
(Some) performance pitfalls – and remedies

2PPHPS 2024 | Performance pitfalls

General optimization: Outline

 The limits of scalability
 “Common sense” optimizations
 Characterization of memory hierarchies
 Loop optimizations and code balance
 ccNUMA and first-touch initialization

Limits of scalability

PPHPS 2024 | Performance pitfalls

Metrics to quantify the efficiency of parallel computing
 𝑇𝑇(𝑁𝑁): execution time of some fixed workload with 𝑁𝑁 workers
 How much faster than with a single worker?

 parallel speedup: 𝑆𝑆 𝑁𝑁 = 𝑇𝑇(1)
𝑇𝑇(𝑁𝑁)

 How efficiently do those 𝑁𝑁 workers do their work?

 parallel efficiency: 𝜀𝜀 𝑁𝑁 = 𝑆𝑆 𝑁𝑁
𝑁𝑁

 Warning: These metrics are not performance metrics!

Can we
predict
𝑆𝑆 𝑁𝑁 ? Are
there limits
to it?

4

5PPHPS 2024 | Performance pitfalls

Assumptions for basic scalability models
 Scalable hardware: 𝑁𝑁 times the iron can work 𝑁𝑁 times faster
 Work is either fully parallelizable or not at all
 For the time being, assume a constant workload

Ideal world:
All work is perfectly parallelizable

𝑆𝑆 𝑁𝑁 = 𝑁𝑁, 𝜀𝜀 = 1

6PPHPS 2024 | Performance pitfalls

A simple speedup model for fixed workload
One worker normalized execution time: 𝑇𝑇 1 = 𝑠𝑠 + 𝑝𝑝 = 1
𝑠𝑠: runtime of purely serial part
𝑝𝑝: runtime of perfectly parallelizable part

𝑝𝑝 = 1 − 𝑠𝑠 𝑠𝑠

𝑇𝑇 𝑁𝑁 = 𝑠𝑠 +
𝑝𝑝
𝑁𝑁

𝑝𝑝/𝑁𝑁

𝑠𝑠
Parallel execution:

7PPHPS 2024 | Performance pitfalls

Amdahl’s Law (1967) – “Strong Scaling”
 Fixed workload speedup with 𝑠𝑠 being the fraction of nonparallelizable work

 Parallel efficiency: 𝜀𝜀 𝑁𝑁 = 1
𝑠𝑠 𝑁𝑁−1 +1

𝑆𝑆 𝑁𝑁 =
𝑇𝑇(1)
𝑇𝑇(𝑁𝑁)

=
1

𝑠𝑠 + 1 − 𝑠𝑠
𝑁𝑁

Gene M. Amdahl: Validity of the single processor approach to achieving large scale computing capabilities.
In Proceedings of the April 18-20, 1967, spring joint computer conference (AFIPS '67 (Spring)). Association
for Computing Machinery, New York, NY, USA, 483–485. DOI:10.1145/1465482.1465560

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p

workers

s=0.1 s=0.01 s=0.001

https://doi.org/10.1145/1465482.1465560

8PPHPS 2024 | Performance pitfalls

Fundamental limits in Amdahl’s Law
 Asymptotic speedup

lim
𝑁𝑁→∞

𝑆𝑆 𝑁𝑁 =
1
𝑠𝑠

 Asymptotic parallel efficiency

lim
𝑁𝑁→∞

𝜀𝜀 𝑁𝑁 = 0

 Asymptotically, nobody is doing anything except the worker that gets the
serial work!

 In reality, it’s even worse…

9PPHPS 2024 | Performance pitfalls

Reality is even worse…
 Load (actually, time) imbalance across workers

 Serial fraction is a “special case” of this
 Synchronization time
 Communication overhead
 Waiting time due to dependencies
 Resource bottlenecks (e.g., memory or network bandwidth)

𝑆𝑆 𝑁𝑁 =
𝑇𝑇(1)
𝑇𝑇(𝑁𝑁) =

1

𝑠𝑠 + 1 − 𝑠𝑠
𝑁𝑁 + 𝑐𝑐(𝑁𝑁)

10PPHPS 2024 | Performance pitfalls

Amdahl generalized: load imbalance
 Load imbalance at sync points

 More specifically, execution time imbalance
 𝑝𝑝/𝑁𝑁 assumption no longer valid in general

 Hard to model in general, but two corner cases:
 A few “laggers” waste lots of resources

 Single lagger Amdahl’s Law
 A few “speeders” might be harmless

 Tuning advice
 Avoid sync points
 Turn laggers into speeders

11PPHPS 2024 | Performance pitfalls

Resource bottlenecks
 Amdahl’s Law assumes perfect scalability of resources
 Reality: Computer architecture is plagued by bottlenecks!
 Example: array update loop

 Amdahl’s: 𝑠𝑠 = 0, 𝑐𝑐(𝑁𝑁) = 0
 Perfect speedup? No!
 Saturation because of memory

bandwidth exhaustion

#pragma omp parallel for

for(i=0; i<10000000; ++i)

a[i] = a[i] + s * c[i];

8-core CPU (Intel Sandy Bridge)

“Common sense” optimizations:
A Monte Carlo spin code

13PPHPS 2024 | Performance pitfalls

Optimization of a Spin System Simulation

• 3-D cubic lattice
• One variable (“spin”) per grid point with

values
• +1 or -1

• Next-neighbor interaction terms
• Code chooses spins randomly and flips

them as required by MC algorithm

14PPHPS 2024 | Performance pitfalls

Optimization of a Spin System Simulation

 Systems under consideration
 50∙50∙50 = 125000 lattice sites
 2125000 different configurations
 Computer time: 2125000 ∙ 1 ns ≈ 1037000 years – without MC

 Memory requirement of original program ≈ 1 MByte

15PPHPS 2024 | Performance pitfalls

Optimization of a Spin System Simulation: Original Code

 Program Kernel:
IA=IZ(KL,KM,KN)
IL=IZ(KLL,KM,KN)
IR=IZ(KLR,KM,KN)
IO=IZ(KL,KMO,KN)
IU=IZ(KL,KMU,KN)
IS=IZ(KL,KM,KNS)
IN=IZ(KL,KM,KNN)

edelz=iL+iR+iU+iO+iS+iN

C CRITERION FOR FLIPPING THE SPIN

BF= 0.5d0*(1.d0+tanh(edelz/tt))
if(YHE.LE.BF) then

iz(kl,km,kn)=1
else

iz(kl,km,kn)=-1
endif

Load neighbors of a
random spin

calculate magnetic field

decide about spin
orientation

16PPHPS 2024 | Performance pitfalls

Optimization of a Spin System Simulation: Code Analysis

 Profiling shows that
 30% of computing time is spent in the tanh function
 Rest is spent in the line calculating edelz

 Why?
 tanh is expensive by itself
 Compiler fuses spin loads and calculation of edelz into a single line

 What can we do?
 Try to reduce the “strength” of calculations (here tanh)
 Try to make the CPU move less data

 How do we do it?
 Observation: argument of tanh is always integer

in the range -6..6 (tt is always 1)
 Observation: Spin variables only hold values +1 or -1

17PPHPS 2024 | Performance pitfalls

Optimization of a Spin System Simulation: Making it Faster

 Strength reduction by tabulation of tanh function

BF = 0.5d0*(1.d0+tanh_table(edelz))

 Performance increases by 30% as table lookup is done with “lightspeed” compared
to tanh calculation

 By declaring spin variables with INTEGER*1 instead of INTEGER*4 the
memory requirement is reduced to about ¼
 Better cache reuse
 Factor 2–4 in performance depending on platform
 Why don’t we use just one bit per spin?

 Bit operations (mask, shift, add) too expensive → no benefit
 Potential for a variety of data access optimizations

 But: choice of spin must be absolutely random!

18PPHPS 2024 | Performance pitfalls

Optimization of a Spin System Simulation:
Performance Results

0 50 100 150 200 250

Original code

Table + 1Byte/Spin

Table + 1Bit/Spin

Runtime [sec]

Pentium 4 (2.4 GHz)

Code balance and machine balance

20PPHPS 2024 | Performance pitfalls

Latency and bandwidth in modern computer environments

Avoiding slow data paths is the key
to most performance optimizations!

1 GB/s

HPC plays here

21PPHPS 2024 | Performance pitfalls

Code balance
 Code balance (BC) quantifies

the requirements of a loop code:

 Example: Vector triad A(:)=B(:)+C(:)*D(:)
 Bc = (4+1) Words / 2 Flops = 20 bytes/flop (including write allocate)
 Often used: “Computational Intensity” 𝐼𝐼 = 1/𝐵𝐵𝑐𝑐

 General rule: Reducing the code balance of a loop by optimizations will do
something good for the performance!

 For refined analysis, code balance can also be defined for all memory
hierarchy levels: 𝐵𝐵𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐵𝐵𝑐𝑐𝐿𝐿𝐿,𝐵𝐵𝑐𝑐𝐿𝐿𝐿
 Memory transfers are not always the data bottleneck!

𝐵𝐵𝑐𝑐 =
data transfer [bytes]
artihmetic ops [flops]

22PPHPS 2024 | Performance pitfalls

Machine Balance
 For quick comparisons the concept of machine balance is useful

 Machine Balance = How much input data can be delivered for each FP
operation? (“Memory Gap characterization”)
 Assuming balanced MULT/ADD

 Rough estimate: 𝐵𝐵𝑚𝑚 ≪ 𝐵𝐵𝑐𝑐 strongly memory-bound code
 Typical values

(main memory):

𝐵𝐵𝑚𝑚 =
𝑏𝑏𝑆𝑆

𝑃𝑃peak

Maximum memory
bandwidth (meas.)

Theoretical peak
performance

Intel Sandy Bridge 8-core 2.7 GHz (2011) ≈ 0.23 B/F
Intel Haswell 14-core 2.3 GHz (2014)

Bm = 60 GB/s / (14 x 2.3 x 16) GF/s ≈ 0.12 B/F
Nvidia Ampere A100 (2021) ≈ 0.13 B/F (0.65 B/F)
Intel Xeon Ice Lake Platinum (2021) ≈ 0.07 B/F

Code optimization by data access optimization

24PPHPS 2024 | Performance pitfalls

Data access – general considerations
 Case 1: O(N)/O(N) Algorithms

 O(N) arithmetic operations vs. O(N) data access operations
 Examples: Scalar product, vector addition, sparse MVM etc.
 Performance limited by memory BW for large N (“memory bound”)
 Limited optimization potential for single loops

 …at most a constant factor for multi-loop operations
 Example: successive vector additions

do i=1,N
a(i)=b(i)+c(i)

enddo

do i=1,N
z(i)=b(i)+e(i)

enddo
no optimization
potential for either
loop

do i=1,N
a(i)=b(i)+c(i)
z(i)=b(i)+e(i)

enddo

fusing different
loops allows
O(N) data reuse
from registers

Loop fusion

Bc = (3+1)/1 W/F
= 32 B/F

Bc = 7/2 W/F
= 28 B/F

25PPHPS 2024 | Performance pitfalls

Data access – general guidelines
 Case 2: O(N2)/O(N2) algorithms

 Examples: dense matrix-vector multiply, matrix addition, dense matrix transposition etc.
 Nested loops

 Memory bound for large N
 Some optimization potential (at most constant factor)

 Can often enhance code balance by outer loop unrolling
 Example: dense matrix-vector multiplication

do i=1,N
do j=1,N
c(i)=c(i)+a(j,i)*b(j)

enddo
enddo

= + •

Naïve version loads b[] N times!

26PPHPS 2024 | Performance pitfalls

Data access – general guidelines
 O(N2)/O(N2) algorithms cont’d

 “Unroll & jam” optimization (or “outer loop unrolling”)

do i=1,N
do j=1,N
c(i)=c(i)+a(j,i)*b(j)

enddo
enddo

do i=1,N,2
do j=1,N
c(i) =c(i) +a(j,i) *b(j)

enddo
do j=1,N
c(i+1)=c(i+1)+a(j,i+1)*b(j)

enddo
enddo

unroll

do i=1,N,2
do j=1,N
c(i) =c(i) +a(j,i) * b(j)
c(i+1)=c(i+1)+a(j,i+1)* b(j)

enddo
enddo

jam

b(j) can be re-used once
from register → save 1 data
transfer

Lowers Bc from 8 to 6 B/F

27PPHPS 2024 | Performance pitfalls

Data access – general guidelines
 O(N2)/O(N2) algorithms cont’d

 Data access pattern for 2-way unrolled dense MVM:

 Still lower code balance by more aggressive unrolling (i.e., m-way instead of 2-way)
 Significant code bloat (try to use compiler directives if possible)
 Large cache b[] may be in cache even without unrolling!

Vector b[] now only loaded
N/2 times!

Remainder loop handled
separately

= + •

ccNUMA and its implications for performance

ccNUMA and node topology
 ccNUMA:

 Whole memory is transparently
accessible by all cores

 but physically distributed across
multiple locality domains (LDs)

 with varying bandwidth and latency
 and potential contention (shared

memory paths)
 How do we make sure that

memory access is always as
“local” and “distributed” as
possible?

Note: Page placement is
implemented in units of OS pages
(often 4kB, possibly more)

PPHPS 2024 | Performance pitfalls 30

32PPHPS 2024 | Performance pitfalls

ccNUMA default placement policy
“Golden Rule” of ccNUMA:

A memory page gets mapped into the local memory of the processor that
touches it first!
(Except if there is not enough local memory available)

 Caveat: “to touch” means “to write,” not “to allocate”
 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++)
huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not
mapped here yet

Mapping takes
place here

33PPHPS 2024 | Performance pitfalls

Coding for ccNUMA data locality
Most simple case: explicit initialization
const int n=10000000;
a=(double*)malloc(n*sizeof(double));
b=(double*)malloc(n*sizeof(double));

...

for(int i=0; i<n; ++i)
a[i] = 0.;

...

#pragma omp parallel for
for(int i=0; i<n; ++i)

b[i] = function(a[i]);

const int n=10000000;
a=(double*)malloc(n*sizeof(double));
b=(double*)malloc(n*sizeof(double));
...

#pragma omp parallel
{
#pragma omp for schedule(static)
for(int i=0; i<n; ++i)

a[i] = 0.;
...
#pragma omp for schedule(static)
for(int i=0; i<n; ++i)

b[i] = function(a[i]);
}

35PPHPS 2024 | Performance pitfalls

Summary on ccNUMA issues
 If the code is core bound, ccNUMA is not an issue

 However, most codes have at least some memory boundedness
 Apply first-touch placement

 Look at initialization loops
 Consider loop lengths and static scheduling
 C++ and global/static objects may require special care

 NUMA balancing is active on many Linux systems today
 Slow process, may take many seconds (configurable), not a silver bullet
 Still a good idea to do parallel first touch

 If dynamic scheduling cannot be avoided
 Still a good idea to do parallel first touch

	(Some) performance pitfalls – and remedies
	General optimization: Outline
	Limits of scalability
	Metrics to quantify the efficiency of parallel computing
	Assumptions for basic scalability models
	A simple speedup model for fixed workload
	Amdahl’s Law (1967) – “Strong Scaling”
	Fundamental limits in Amdahl’s Law
	Reality is even worse…
	Amdahl generalized: load imbalance
	Resource bottlenecks
	“Common sense” optimizations:�A Monte Carlo spin code
	Optimization of a Spin System Simulation
	Optimization of a Spin System Simulation
	Optimization of a Spin System Simulation: Original Code
	Optimization of a Spin System Simulation: Code Analysis
	Optimization of a Spin System Simulation: Making it Faster
	Optimization of a Spin System Simulation:�Performance Results
	Code balance and machine balance
	Latency and bandwidth in modern computer environments
	Code balance
	Machine Balance
	Code optimization by data access optimization
	Data access – general considerations
	Data access – general guidelines
	Data access – general guidelines
	Data access – general guidelines
	ccNUMA and its implications for performance
	ccNUMA and node topology
	ccNUMA default placement policy
	Coding for ccNUMA data locality
	Summary on ccNUMA issues

