Friedrich-Alexander-Universitat
NHR(JFAU E AU s
A\

Profiling

Key question

How do | know where my code spends most of its time?
= This is called “profiling”
= Many (free and commercial) tools exist

Baseline tool: GNU gprof
= Supported by GCC and Intel compilers (and others)

Linux “perf” infrastructure

Based on the profile, optimization can be planned
= Reduction of work
= Doing work more efficiently

rofilin ,
Profiling C) 2024 NHR@FAU,LRZ

Profiling with gprof

= Basic sequential profiling tool under Linux: gprof

Compiling for a profiling run

After running the binary, a file gmon . out is written to the current directory

Human-readable output:

$ gprof a.out

Inlining should be disabled for profiling
= But then the executed code isn’t what it should be...

Profiling (C) 2024 NHR@FAU,LRZ

Profiling with gprof: Example

= Example with wrapped double class:

class D {
double d;

public:
D(double d=0) : d(_d) {}
D operator+(const D& o) {/ const int n=10000000;

Main program:

D r; D a[n],b[n];
r.d = d+o.d; D sum;
return r;
} for (int i=0; i<n; ++i)
operator double() ({ a[i] = b[i] = 1.5;
return d;
} double s = timestamp () ;
}; for (int k=0; k<10; ++k) {

for (int i=0; i<n; ++1i)
sum = sum + a[i] + b[i];

(S

rofilin ,
Profiling C) 2024 NHR@FAU,LRZ

Profiling with gprof: Example profiler output

= icpx -03 -pg perf.cc

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
101.01 0.41 0.41 main

" icpx -03 -fno-inline -pg perf.cc

% cumulative self self total
time seconds seconds calls ns/call ns/call name
46.44 0.59 0.59 200000000 2.93 4.48 D::operator+(D consté&)
29.63 0.96 0.37 240000001 1.56 1.56 D::D(double)
24.82 1.27 0.31 main

= But where did the time actually go?
= Butterfly (callgraph) profile also available
= Real problem also with use of libraries (STL!)
= Sometimes you have to roll your own little profiler (see later!)

rofilin ,
Profiling C) 2024 NHR@FAU,LRZ

Flat profile

Time not
including callees

Called how Time including
often? callees

Each sample counts as 0.0009765%$2 seconds.

% cumulative self self total
time seconds seconds calls s/call s/call name
66.43 7.96 7.96 1 7.96 9.64 hamilt
11.15 9.30 1.34 1 1.34 1.34 outwin_
8.14 10.28 0.98 1 0.98 1.07 hns_
2.86 10.62 0.34 5266813 0.00 0.00 zheevx2
1.20 10.76 0.14 __libm error support
1.04 10.89 0.12 zher2m _
0.90 11.00 0.11 cvtas_s to_a
0.75 11.09 0.09 select
0.38 11.13 0.05 cvt_ieee t to_text ex
0.37 11.18 0.04 445351 0.00 0.00 seclit

Profiling (C) 2024 NHR@FAU,LRZ

Butterfly (call graph) profile

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

index % time

self children

.00
.00
.00

.05
.05
.00

called

1/1
1/2
1/1

name
<spontaneous>
start [1]
main [2]
on_exit [28]
exit [59]

start [1]
main [2]
report [3]

[1] 100.0
[2] 100.0
[3] 100.0

OO O0OO0OO0OO0OO0OO0OOOo

OO O0OO0OO0OO0OO0OO0OOoOOo

main [2] >Called by
report [3]
timelocal [6]
print [9]
fgets [12]
strncmp <cycle 1 0]
lookup [20]
fopen [21]
chewtime [24]
skipspace [44]

calling

Profiling

(C) 2024 NHR@FAU,LRZ

Visualizing the butterfly profile

= Gprof2Dot converts gprof output to graphviz “dot” file
= https://github.com/jrfonseca/gprof2dot

= View dot file with,

- C = & =8 8 W

e.g., xdot

Profiling (C) 2024 NHR@FAU,LRZ

https://github.com/jrfonseca/gprof2dot

Profiling MPI programs with gprof

= By design, gprof is a tool for serial code

= |t can, however, be convinced to write a trace file that contains the PID in its
name

$ GMON OUT PREFIX=foo mpirun -np 5 ./a.out

[..]

$ 1ls

a.out £fo00.28219 £f00.28220 £f00.28221 £fo00.28222 fo00.28223
$ gprof a.out fo0o0.28219

= Accumulating individual files:

$ gprof --sum a.out foo.* # generates gmon.sum
$ gprof a.out gmon.sum

= Take care — all values are summed up across processes!

rofilin ,
Profiling C) 2024 NHR@FAU,LRZ

Sampling-based runtime profile with perf

Call executable with perf: Advantages vs. gprof:
perf record -g = Works on any binary without recompile
./a.out .

Also captures OS and runtime symbols
= Also works with multi-threaded code

Analyze the results with:
perf report

Samples: 30K of event 'cycles:uppp', Event count (approx.): 20629160088
Overhead Command Shared Object Symbol
64.19% miniMD-ICC miniMD-ICC [.] ForceLJ::compute
31.54% miniMD-ICC miniMD-ICC [.] Neighbor::build
1.47% miniMD-ICC miniMD-ICC [.] Integrate::run
0.67% miniMD-ICC [kernel] [k] irg return
0.40% miniMD-ICC miniMD-ICC [.] Atom::pack comm
0.35% mpiexec [kernel] [k] sysret check
0.21% miniMD-ICC miniMD-ICC [.] create atoms
0.18% miniMD-ICC miniMD-ICC [.] Atom::unpack comm
0.15% miniMD-ICC [kernel] [k] sysret check
0.15% miniMD-ICC miniMD-ICC [.] Comm::borders
0.10% miniMD-ICC miniMD-ICC [.] _intel ssse3 rep memcpy
0.09% miniMD-ICC miniMD-ICC [.] Atom::sort
0.07% miniMD-ICC miniMD-ICC [.] Neighbor::binatoms

rofilin ,
Profiling C) 2024 NHR@FAU,LRZ

Manual profiling with a timer function

= Measuring walltime on UNIX (-like) systems

= Stay away from CPU time — it’s evil!
= Use clock gettime () to obtain wall-clock time stamp:

#include <time.h>

double getTimeStamp ()
{

struct timespec ts;
clock gettime (CLOCK_MONOTONIC, &ts);
return (double)ts.tv_sec + (double)ts.tv_nsec * l.e-9;

}

double gettimestamp ()
{

return getTimeStamp () ;

}

Profiling

(C) 2024 NHR@FAU,LRZ

11

Consequences from the saturation pattern for profiling

Clearly distinguish between “saturating” and “scalable” performance on the
chip level

10 12
10
5 L 5
£ £°
So6 s |
g g
= T Z 6
= =
= = B
s 4 . =)
T saturating T 4 scalable
[V . 2
type B type
2 2
=T 3 4 5 6 7 8 7 3 4 5 6 71 8
Cores Cores

rofilin ,
Profiling C) 2024 NHR@FAU,LRZ

Consequences from the saturation pattern for profiling

= Some bottlenecks only show up in parallel execution!
= Code profile for single thread # code profile for multiple threads

= - Single-threaded profiling may be misleading
|

1 thread saturating part

> .
runtime

scalable part

aaaaaaaa

8 threads £

55555555

55555555

Profiling

(C) 2024 NHR@FAU,LRZ

13

	Profiling
	Key question
	Profiling with gprof
	Profiling with gprof: Example
	Profiling with gprof: Example profiler output
	Flat profile
	Butterfly (call graph) profile
	Visualizing the butterfly profile
	Profiling MPI programs with gprof
	Sampling-based runtime profile with perf
	Manual profiling with a timer function
	Consequences from the saturation pattern for profiling
	Consequences from the saturation pattern for profiling

