
Profiling

(C) 2024 NHR@FAU,LRZ 2Profiling

Key question

 How do I know where my code spends most of its time?
 This is called “profiling”
 Many (free and commercial) tools exist

 Baseline tool: GNU gprof
 Supported by GCC and Intel compilers (and others)

 Linux “perf” infrastructure

 Based on the profile, optimization can be planned
 Reduction of work
 Doing work more efficiently

(C) 2024 NHR@FAU,LRZ 3Profiling

Profiling with gprof
 Basic sequential profiling tool under Linux: gprof
 Compiling for a profiling run

$ icx -pg ……

 After running the binary, a file gmon.out is written to the current directory
 Human-readable output:

$ gprof a.out

 Inlining should be disabled for profiling
 But then the executed code isn’t what it should be…

(C) 2024 NHR@FAU,LRZ 4Profiling

Profiling with gprof: Example

 Example with wrapped double class:

class D {
double d;

public:
D(double _d=0) : d(_d) {}
D operator+(const D& o) {

D r;
r.d = d+o.d;
return r;

}
operator double() {

return d;
}

};

const int n=10000000;
D a[n],b[n];
D sum;

for(int i=0; i<n; ++i)
a[i] = b[i] = 1.5;

double s = timestamp();
for(int k=0; k<10; ++k) {

for(int i=0; i<n; ++i)
sum = sum + a[i] + b[i];

}

Main program:

(C) 2024 NHR@FAU,LRZ 5Profiling

Profiling with gprof: Example profiler output
 icpx -O3 -pg perf.cc

 icpx -O3 -fno-inline -pg perf.cc

 But where did the time actually go?
 Butterfly (callgraph) profile also available
 Real problem also with use of libraries (STL!)
 Sometimes you have to roll your own little profiler (see later!)

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name

101.01 0.41 0.41 main

% cumulative self self total
time seconds seconds calls ns/call ns/call name
46.44 0.59 0.59 200000000 2.93 4.48 D::operator+(D const&)
29.63 0.96 0.37 240000001 1.56 1.56 D::D(double)
24.82 1.27 0.31 main

(C) 2024 NHR@FAU,LRZ 6Profiling

Flat profile

Each sample counts as 0.000976562 seconds.
% cumulative self self total
time seconds seconds calls s/call s/call name
66.43 7.96 7.96 1 7.96 9.64 hamilt_
11.15 9.30 1.34 1 1.34 1.34 outwin_
8.14 10.28 0.98 1 0.98 1.07 hns_
2.86 10.62 0.34 5266813 0.00 0.00 zheevx2_
1.20 10.76 0.14 __libm_error_support
1.04 10.89 0.12 zher2m_
0.90 11.00 0.11 cvtas_s_to_a
0.75 11.09 0.09 select_
0.38 11.13 0.05 cvt_ieee_t_to_text_ex
0.37 11.18 0.04 445351 0.00 0.00 seclit_

Time including
callees

Time not
including callees

Called how
often?

(C) 2024 NHR@FAU,LRZ 7Profiling

Butterfly (call graph) profile

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
index % time self children called name

<spontaneous>
[1] 100.0 0.00 0.05 start [1]

0.00 0.05 1/1 main [2]
0.00 0.00 1/2 on_exit [28]
0.00 0.00 1/1 exit [59]

0.00 0.05 1/1 start [1]

[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]

0.00 0.05 1/1 main [2]

[3] 100.0 0.00 0.05 1 report [3]
0.00 0.03 8/8 timelocal [6]
0.00 0.01 1/1 print [9]
0.00 0.01 9/9 fgets [12]
0.00 0.00 12/34 strncmp <cycle 1> [40]
0.00 0.00 8/8 lookup [20]
0.00 0.00 1/1 fopen [21]
0.00 0.00 8/8 chewtime [24]
0.00 0.00 8/16 skipspace [44]

called by

calling

(C) 2024 NHR@FAU,LRZ 8Profiling

Visualizing the butterfly profile
 Gprof2Dot converts gprof output to graphviz “dot” file

 https://github.com/jrfonseca/gprof2dot
 View dot file with,

e.g., xdot

https://github.com/jrfonseca/gprof2dot

(C) 2024 NHR@FAU,LRZ 9Profiling

Profiling MPI programs with gprof
 By design, gprof is a tool for serial code

 It can, however, be convinced to write a trace file that contains the PID in its
name

$ GMON_OUT_PREFIX=foo mpirun –np 5 ./a.out
[…]
$ ls
a.out foo.28219 foo.28220 foo.28221 foo.28222 foo.28223
$ gprof a.out foo.28219

 Accumulating individual files:

$ gprof --sum a.out foo.* # generates gmon.sum
$ gprof a.out gmon.sum

 Take care – all values are summed up across processes!

(C) 2024 NHR@FAU,LRZ 10Profiling

Sampling-based runtime profile with perf
Call executable with perf:
perf record -g
./a.out

Analyze the results with:
perf report

Advantages vs. gprof:
 Works on any binary without recompile
 Also captures OS and runtime symbols
 Also works with multi-threaded code

(C) 2024 NHR@FAU,LRZ 11Profiling

Manual profiling with a timer function
 Measuring walltime on UNIX (-like) systems

 Stay away from CPU time – it’s evil!
 Use clock_gettime() to obtain wall-clock time stamp:

#include <time.h>

double getTimeStamp()
{

struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9;

}

double gettimestamp_()
{

return getTimeStamp();
}

(C) 2024 NHR@FAU,LRZ 12Profiling

Consequences from the saturation pattern for profiling

Clearly distinguish between “saturating” and “scalable” performance on the
chip level

saturating
type

scalable
type

(C) 2024 NHR@FAU,LRZ 13Profiling

Consequences from the saturation pattern for profiling

 Some bottlenecks only show up in parallel execution!
 Code profile for single thread ≠ code profile for multiple threads

 Single-threaded profiling may be misleading

8 threads

saturating part scalable part
runtime

1 thread

	Profiling
	Key question
	Profiling with gprof
	Profiling with gprof: Example
	Profiling with gprof: Example profiler output
	Flat profile
	Butterfly (call graph) profile
	Visualizing the butterfly profile
	Profiling MPI programs with gprof
	Sampling-based runtime profile with perf
	Manual profiling with a timer function
	Consequences from the saturation pattern for profiling
	Consequences from the saturation pattern for profiling

