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Intel Trace Anayzer and Collector
Event-based tool recording user 
function calls and MPI 
communication calls

GUI for advanced visualization
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Event timeline view

 Timeline of MPI and user function execution
 Message visualization
 Context menu provides details on functions/messages
 Zoom/pan
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Quantitative and qualitative timelines

 Time spent in different MPI/user functions across processes
 Duration of certain things (collectives, PtP)
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Performance advice

Context-sensitive 
advice on typical 
performance patterns
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Message profile

 Who sends how much to whom?
 How long does it take?
 Effective bandwidth?
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Collective operations profile

 Time spent in collective call
 Data volume sent/received
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Functions profile, call tree/graph, load imbalance
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Options for taking traces
 Caveat: Tracing can generate vast amounts of data!
 Compiler switches (only works with legacy Intel compiler and wrappers 

[mpiicc, mpiicpc, mpiifort])
 -trace # record MPI calls (also possible with mpirun/mpiexec)
 -tcollect -trace # record MPI and user code function calls

# potential of large overhead and large trace size
 -tcollect-filter=func.txt -tcollect –trace  # filter file

'.*' OFF
'.*ComputeDotProduct.*' ON
'.*ComputeSYMGS.*' ON
'.*ComputeSPMV.*' ON
'.*ComputeWAXPBY.*' ON

func.txt example
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More (important) configuration options

 Avoid rapid-fire dumping 
trace data into shared
filesystems!

 Your fellow cluster users
will hate you for it.

Environment variable Default Description

VT_FLUSH_PREFIX … depends control directly for temporary flush 
files

VT_LOGFILE_PREFIX
current 
working 
directory

control directly for physical trace 
information files

VT_LOGFILE_FORMAT STF SINGLESTF: rolls all trace files into 
one file (.single.stf)

VT_LOGFILE_NAME ${binary}.stf control the name for the trace file

VT_MEM_BLOCKSIZE 64 KB trace data in chunks of main memory 

VT_MEM_FLUSHBLOCKS 1024
flushing is started when the number 
of blocks in memory exceeds this 

threshold

VT_MEM_MAXBLOCKS 1024

maximum number of blocks in main 
memory, if exceed the application is 
stopped until AUTOFLUSH/ MEM-
OVERWRITE/ stop recording trace 

info

VT_CONFIG_RANK 0 control the process that reads and 
parses the configuration file
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Alternatives
 ITAC is deprecated by Intel and will not be further developed (as of 2025)

 Intel recommends VTune as a replacement, but this is not competitive

 Other tools with similar functionality
 Vampir (commercial, scalable) https://vampir.eu/
 Scalasca (for highly scalable programs, no trace view) https://www.scalasca.org/
 Paraver https://tools.bsc.es/paraver

 Jumpshot
Don’t even bother.

https://vampir.eu/
https://www.scalasca.org/
https://tools.bsc.es/paraver
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