
MPI program tracing with
Intel Trace Analyzer/Collector (ITAC)

Georg Hager, Alireza Ghasemi, Ayesha Afzal

2PPHPS 2025 | Intel Trace Analyzer/Collector

Intel Trace Anayzer and Collector
Event-based tool recording user
function calls and MPI
communication calls

GUI for advanced visualization

3PPHPS 2025 | Intel Trace Analyzer/Collector

Event timeline view

 Timeline of MPI and user function execution
 Message visualization
 Context menu provides details on functions/messages
 Zoom/pan

4PPHPS 2025 | Intel Trace Analyzer/Collector

Quantitative and qualitative timelines

 Time spent in different MPI/user functions across processes
 Duration of certain things (collectives, PtP)

5PPHPS 2025 | Intel Trace Analyzer/Collector

Performance advice

Context-sensitive
advice on typical
performance patterns

6PPHPS 2025 | Intel Trace Analyzer/Collector

Message profile

 Who sends how much to whom?
 How long does it take?
 Effective bandwidth?

Sender

R
ec

ei
ve

r

7PPHPS 2025 | Intel Trace Analyzer/Collector

Collective operations profile

 Time spent in collective call
 Data volume sent/received

8PPHPS 2025 | Intel Trace Analyzer/Collector

Functions profile, call tree/graph, load imbalance

9PPHPS 2025 | Intel Trace Analyzer/Collector

Options for taking traces
 Caveat: Tracing can generate vast amounts of data!
 Compiler switches (only works with legacy Intel compiler and wrappers

[mpiicc, mpiicpc, mpiifort])
 -trace # record MPI calls (also possible with mpirun/mpiexec)
 -tcollect -trace # record MPI and user code function calls

potential of large overhead and large trace size
 -tcollect-filter=func.txt -tcollect –trace # filter file

'.*' OFF
'.*ComputeDotProduct.*' ON
'.*ComputeSYMGS.*' ON
'.*ComputeSPMV.*' ON
'.*ComputeWAXPBY.*' ON

func.txt example

10PPHPS 2025 | Intel Trace Analyzer/Collector

More (important) configuration options

 Avoid rapid-fire dumping
trace data into shared
filesystems!

 Your fellow cluster users
will hate you for it.

Environment variable Default Description

VT_FLUSH_PREFIX … depends control directly for temporary flush
files

VT_LOGFILE_PREFIX
current
working
directory

control directly for physical trace
information files

VT_LOGFILE_FORMAT STF SINGLESTF: rolls all trace files into
one file (.single.stf)

VT_LOGFILE_NAME ${binary}.stf control the name for the trace file

VT_MEM_BLOCKSIZE 64 KB trace data in chunks of main memory

VT_MEM_FLUSHBLOCKS 1024
flushing is started when the number
of blocks in memory exceeds this

threshold

VT_MEM_MAXBLOCKS 1024

maximum number of blocks in main
memory, if exceed the application is
stopped until AUTOFLUSH/ MEM-
OVERWRITE/ stop recording trace

info

VT_CONFIG_RANK 0 control the process that reads and
parses the configuration file

11PPHPS 2025 | Intel Trace Analyzer/Collector

Alternatives
 ITAC is deprecated by Intel and will not be further developed (as of 2025)

 Intel recommends VTune as a replacement, but this is not competitive

 Other tools with similar functionality
 Vampir (commercial, scalable) https://vampir.eu/
 Scalasca (for highly scalable programs, no trace view) https://www.scalasca.org/
 Paraver https://tools.bsc.es/paraver

 Jumpshot
Don’t even bother.

https://vampir.eu/
https://www.scalasca.org/
https://tools.bsc.es/paraver

	MPI program tracing with�Intel Trace Analyzer/Collector (ITAC)
	Intel Trace Anayzer and Collector
	Event timeline view
	Quantitative and qualitative timelines
	Performance advice
	Message profile
	Collective operations profile
	Functions profile, call tree/graph, load imbalance
	Options for taking traces
	More (important) configuration options
	Alternatives

