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Profiling sequential programs




Key question

= How do | know where my code spends most of its time?
= This is called “profiling”
= Many (free and commercial) tools exist

= Baseline tool: GNU gprof
= Supported by GCC and Intel compilers (and others)

» Linux “perf” infrastructure

= Based on the profile, optimization can be planned
= Reduction of work
= Doing work more efficiently
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Profiling with gprof

Caveat: all-new profiling tool “gprofng” upcoming!




Profiling with gprof

= Basic sequential profiling tool under Linux: gprof
Compiling for a profiling run

After running the binary, a file gmon . out is written to the current directory
Human-readable output:

$ gprof a.out

Inlining should be disabled for profiling
= But then the executed code isn’t what it should be...
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Profiling with gprof. Example

= Example with wrapped double class:

class D {

double d4d;
public: Mai :
ain program.
D (double d=0) : d(_d) {} prog
D operator+(const D& o) { | const int n=10000000;
D r; D a[n],b[n];

r.d = d+o.d;

D sum;
return r;
} for (int i=0; i<n; ++i)
operator double () { a[i] = b[i] = 1.5;
return d;
} double s = timestamp () ;
}; for (int k=0; k<10; ++k) {

for(int i=0; i<n; ++i)
sum = sum + a[i] + b[i];

—
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Profiling with gprof. Example profiler output

= icpx -03 -pg perf.cc

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
101.01 0.41 0.41 main

" icpx -03 -fno-inline -pg perf.cc

% cumulative self self total

time seconds seconds calls ns/call ns/call name

46.44 0.59 0.59 200000000 2.93 4.48 D::operator+(D consté&)
29.63 0.96 0.37 240000001 1.56 1.56 D::D(double)

24.82 1.27 0.31 main

= But where did the time actually go?
= Butterfly (callgraph) profile also available
= Real problem also with use of libraries (STL!)
= Sometimes you have to roll your own little profiler (see later!)
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Flat profile

Called how
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Each sample counts as 0.000976562 seconds.
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Butterfly (call graph) profile

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

index % time self children called name
<spontaneous>
[1] 100.0 0.00 0.05 start [1]
0.00 0.05 1/1 main [2]
0.00 0.00 1/2 on_exit [28]
0.00 0.00 1/1 exit [59]
0.00 0.05 1/1 start [1]
[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]
0.00  0.05 1/1 main [2] >ca|led by
[3] 100.0 0.00 0.05 1 report [3]
0.00 0.03 8/8 timelocal [6]
0.00 0.01 1/1 print [9]
0.00 0.01 9/9 fgets [12]
0.00 0.00 12/34 strncmp <cycle 0]
0.00 0.00 8/8 lookup [20]
0.00 0.00 1/1 fopen [21] :
0.00 0.00 8/8 chewtime [24] calling
0.00 0.00 8/16 skipspace [44]
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Visualizing the butterfly profile

= Gprof2Dot converts gprof output to graphviz “dot” file
= https://github.com/jrfonseca/gprof2dot

= View dot file with,

mEC= = (=5 8 1

e.g., xdot
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Profiling MPI programs with gprof

= By design, gprof is a tool for serial code

= |t can, however, be convinced to write a trace file that contains the PID in its
name

$ GMON OUT PREFIX=foo mpirun -np 5 ./a.out

[..]

$ 1ls

a.out £fo00.28219 £f00.28220 £fo00.28221 £f00.28222 £f00.28223
$ gprof a.out fo0o0.28219

= Accumulating individual files:

$ gprof --sum a.out foo.* # generates gmon.sum
$ gprof a.out gmon.sum

= Take care — all values are summed up across processes!
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Sampling-based profiling with Linux perf




Sampling

= |nterrupts program in regular intervals

= Records data

= Where is the program right now (address of “current” instruction)?
- program function
- line of code Advap,

lage
. S
- machine instruction . AWOst on S. 9prof
: ! bingp, .
= What does the call stack look like? . A,SZO MfaDtUreS Og’a'y Withoys ,
- How did execution get “here”? RS wity muzdfuntime
I~thr,
= Results ~9deq

= Histogram of “how much time spent where”
= How much time is spent along a particular call path
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Simple runtime profile with Linux perf

Compile with (Intel compiler; options also work for GCC):
$ icx -g -fno-inline -fno-omit-frame-pointer

Call executable wrapped with perf, generated file perf.data:
$ perf record -g ./a.out

Analyze the results with:
Samples: 113K of event ‘cycles:Pu’, Event count (approx.): 63028635012

$ perf report Children Self Command Shared Object Symbol
0,00% a.out libc.so.6 [.] _libc_start_call_main
0,00% a.out a.out ] main
0,00% a.out .out ] CcG

.out .out 1 axpby

.out .out ] dotProduct

.out .out .] applyStencil
9,00% a.out .out ] computeResidual
.out .out ] __svml_sin4_19
.out .out ] init
]

.out __intel_avx_rep_memcpy

+ + + + + + + +

0,41%
0,23%

d
d
a
d
d
a
a
d
d
d

[ N e N W W W W W o Wy |
. . . . . . . .

0 o0 O v v O D D

PPHPS25 | Profiling 13



Output of perf report

Inclusive time for
function

Self time for
function Eventqgedfor
profiling

Samples: 113K of event 'cycles:Pu’, Event count (approx.): 63028635012

Children Self Command
0,00% .out
0,00% .out
0,00% .out
.out
.out

.out
.out
.out
.out

+ + + + + + + +

]
a
]
]
3
a.out
a
]
]
3

Shared Object Symbol

libc.so0.6 .] __libc_start_call main
a.out ] main

.out ] CG

.out ] axpby

.out ] dotProduct
.out .] applyStencil
.out ] computeResidual

] __svml_sind_19

] init

] __intel_avx_rep_memcpy

o W e I e T e W e T s B o B e B s W |
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“profile browser” allows drilling into call tree if “~g” option was given for perf

record (hit “h” for help)
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Options for reporting with perf

= Show perf.data in an ncurses browser (TUI) if possible:
$ perf report

= Show perf.data with a column for sample count:
$ perf report -n

= Show perf.data as a text report, with data coalesced and percentages:
$ perf report --stdio

= Disassemble and annotate instructions with percentages (needs some debuginfo):
$ perf annotate --stdio
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Some general remarks about profiling




Manual profiling with a timer function

= Measuring walltime on UNIX (-like) systems

= Stay away from CPU time — it’s evil!
= Use clock gettime () to obtain wall-clock time stamp:

#include <time.h>

double getTimeStamp ()
{

struct timespec ts;

clock_gettime (CLOCK_MONOTONIC, &ts);

return (double)ts.tv_sec + (double)ts.tv nsec * l.e-9;
}

double gettimestamp ()
{

return getTimeStamp () ;

}
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Consequences from the saturation pattern for profiling

Clearly distinguish between “saturating” and “scalable” performance on the
chip level
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Consequences from the saturation pattern for profiling

= Some bottlenecks only show up in parallel execution!

= Code profile for single thread # code profile for multiple threads
= - Single-threaded profiling may be misleading
|

[ L

runtime
1 thread saturating part scalable part

5555555555555555
Cores

8 threads

zzzzzzzz
(((((
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