

MPI_Alltoall(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,

comm);

19.02.2025 43.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

MPI_Alltoall

sendcount

MPI_Alltoall() (no root required)

0 1 2 3rank

sendbuf

recvbuf

recvcount 11 11

11 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

19.02.2025 43.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

MPI_Alltoall

sendcount

MPI_Alltoall() (no root required)

0 1 2 3rank

sendbuf

recvbuf

recvcount 11 11

11 11

0 4 8 12recvbuf 1 5 9 13 2 6 10 14 3 7 11 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

19.02.2025 44PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Summary of MPI Collective Communications

▪ MPI (blocking) collectives

▪ All ranks in communicator must call the function

▪ Communication and synchronization

▪ Barrier, broadcast, scatter, gather, and combinations thereof

▪ In-place buffer specification MPI_IN_PLACE

▪ Save some space if need be

19.02.2025 45.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Global Operations Syntax

▪ Compute results over distributed data

MPI_Reduce(sendbuf, recvbuf, count,

datatype, MPI_Op op,

root, comm);

▪ Result in recvbuf only available on root process

▪ Perform operation on all count elements of an array

▪ If all ranks need the result, then
use MPI_Allreduce()

▪ There are 12 predefined operations

▪ If the predefined operations are not enough, then use
MPI_Op_create/MPI_Op_free to create own ops

19.02.2025 45.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Global Operations Syntax

▪ Compute results over distributed data

MPI_Reduce(sendbuf, recvbuf, count,

datatype, MPI_Op op,

root, comm);

▪ Result in recvbuf only available on root process

▪ Perform operation on all count elements of an array

▪ If all ranks need the result, then
use MPI_Allreduce()

▪ There are 12 predefined operations

▪ If the predefined operations are not enough, then use
MPI_Op_create/MPI_Op_free to create own ops

0

1

2

3

rank sendbuf

8 9 6 8
recvbuf

on root

MPI_Reduce()

count = 4

op = MPI_MAX

0 9 2 6

5 1 0 4

8 3 4 5

1 0 6 8

m
a
x
()

m
a
x
()

m
a
x
()

m
a
x
()

19.02.2025 46PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Global operations – predefined operators

▪ Define own operations with MPI_Op_create/MPI_Op_free

▪ MPI assumes that the operations are associative

→ be careful with floating-point operations, as floating-point arithmetic is not

associative due to rounding

Name Operation Name Operation

MPI_SUM Sum MPI_PROD Product

MPI_MAX Maximum MPI_MIN Minimum

MPI_LAND Logical AND MPI_BAND Bit-AND

MPI_LOR Logical OR MPI_BOR Bit-OR

MPI_LXOR Logical XOR MPI_BXOR Bit-XOR

MPI_MAXLOC Maximum+Position MPI_MINLOC Minimum+Position

19.02.2025 47PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

“In-place” buffer specification

▪ Override local input buffer with a result

MPI_Reduce MPI_Allreduce

// out-of-place

int partial_sum, total_sum;

MPI_Reduce(&partial_sum, &total_sum,

1, MPI_INT, MPI_SUM, root, comm);

// in-place

int partial_sum, total_sum;

if (rank == root) {

total_sum = partial_sum;

MPI_Reduce(MPI_IN_PLACE, &total_sum,

1, MPI_INT, MPI_SUM,

root, comm);

}

else {

MPI_Reduce(&partial_sum, &total_sum,

1, MPI_INT, MPI_SUM,

root, comm);

}

// out-of-place

int partial_sum, total_sum;

MPI_AllReduce(&partial_sum, &total_sum,

1, MPI_INT, MPI_SUM, comm);

// in-place

int partial_sum, total_sum;

total_sum = partial_sum;

MPI_AllReduce(MPI_IN_PLACE, &total_sum,

1, MPI_INT, MPI_SUM, comm);

19.02.2025 48PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

MPI_IN_PLACE Cheat Sheet
Function

MPI_IN_PLACE

argument

At which

rank(s)
Comment [MPI 3.0]

MPI_GATHER send buffer root Recv value at root already in the correct place in receive buffer.

MPI_GATHERV send buffer root Recv value at root already in the correct place in receive buffer.

MPI_SCATTER receive buffer root Root-th segment of send buffer is not moved.

MPI_SCATTERV receive buffer root Root-th segment of send buffer is not moved.

MPI_ALLGATHER send buffer all Input data at the correct place were process would receive its own contribution.

MPI_ALLGATHERV send buffer all Input data at the correct place were process would receive its own contribution.

MPI_ALLTOALL send buffer all
Data to be send is taken from receive buffer and replaced by received data, data send/received

must be of the same type map specified in receive count/receive type.

MPI_ALLTOALLV send buffer all

Data to be send is taken from receive buffer and replaced by received data. Data send/received

must be of the same type map specified in receive count/receive type. The same amount of data

and data type is exchanged between two processes.

MPI_REDUCE send buffer root Data taken from receive buffer, replaced with output data.

MPI_ALLREDUCE send buffer all Data taken from receive buffer, replaced with output data.

Derived Data Types in MPI

19.02.2025 50PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Why do we need data types in MPI?

▪ Example: Root reads configuration and broadcasts it to all others

// root: read configuration from

// file into struct config

MPI_Bcast(&cfg.nx, 1, MPI_INT, …);

MPI_Bcast(&cfg.ny, 1, MPI_INT, …);

MPI_Bcast(&cfg.du, 1, MPI_DOUBLE,…);

MPI_Bcast(&cfg.it, 1, MPI_INT, …);

Want to do something like:

MPI_Bcast(

&cfg, 1, <type cfg>,…);

MPI_Bcast(&cfg, sizeof(cfg),

MPI_BYTE, ..)

is not a solution. Its not portable as no

data conversion can take place

MPI is supposed to support parallel computations across heterogeneous environments and

communication in such environments may require data conversions.

19.02.2025 51PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Why do we need data types in MPI?

▪ Example: Send column of matrix

(noncontiguous in C):

▪ Send each element alone?

▪ Manually copy elements out into a

contiguous buffer and send it?

20 21 242322

10 11 141312

5 6 987

15 16 191817

0 1 432

25 26 292827

19.02.2025 52PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Creating an MPI data type

Three steps:

1. Construct with

MPI_Type_*(...);

2. Commit new data type with

MPI_Type_commit(MPI_Datatype * nt);

3. After use, deallocate the data type with

MPI_Type_free(MPI_Datatype * nt);

All local, non-

collective calls

19.02.2025 53.1PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

A flexible, vector-like type: MPI_Type_vector

MPI_Type_vector(int count, int blocklength, int stride,

MPI_Datatype oldtype,

MPI_Datatype * newtype);

oldtype

size := 6*size(oldtype)

extent := 8*extent(oldtype)

MPI_INT

blocklength (no. of elements in each block)

stride (no. of elements b/w start of each block)

count (no. of blocks)

blocklength

stride

count

2

3

5

19.02.2025 53.2PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

A flexible, vector-like type: MPI_Type_vector

MPI_Type_vector(int count, int blocklength, int stride,

MPI_Datatype oldtype,

MPI_Datatype * newtype);

oldtype

size := 6*size(oldtype)

extent := 8*extent(oldtype)

MPI_INT

blocklength (no. of elements in each block)

stride (no. of elements b/w start of each block)

count (no. of blocks)

blocklength

stride

count
MPI_Datatype nt;

MPI_Type_vector(

2, 3, 5, MPI_INT, &nt);

MPI_Type_commit(&nt);

// use nt…

MPI_Type_free(&nt);

2

3

5

19.02.2025 54PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Caveat when using a type

▪ Caution: Concatenating such types in a send operation can lead to

unexpected results!

▪ count argument to send and others must be handled with care:

MPI_Send(buf, 2, nt,...) with nt (newtype from prev. slide)

missing

gap!

19.02.2025 55PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Data type size and extent

▪ Get the total size (in bytes) of datatype in a message

int MPI_type_size(MPI_Datatype newtype, int *size);

▪ Get the lower bound and the extent (span from the first byte to the

last byte) of datatype
int MPI_type_get_extent(MPI_Datatype newtype,

MPI_Aint *lb,

MPI_Aint *extent);

▪ MPI allows to change the extent of a datatype using

• MPI_Type_create_resized

o Sizeof

o MPI_Get_address/MPI_Aint_diff

s
i
z
e
=
6
,

e
x
t
e
n
t
=
8

19.02.2025 56PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Sending a column of a matrix in C

Row-major data layout in C → cannot use plain array

double matrix[30];

MPI_Datatype nt;

// count = nrows, blocklength = 1,

// stride = ncols

MPI_Type_vector(nrows, 1, ncols,

MPI_DOUBLE, &nt);

MPI_Type_commit(&nt);

// send column

MPI_Send(&matrix[1], 1, nt, …);

MPI_Type_free(&nt);

ncols

n
r
o
w
s

&matrix[1]

stride

19.02.2025 57PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Sub-array Data Type

MPI_Type_create_subarray(int dims,

int ar_sizes[], int ar_subsizes[], int ar_starts[],

int order, MPI_Datatype oldtype, MPI_Datatype * newtype);

▪ dims: dimension of the array

▪ ar_sizes: array with sizes of array (dims entries)

▪ ar_subsizes: array with sizes of subarray (dims entries)

▪ ar_starts: start indices of the subarray inside array (dims

entries), start at 0 (also in Fortran)

▪ order

▪ row-major: MPI_ORDER_C

▪ column-major: MPI_ORDER_FORTRAN

19.02.2025 58PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Example for a sub-array type: “bulk” of a matrix

ncols

n
r
o
w
s

order MPI_ORDER_C

ar_sizes {ncols, nrows}

ar_subsizes {ncols-2, nrows-2}

dims 2

ar_starts {1, 1}

oldtype MPI_INT

MPI_Type_create_subarray(dims, ar_sizes, ar_subsizes,

ar_starts, order, oldtype, &nt);

MPI_Type_commit(&nt);

// use nt...

MPI_Send(&buf[0], 1, nt, …); // etc.

MPI_Type_free(&nt);

19.02.2025 59PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

A Short List of MPI Bindings to Create Data Type
Function Description

MPI_Type_contiguous
Creates a new data type that is a concatenation of a number of elements of an existing

data type.

MPI_Type_vector
Creates a vector consisting of a number of elements of the same datatype repeated with a

certain stride.

MPI_Type_indexed Creates a new data type that consists of a specified number of blocks of arbitrary size.

MPI_Type_create_subarray
Creates a new data type that consists of an n-dimensional subarray of an n-dimensional

array.

MPI_Type_create_darray
Creates a data type corresponding to a distributed, multidimensional array. It supports

block, cyclic and no distribution for each dimension.

MPI_Type_create_struct Creates an MPI datatype from a general set of datatypes, displacements, and block sizes.

There exist more bindings, not all listed here!

▪ Remarks to Fortran programmers:

• Arrays in Fortran are stored in column-major order

• It requires special care for derived datatypes (MPI_Type_create_struct) because of some

sort of optimizations such as reordering elements of a derived datatype

19.02.2025 60PPHPS 2025 | Parallel Programming of High-Performance Systems LRZ Garching

Questions?

