NHRJFAU

Profiling sequential programs

Key question

= How do | know where my code spends most of its time?
= This is called “profiling”
= Many (free and commercial) tools exist

= Baseline tool: GNU gprof
= Supported by GCC and Intel compilers (and others)

» Linux “perf” infrastructure

= Based on the profile, optimization can be planned
= Reduction of work
= Doing work more efficiently

PPHPS25 | Profiling

NHRJFAU

Profiling with gprof

Caveat: all-new profiling tool “gprofng” upcoming!

Profiling with gprof

= Basic sequential profiling tool under Linux: gprof
Compiling for a profiling run

After running the binary, a file gmon . out is written to the current directory
Human-readable output:

$ gprof a.out

Inlining should be disabled for profiling
= But then the executed code isn’t what it should be...

PPHPS25 | Profiling

Profiling with gprof. Example

= Example with wrapped double class:

class D {

double d4d;
public: Mai :
ain program.
D (double d=0) : d(_d) {} prog
D operator+(const D& o) { | const int n=10000000;
D r; D a[n],b[n];

r.d = d+o.d;

D sum;
return r;
} for (int i=0; i<n; ++i)
operator double () { a[i] = b[i] = 1.5;
return d;
} double s = timestamp () ;
}; for (int k=0; k<10; ++k) {

for(int i=0; i<n; ++i)
sum = sum + a[i] + b[i];

—

PPHPS25 | Profiling

Profiling with gprof. Example profiler output

= icpx -03 -pg perf.cc

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
101.01 0.41 0.41 main

" icpx -03 -fno-inline -pg perf.cc

% cumulative self self total

time seconds seconds calls ns/call ns/call name

46.44 0.59 0.59 200000000 2.93 4.48 D::operator+(D consté&)
29.63 0.96 0.37 240000001 1.56 1.56 D::D(double)

24.82 1.27 0.31 main

= But where did the time actually go?
= Butterfly (callgraph) profile also available
= Real problem also with use of libraries (STL!)
= Sometimes you have to roll your own little profiler (see later!)

PPHPS25 | Profiling

Flat profile

Called how
often?

Each sample counts as 0.000976562 seconds.
cumulative
seconds

%

time

66.
11.

8.
.86
.20
.04
.90
.75
.38
.37

OO O0OOoOkrRKrLDN

43
15
14

7.
9.
.28
10.
.76
10.
.00
.09
11.
11.

10

10

11
11

926
30

62

89

13
18

self

seconds

7.
.34
.98
.34
.14
.12
.11
.09
.05
.04

O O0OO0OO0OO0OOOOHR

96

calls

1

1

1
5266813

445351

self

s/call
7.96
1.34
0.98
0.00

total

s/call
9.64
1.34
1.07
0.00

Time not
including callees

Time including
callees

name
hamilt

outwin

hns

zheevx2

__libm error_ support
zher2m _

cvtas_s to_a

select
cvt_ieee t to_text ex
seclit

PPHPS25 |

Profiling

Butterfly (call graph) profile

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

index % time self children called name
<spontaneous>
[1] 100.0 0.00 0.05 start [1]
0.00 0.05 1/1 main [2]
0.00 0.00 1/2 on_exit [28]
0.00 0.00 1/1 exit [59]
0.00 0.05 1/1 start [1]
[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]
0.00 0.05 1/1 main [2] >ca|led by
[3] 100.0 0.00 0.05 1 report [3]
0.00 0.03 8/8 timelocal [6]
0.00 0.01 1/1 print [9]
0.00 0.01 9/9 fgets [12]
0.00 0.00 12/34 strncmp <cycle 0]
0.00 0.00 8/8 lookup [20]
0.00 0.00 1/1 fopen [21] :
0.00 0.00 8/8 chewtime [24] calling
0.00 0.00 8/16 skipspace [44]

PPHPS25 | Profiling

Visualizing the butterfly profile

= Gprof2Dot converts gprof output to graphviz “dot” file
= https://github.com/jrfonseca/gprof2dot

= View dot file with,

mEC= = (=5 8 1

e.g., xdot

PPHPS25 | Profiling

https://github.com/jrfonseca/gprof2dot

Profiling MPI programs with gprof

= By design, gprof is a tool for serial code

= |t can, however, be convinced to write a trace file that contains the PID in its
name

$ GMON OUT PREFIX=foo mpirun -np 5 ./a.out

[..]

$ 1ls

a.out £fo00.28219 £f00.28220 £fo00.28221 £f00.28222 £f00.28223
$ gprof a.out fo0o0.28219

= Accumulating individual files:

$ gprof --sum a.out foo.* # generates gmon.sum
$ gprof a.out gmon.sum

= Take care — all values are summed up across processes!

PPHPS25 | Profiling

10

NHR(JFAU Irz

Sampling-based profiling with Linux perf

Sampling

= |nterrupts program in regular intervals

= Records data

= Where is the program right now (address of “current” instruction)?
- program function
- line of code Advap,

lage
. S
- machine instruction . AWOst on S. 9prof
: ! bingp, .
= What does the call stack look like? . A,SZO MfaDtUreS Og’a'y Withoys ,
- How did execution get “here”? RS wity muzdfuntime
I~thr,
= Results ~9deq

= Histogram of “how much time spent where”
= How much time is spent along a particular call path

PPHPS25 | Profiling

12

Simple runtime profile with Linux perf

Compile with (Intel compiler; options also work for GCC):
$ icx -g -fno-inline -fno-omit-frame-pointer

Call executable wrapped with perf, generated file perf.data:
$ perf record -g ./a.out

Analyze the results with:
Samples: 113K of event ‘cycles:Pu’, Event count (approx.): 63028635012

$ perf report Children Self Command Shared Object Symbol
0,00% a.out libc.so.6 [.] _libc_start_call_main
0,00% a.out a.out] main
0,00% a.out .out] CcG

.out .out 1 axpby

.out .out] dotProduct

.out .out .] applyStencil
9,00% a.out .out] computeResidual
.out .out] __svml_sin4_19
.out .out] init
]

.out __intel_avx_rep_memcpy

+ + + + + + + +

0,41%
0,23%

d
d
a
d
d
a
a
d
d
d

[N e N W W W W W o Wy |
.

0 o0 O v v O D D

PPHPS25 | Profiling 13

Output of perf report

Inclusive time for
function

Self time for
function Eventqgedfor
profiling

Samples: 113K of event 'cycles:Pu’, Event count (approx.): 63028635012

Children Self Command
0,00% .out
0,00% .out
0,00% .out
.out
.out

.out
.out
.out
.out

+ + + + + + + +

]
a
]
]
3
a.out
a
]
]
3

Shared Object Symbol

libc.so0.6 .] __libc_start_call main
a.out] main

.out] CG

.out] axpby

.out] dotProduct
.out .] applyStencil
.out] computeResidual

] __svml_sind_19

] init

] __intel_avx_rep_memcpy

o W e I e T e W e T s B o B e B s W |
L] L] L] L] L] L] L] L]

O o 0 o O O O o

“profile browser” allows drilling into call tree if “~g” option was given for perf

record (hit “h” for help)

PPHPS25 | Profiling

14

Options for reporting with perf

= Show perf.data in an ncurses browser (TUI) if possible:
$ perf report

= Show perf.data with a column for sample count:
$ perf report -n

= Show perf.data as a text report, with data coalesced and percentages:
$ perf report --stdio

= Disassemble and annotate instructions with percentages (needs some debuginfo):
$ perf annotate --stdio

PPHPS25 | Profiling

15

NHRJFAU

Some general remarks about profiling

Manual profiling with a timer function

= Measuring walltime on UNIX (-like) systems

= Stay away from CPU time — it’s evil!
= Use clock gettime () to obtain wall-clock time stamp:

#include <time.h>

double getTimeStamp ()
{

struct timespec ts;

clock_gettime (CLOCK_MONOTONIC, &ts);

return (double)ts.tv_sec + (double)ts.tv nsec * l.e-9;
}

double gettimestamp ()
{

return getTimeStamp () ;

}

PPHPS25 | Profiling

17

Consequences from the saturation pattern for profiling

Clearly distinguish between “saturating” and “scalable” performance on the
chip level

10 12
10
5 L 5
< s 8
g 6 g L
[¥] [F]
g T 2 6
= =}
= = B
s 4 . o)
T saturating T 4 scalable
[a T o R [aTH
type i type
2 2
TS 3 2 s 6 7 3 T2 3 4 5 6 7 3
Cores Cores

PPHPS25 | Profiling

Consequences from the saturation pattern for profiling

= Some bottlenecks only show up in parallel execution!

= Code profile for single thread # code profile for multiple threads
= - Single-threaded profiling may be misleading
|

[L

runtime
1 thread saturating part scalable part

5555555555555555
Cores

8 threads

zzzzzzzz
(((((

PPHPS25 | Profiling

	Profiling sequential programs
	Key question
	Profiling with gprof
	Profiling with gprof
	Profiling with gprof: Example
	Profiling with gprof: Example profiler output
	Flat profile
	Butterfly (call graph) profile
	Visualizing the butterfly profile
	Profiling MPI programs with gprof
	Sampling-based profiling with Linux perf
	Sampling
	Simple runtime profile with Linux perf
	Output of perf report
	Options for reporting with perf
	Some general remarks about profiling
	Manual profiling with a timer function
	Consequences from the saturation pattern for profiling
	Consequences from the saturation pattern for profiling

