
(Some) performance pitfalls – and remedies

2PPHPS 2025 | Performance pitfalls and optimization

General optimization: Outline

 The limits of scalability
 “Common sense” optimizations
 Characterization of memory hierarchies
 Loop optimizations and code balance
 ccNUMA and first-touch initialization

Limits of scalability

PPHPS 2025 | Performance pitfalls and optimization

Metrics to quantify the efficiency of parallel computing
 𝑇𝑇(𝑁𝑁): execution time of some fixed workload with 𝑁𝑁 workers
 How much faster than with a single worker?

 parallel speedup: 𝑆𝑆 𝑁𝑁 = 𝑇𝑇(1)
𝑇𝑇(𝑁𝑁)

 How efficiently do those 𝑁𝑁 workers do their work?

 parallel efficiency: 𝜀𝜀 𝑁𝑁 = 𝑆𝑆 𝑁𝑁
𝑁𝑁

 Warning: These metrics are not performance metrics!

Can we
predict
𝑆𝑆 𝑁𝑁 ? Are
there limits
to it?

4

5PPHPS 2025 | Performance pitfalls and optimization

Assumptions for basic scalability models
 Scalable hardware: 𝑁𝑁 times the iron can work 𝑁𝑁 times faster
 Work is either fully parallelizable or not at all
 For the time being, assume a constant workload

Ideal world:
All work is perfectly parallelizable

𝑆𝑆 𝑁𝑁 = 𝑁𝑁, 𝜀𝜀 = 1

6PPHPS 2025 | Performance pitfalls and optimization

A simple speedup model for fixed workload
One worker normalized execution time: 𝑇𝑇 1 = 𝑠𝑠 + 𝑝𝑝 = 1
𝑠𝑠: runtime of purely serial part
𝑝𝑝: runtime of perfectly parallelizable part

𝑝𝑝 = 1 − 𝑠𝑠 𝑠𝑠

𝑇𝑇 𝑁𝑁 = 𝑠𝑠 +
𝑝𝑝
𝑁𝑁

𝑝𝑝/𝑁𝑁

𝑠𝑠
Parallel execution:

7PPHPS 2025 | Performance pitfalls and optimization

Amdahl’s Law (1967) – “Strong Scaling”
 Fixed workload speedup with 𝑠𝑠 being the fraction of nonparallelizable work

 Parallel efficiency: 𝜀𝜀 𝑁𝑁 = 1
𝑠𝑠 𝑁𝑁−1 +1

𝑆𝑆 𝑁𝑁 =
𝑇𝑇(1)
𝑇𝑇(𝑁𝑁)

=
1

𝑠𝑠 + 1 − 𝑠𝑠
𝑁𝑁

Gene M. Amdahl: Validity of the single processor approach to achieving large scale computing capabilities.
In Proceedings of the April 18-20, 1967, spring joint computer conference (AFIPS '67 (Spring)). Association
for Computing Machinery, New York, NY, USA, 483–485. DOI:10.1145/1465482.1465560

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p

workers

s=0.1 s=0.01 s=0.001

https://doi.org/10.1145/1465482.1465560

8PPHPS 2025 | Performance pitfalls and optimization

Fundamental limits in Amdahl’s Law
 Asymptotic speedup

lim
𝑁𝑁→∞

𝑆𝑆 𝑁𝑁 =
1
𝑠𝑠

 Asymptotic parallel efficiency

lim
𝑁𝑁→∞

𝜀𝜀 𝑁𝑁 = 0

 Asymptotically, nobody is doing anything except the worker that gets the
serial work!

 In reality, it’s even worse…

9PPHPS 2025 | Performance pitfalls and optimization

Amdahl generalized: load imbalance
 Load imbalance at sync points

 More specifically, execution time imbalance
 𝑝𝑝/𝑁𝑁 assumption no longer valid in general

 Hard to model in general, but two corner cases:
 A few “laggers” waste lots of resources

 Single lagger Amdahl’s Law
 A few “speeders” might be harmless

 Tuning advice
 Avoid sync points
 Turn laggers into speeders

10PPHPS 2025 | Performance pitfalls and optimization

Reality is even worse…
 Load (actually, time) imbalance across workers

 Serial fraction is a “special case” of this
 Synchronization time
 Communication overhead
 Waiting time due to dependencies
 Resource bottlenecks (e.g., memory or network bandwidth)

𝑆𝑆 𝑁𝑁 =
𝑇𝑇(1)
𝑇𝑇(𝑁𝑁) =

1

𝑠𝑠 + 1 − 𝑠𝑠
𝑁𝑁 + 𝑐𝑐(𝑁𝑁)

All is not lost: weak scaling
 Increasing problem size often mainly enlarges „parallel“ workload p

 Then Speed-up increases with problem size

 For some application fields: Solve problems as big as possible
 Increase (parallel) workload with available workers / processors
 This is called „weak scaling“

s p

p/Ns

s

s

p

p/N

Scalability in terms of parallel speedup
and parallel efficiency improves when
scaling the problem size!

Weak scaling
 Assume simple and optimistic scenario: Parallel Workload increases linearly with

N, i.e. 𝑝𝑝 → 𝑁𝑁 𝑝𝑝
 𝑇𝑇 𝑁𝑁 = 𝑠𝑠 + 𝑁𝑁 𝑝𝑝

𝑁𝑁
= 𝑠𝑠 + 𝑝𝑝

 Runtime stays constant if workload is increased linearly with N
 Performance increases linearly with N

 How long does it take to solve the workload of N processors on 1 processor

 𝑇𝑇𝑁𝑁 1 = 𝑠𝑠 + 𝑁𝑁 𝑝𝑝

 𝑆𝑆 𝑁𝑁 = 𝑇𝑇𝑁𝑁(1)
𝑇𝑇 (𝑁𝑁)

= 𝑠𝑠+𝑁𝑁 𝑝𝑝
𝑠𝑠+𝑝𝑝

= 𝑠𝑠+𝑁𝑁 𝑝𝑝
𝑇𝑇𝑆𝑆(1)

= 𝑠𝑠 + 1 − 𝑠𝑠 𝑁𝑁

Gustafson's Law
("weak scaling“ – performance scaling)

Speed-Up increases
linearly with N

13PPHPS 2025 | Performance pitfalls and optimization

Resource bottlenecks
 Amdahl’s Law assumes perfect scalability of resources
 Reality: Computer architecture is plagued by bottlenecks!
 Example: array update loop

 Amdahl’s: 𝑠𝑠 = 0, 𝑐𝑐(𝑁𝑁) = 0
 Perfect speedup? No!
 Saturation because of memory

bandwidth limitation!

#pragma omp parallel for

for(i=0; i<10000000; ++i)

a[i] = a[i] + s * c[i];

8-core CPU (Intel Sandy Bridge)

“Common sense” optimizations:
A Monte Carlo spin code

15PPHPS 2025 | Performance pitfalls and optimization

Optimization of a Spin System Simulation

• 3-D cubic lattice
• One variable (“spin”) per grid point with

values
• +1 or -1

• Next-neighbor interaction terms
• Code chooses spins randomly and flips

them as required by MC algorithm

16PPHPS 2025 | Performance pitfalls and optimization

Optimization of a Spin System Simulation

 Systems under consideration
 50∙50∙50 = 125000 lattice sites
 2125000 different configurations
 Computer time: 2125000 ∙ 1 ns ≈ 1037000 years – without MC 

 Memory requirement of original program ≈ 1 MByte

17PPHPS 2025 | Performance pitfalls and optimization

Optimization of a Spin System Simulation: Original Code

 Program Kernel:
IA=IZ(KL,KM,KN)
IL=IZ(KLL,KM,KN)
IR=IZ(KLR,KM,KN)
IO=IZ(KL,KMO,KN)
IU=IZ(KL,KMU,KN)
IS=IZ(KL,KM,KNS)
IN=IZ(KL,KM,KNN)

edelz=iL+iR+iU+iO+iS+iN

C CRITERION FOR FLIPPING THE SPIN

BF= 0.5d0*(1.d0+tanh(edelz/tt))
if(YHE.LE.BF) then

iz(kl,km,kn)=1
else

iz(kl,km,kn)=-1
endif

Load neighbors of a
random spin

calculate magnetic field

decide about spin
orientation

18PPHPS 2025 | Performance pitfalls and optimization

Optimization of a Spin System Simulation: Code Analysis

 Profiling shows that
 30% of computing time is spent in the tanh function
 Rest is spent in the line calculating edelz

 Why?
 tanh is expensive by itself
 Compiler fuses spin loads and calculation of edelz into a single line

 What can we do?
 Try to reduce the “strength” of calculations (here tanh)
 Try to make the CPU move less data

 How do we do it?
 Observation: argument of tanh is always integer

in the range -6..6 (tt is always 1)
 Observation: Spin variables only hold values +1 or -1

19PPHPS 2025 | Performance pitfalls and optimization

Optimization of a Spin System Simulation: Making it Faster

 Strength reduction by tabulation of tanh function

BF = 0.5d0*(1.d0+tanh_table(edelz))

 Performance increases by 30% as table lookup is done with “lightspeed” compared
to tanh calculation

 By declaring spin variables with INTEGER*1 instead of INTEGER*4 the
memory requirement is reduced to about ¼
 Better cache reuse
 Factor 2–4 in performance depending on platform
 Why don’t we use just one bit per spin?

 Bit operations (mask, shift, add) too expensive → no benefit
 Potential for a variety of data access optimizations

 But: choice of spin must be absolutely random!

20PPHPS 2025 | Performance pitfalls and optimization

Optimization of a Spin System Simulation:
Performance Results

0 50 100 150 200 250

Original code

Table + 1Byte/Spin

Table + 1Bit/Spin

Runtime [sec]

Pentium 4 (2.4 GHz)

Code balance and machine balance

22PPHPS 2025 | Performance pitfalls and optimization

Latency and bandwidth in modern computer environments

Avoiding slow data paths is the key
to most performance optimizations!

1 GB/s

HPC plays here

23PPHPS 2025 | Performance pitfalls and optimization

Code balance
 Code balance (BC) quantifies

the requirements of a loop code:

 Example: Vector triad A(:)=B(:)+C(:)*D(:)
 Bc = (4+1) Words / 2 Flops = 20 bytes/flop (including write allocate)
 Often used: “Computational Intensity” 𝐼𝐼 = 1/𝐵𝐵𝑐𝑐

 General rule: Reducing the code balance of a loop by optimizations will do
something good for the performance!

 For refined analysis, code balance can also be defined for all memory
hierarchy levels: 𝐵𝐵𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐵𝐵𝑐𝑐𝐿𝐿𝐿,𝐵𝐵𝑐𝑐𝐿𝐿𝐿
 Memory transfers are not always the data bottleneck!

𝐵𝐵𝑐𝑐 =
data transfer [bytes]
artihmetic ops [flops]

24PPHPS 2025 | Performance pitfalls and optimization

Machine Balance
 For quick comparisons the concept of machine balance is useful

 Machine Balance = How much input data can be delivered for each FP
operation? (“Memory Gap characterization”)
 Assuming balanced MULT/ADD

 Rough estimate: 𝐵𝐵𝑚𝑚 ≪ 𝐵𝐵𝑐𝑐  strongly memory-bound code
 Typical values

(main memory):

𝐵𝐵𝑚𝑚 =
𝑏𝑏𝑆𝑆

𝑃𝑃peak

Maximum memory
bandwidth (meas.)

Theoretical peak
performance

Intel Sandy Bridge 8-core 2.7 GHz (2011) ≈ 0.23 B/F
Intel Haswell 14-core 2.3 GHz (2014)

Bm = 60 GB/s / (14 x 2.3 x 16) GF/s ≈ 0.12 B/F
Nvidia Ampere A100 (2021) ≈ 0.13 B/F (0.65 B/F)
Intel Xeon Ice Lake Platinum (2021) ≈ 0.07 B/F

Code optimization by data access optimization

26PPHPS 2025 | Performance pitfalls and optimization

Data access – general considerations
 Case 1: O(N)/O(N) Algorithms

 O(N) arithmetic operations vs. O(N) data access operations
 Examples: Scalar product, vector addition, sparse MVM etc.
 Performance limited by memory BW for large N (“memory bound”)
 Limited optimization potential for single loops

 …at most a constant factor for multi-loop operations
 Example: successive vector additions

do i=1,N
a(i)=b(i)+c(i)

enddo

do i=1,N
z(i)=b(i)+e(i)

enddo
no optimization
potential for either
loop

do i=1,N
a(i)=b(i)+c(i)
z(i)=b(i)+e(i)

enddo

fusing different
loops allows
O(N) data reuse
from registers

Loop fusion

Bc = (3+1)/1 W/F
= 32 B/F

Bc = 7/2 W/F
= 28 B/F

27PPHPS 2025 | Performance pitfalls and optimization

Data access – general guidelines
 Case 2: O(N2)/O(N2) algorithms

 Examples: dense matrix-vector multiply, matrix addition, dense matrix transposition etc.
 Nested loops

 Memory bound for large N
 Some optimization potential (at most constant factor)

 Can often enhance code balance by outer loop unrolling
 Example: dense matrix-vector multiplication

do i=1,N
do j=1,N
c(i)=c(i)+a(j,i)*b(j)

enddo
enddo

= + •

Naïve version loads b[] N times!

28PPHPS 2025 | Performance pitfalls and optimization

Data access – general guidelines
 O(N2)/O(N2) algorithms cont’d

 “Unroll & jam” optimization (or “outer loop unrolling”)

do i=1,N
do j=1,N
c(i)=c(i)+a(j,i)*b(j)

enddo
enddo

do i=1,N,2
do j=1,N
c(i) =c(i) +a(j,i) *b(j)

enddo
do j=1,N
c(i+1)=c(i+1)+a(j,i+1)*b(j)

enddo
enddo

unroll

do i=1,N,2
do j=1,N
c(i) =c(i) +a(j,i) * b(j)
c(i+1)=c(i+1)+a(j,i+1)* b(j)

enddo
enddo

jam

b(j) can be re-used once
from register → save 1 data
transfer

Lowers Bc from 8 to 6 B/F

29PPHPS 2025 | Performance pitfalls and optimization

Data access – general guidelines
 O(N2)/O(N2) algorithms cont’d

 Data access pattern for 2-way unrolled dense MVM:

 Still lower code balance by more aggressive unrolling (i.e., m-way instead of 2-way)
 Significant code bloat (try to use compiler directives if possible)
 Large cache  b[] may be in cache even without unrolling!

Vector b[] now only loaded
N/2 times!

Remainder loop handled
separately

= + •

ccNUMA and its implications for performance

ccNUMA and node topology
 ccNUMA:

 Whole memory is transparently
accessible by all cores

 but physically distributed across
multiple locality domains (LDs)

 with varying bandwidth and latency
 and potential contention (shared

memory paths)
 How do we make sure that

memory access is always as
“local” and “distributed” as
possible?

Note: Page placement is
implemented in units of OS pages
(often 4kB, possibly more)

PPHPS 2025 | Performance pitfalls and optimization 32

34PPHPS 2025 | Performance pitfalls and optimization

ccNUMA default placement policy
“Golden Rule” of ccNUMA:

A memory page gets mapped into the local memory of the processor that
touches it first!
(Except if there is not enough local memory available)

 Caveat: “to touch” means “to write,” not “to allocate”
 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++)
huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not
mapped here yet

Mapping takes
place here

35PPHPS 2025 | Performance pitfalls and optimization

Coding for ccNUMA data locality
Most simple case: explicit initialization
const int n=10000000;
a=(double*)malloc(n*sizeof(double));
b=(double*)malloc(n*sizeof(double));

...

for(int i=0; i<n; ++i)
a[i] = 0.;

...

#pragma omp parallel for
for(int i=0; i<n; ++i)

b[i] = function(a[i]);

const int n=10000000;
a=(double*)malloc(n*sizeof(double));
b=(double*)malloc(n*sizeof(double));
...

#pragma omp parallel
{
#pragma omp for schedule(static)
for(int i=0; i<n; ++i)

a[i] = 0.;
...
#pragma omp for schedule(static)
for(int i=0; i<n; ++i)

b[i] = function(a[i]);
}

37PPHPS 2025 | Performance pitfalls and optimization

Summary on ccNUMA issues
 If the code is core bound, ccNUMA is not an issue

 However, most codes have at least some memory boundedness
 Apply first-touch placement

 Look at initialization loops
 Consider loop lengths and static scheduling
 C++ and global/static objects may require special care

 NUMA balancing is active on many Linux systems today
 Slow process, may take many seconds (configurable), not a silver bullet
 Still a good idea to do parallel first touch

 If dynamic scheduling cannot be avoided
 Still a good idea to do parallel first touch

	(Some) performance pitfalls – and remedies
	General optimization: Outline
	Limits of scalability
	Metrics to quantify the efficiency of parallel computing
	Assumptions for basic scalability models
	A simple speedup model for fixed workload
	Amdahl’s Law (1967) – “Strong Scaling”
	Fundamental limits in Amdahl’s Law
	Amdahl generalized: load imbalance
	Reality is even worse…
	All is not lost: weak scaling
	Weak scaling
	Resource bottlenecks
	“Common sense” optimizations:�A Monte Carlo spin code
	Optimization of a Spin System Simulation
	Optimization of a Spin System Simulation
	Optimization of a Spin System Simulation: Original Code
	Optimization of a Spin System Simulation: Code Analysis
	Optimization of a Spin System Simulation: Making it Faster
	Optimization of a Spin System Simulation:�Performance Results
	Code balance and machine balance
	Latency and bandwidth in modern computer environments
	Code balance
	Machine Balance
	Code optimization by data access optimization
	Data access – general considerations
	Data access – general guidelines
	Data access – general guidelines
	Data access – general guidelines
	ccNUMA and its implications for performance
	ccNUMA and node topology
	ccNUMA default placement policy
	Coding for ccNUMA data locality
	Summary on ccNUMA issues

