
Profiling sequential programs

2PPHPS25 | Profiling

Key question

 How do I know where my code spends most of its time?
 This is called “profiling”
 Many (free and commercial) tools exist

 Baseline tool: GNU gprof
 Supported by GCC and Intel compilers (and others)

 Linux “perf” infrastructure

 Based on the profile, optimization can be planned
 Reduction of work
 Doing work more efficiently

Caveat: all-new profiling tool “gprofng” upcoming!

Profiling with gprof

4PPHPS25 | Profiling

Profiling with gprof
 Basic sequential profiling tool under Linux: gprof
 Compiling for a profiling run

$ icx -pg ……

 After running the binary, a file gmon.out is written to the current directory
 Human-readable output:

$ gprof a.out

 Inlining should be disabled for profiling
 But then the executed code isn’t what it should be…

5PPHPS25 | Profiling

Profiling with gprof: Example

 Example with wrapped double class:

class D {
double d;

public:
D(double _d=0) : d(_d) {}
D operator+(const D& o) {

D r;
r.d = d+o.d;
return r;

}
operator double() {

return d;
}

};

const int n=10000000;
D a[n],b[n];
D sum;

for(int i=0; i<n; ++i)
a[i] = b[i] = 1.5;

double s = timestamp();
for(int k=0; k<10; ++k) {

for(int i=0; i<n; ++i)
sum = sum + a[i] + b[i];

}

Main program:

6PPHPS25 | Profiling

Profiling with gprof: Example profiler output
 icpx -O3 -pg perf.cc

 icpx -O3 -fno-inline -pg perf.cc

 But where did the time actually go?
 Butterfly (callgraph) profile also available
 Real problem also with use of libraries (STL!)
 Sometimes you have to roll your own little profiler (see later!)

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
101.01 0.41 0.41 main

% cumulative self self total
time seconds seconds calls ns/call ns/call name
46.44 0.59 0.59 200000000 2.93 4.48 D::operator+(D const&)
29.63 0.96 0.37 240000001 1.56 1.56 D::D(double)
24.82 1.27 0.31 main

7PPHPS25 | Profiling

Flat profile

Each sample counts as 0.000976562 seconds.
% cumulative self self total
time seconds seconds calls s/call s/call name
66.43 7.96 7.96 1 7.96 9.64 hamilt_
11.15 9.30 1.34 1 1.34 1.34 outwin_
8.14 10.28 0.98 1 0.98 1.07 hns_
2.86 10.62 0.34 5266813 0.00 0.00 zheevx2_
1.20 10.76 0.14 __libm_error_support
1.04 10.89 0.12 zher2m_
0.90 11.00 0.11 cvtas_s_to_a
0.75 11.09 0.09 select_
0.38 11.13 0.05 cvt_ieee_t_to_text_ex
0.37 11.18 0.04 445351 0.00 0.00 seclit_

Time including
callees

Time not
including callees

Called how
often?

8PPHPS25 | Profiling

Butterfly (call graph) profile

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
index % time self children called name

<spontaneous>
[1] 100.0 0.00 0.05 start [1]

0.00 0.05 1/1 main [2]
0.00 0.00 1/2 on_exit [28]
0.00 0.00 1/1 exit [59]

0.00 0.05 1/1 start [1]

[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]

0.00 0.05 1/1 main [2]

[3] 100.0 0.00 0.05 1 report [3]
0.00 0.03 8/8 timelocal [6]
0.00 0.01 1/1 print [9]
0.00 0.01 9/9 fgets [12]
0.00 0.00 12/34 strncmp <cycle 1> [40]
0.00 0.00 8/8 lookup [20]
0.00 0.00 1/1 fopen [21]
0.00 0.00 8/8 chewtime [24]
0.00 0.00 8/16 skipspace [44]

called by

calling

9PPHPS25 | Profiling

Visualizing the butterfly profile
 Gprof2Dot converts gprof output to graphviz “dot” file

 https://github.com/jrfonseca/gprof2dot
 View dot file with,

e.g., xdot

https://github.com/jrfonseca/gprof2dot

10PPHPS25 | Profiling

Profiling MPI programs with gprof
 By design, gprof is a tool for serial code

 It can, however, be convinced to write a trace file that contains the PID in its
name

$ GMON_OUT_PREFIX=foo mpirun –np 5 ./a.out
[…]
$ ls
a.out foo.28219 foo.28220 foo.28221 foo.28222 foo.28223
$ gprof a.out foo.28219

 Accumulating individual files:

$ gprof --sum a.out foo.* # generates gmon.sum
$ gprof a.out gmon.sum

 Take care – all values are summed up across processes!

Sampling-based profiling with Linux perf

12PPHPS25 | Profiling

Sampling
 Interrupts program in regular intervals
 Records data

 Where is the program right now (address of “current” instruction)?
 program function
 line of code
 machine instruction

 What does the call stack look like?
 How did execution get “here”?

 Results
 Histogram of “how much time spent where”
 How much time is spent along a particular call path

13PPHPS25 | Profiling

Simple runtime profile with Linux perf
Compile with (Intel compiler; options also work for GCC):
$ icx -g -fno-inline -fno-omit-frame-pointer ...

Call executable wrapped with perf, generated file perf.data:
$ perf record -g ./a.out

Analyze the results with:
$ perf report

14PPHPS25 | Profiling

Output of perf report

“profile browser” allows drilling into call tree if “-g” option was given for perf
record (hit “h” for help)

Inclusive time for
function Event used for

profiling

Self time for
function

15PPHPS25 | Profiling

Options for reporting with perf
 Show perf.data in an ncurses browser (TUI) if possible:

$ perf report

 Show perf.data with a column for sample count:
$ perf report -n

 Show perf.data as a text report, with data coalesced and percentages:
$ perf report --stdio

 Disassemble and annotate instructions with percentages (needs some debuginfo):
$ perf annotate --stdio

Some general remarks about profiling

17PPHPS25 | Profiling

Manual profiling with a timer function
 Measuring walltime on UNIX (-like) systems

 Stay away from CPU time – it’s evil!
 Use clock_gettime() to obtain wall-clock time stamp:

#include <time.h>

double getTimeStamp()
{

struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9;

}

double gettimestamp_()
{

return getTimeStamp();
}

18PPHPS25 | Profiling

Consequences from the saturation pattern for profiling

Clearly distinguish between “saturating” and “scalable” performance on the
chip level

saturating
type

scalable
type

19PPHPS25 | Profiling

Consequences from the saturation pattern for profiling

 Some bottlenecks only show up in parallel execution!
 Code profile for single thread ≠ code profile for multiple threads

  Single-threaded profiling may be misleading

8 threads

saturating part scalable part
runtime

1 thread

	Profiling sequential programs
	Key question
	Profiling with gprof
	Profiling with gprof
	Profiling with gprof: Example
	Profiling with gprof: Example profiler output
	Flat profile
	Butterfly (call graph) profile
	Visualizing the butterfly profile
	Profiling MPI programs with gprof
	Sampling-based profiling with Linux perf
	Sampling
	Simple runtime profile with Linux perf
	Output of perf report
	Options for reporting with perf
	Some general remarks about profiling
	Manual profiling with a timer function
	Consequences from the saturation pattern for profiling
	Consequences from the saturation pattern for profiling

