

(Some) performance pitfalls – and remedies

General optimization: Outline

- The limits of scalability
- "Common sense" optimizations
- Characterization of memory hierarchies
- Loop optimizations and code balance
- ccNUMA and first-touch initialization

Limits of scalability

Metrics to quantify the efficiency of parallel computing

- T(N): execution time of some fixed workload with N workers
- How much faster than with a single worker?

→ parallel speedup:
$$S(N) = \frac{T(1)}{T(N)}$$

• How efficiently do those *N* workers do their work?

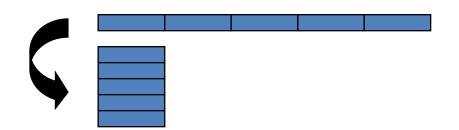
→ parallel efficiency:
$$\varepsilon(N) = \frac{S(N)}{N}$$

Can we predict *S*(*N*)? Are there limits to it?

• Warning: These metrics are not performance metrics!

Assumptions for basic scalability models

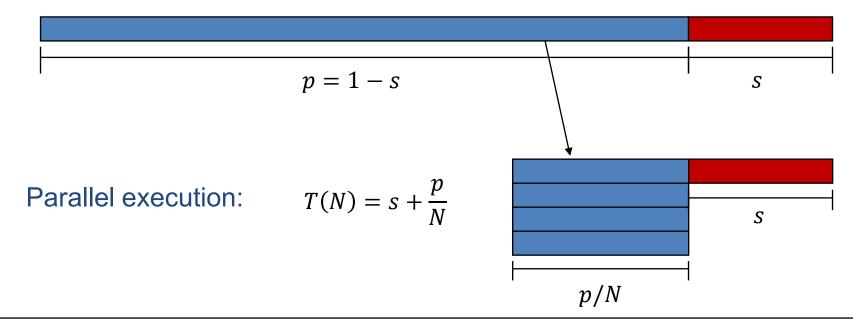
- Scalable hardware: N times the iron can work N times faster
- Work is either fully parallelizable or not at all
- For the time being, assume a constant workload



Ideal world: All work is perfectly parallelizable $S(N) = N, \quad \varepsilon = 1$

A simple speedup model for fixed workload

One worker normalized execution time: T(1) = s + p = 1s: runtime of purely serial part p: runtime of perfectly parallelizable part



Amdahl's Law (1967) – "Strong Scaling"

• Fixed workload speedup with *s* being the fraction of nonparallelizable work

$$S(N) = \frac{T(1)}{T(N)} = \frac{1}{s + \frac{1 - s}{N}}$$
Parallel efficiency: $\varepsilon(N) = \frac{1}{s(N-1)+1}$

Gene M. Amdahl: *Validity of the single processor approach to achieving large scale computing capabilities*. In Proceedings of the April 18-20, 1967, spring joint computer conference (AFIPS '67 (Spring)). Association for Computing Machinery, New York, NY, USA, 483–485. DOI:10.1145/1465482.1465560

Fundamental limits in Amdahl's Law

Asymptotic speedup

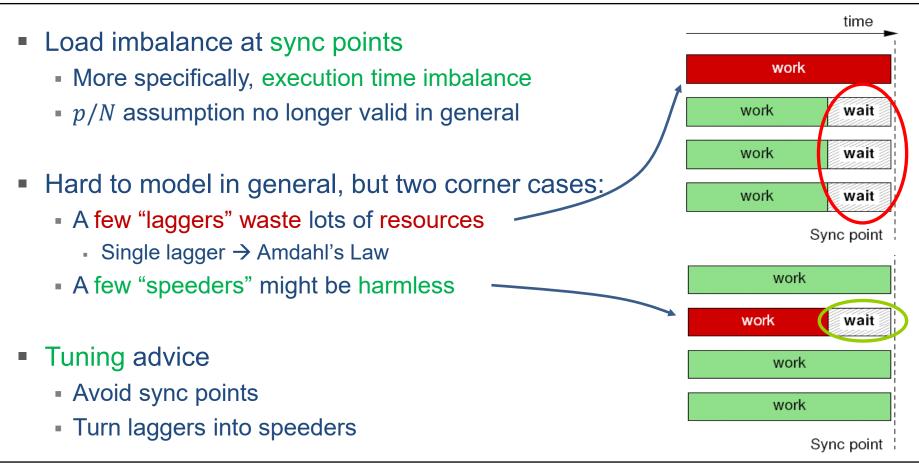
$$\lim_{N\to\infty} S(N) = \frac{1}{s}$$

Asymptotic parallel efficiency

$$\lim_{N\to\infty}\varepsilon(N)=0$$

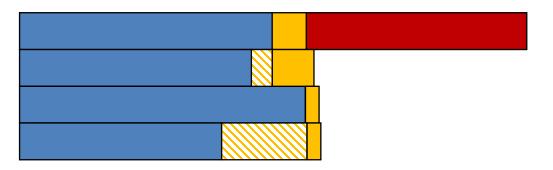
- → Asymptotically, nobody is doing anything except the worker that gets the serial work!
- In reality, it's even worse...

Amdahl generalized: load imbalance



Reality is even worse...

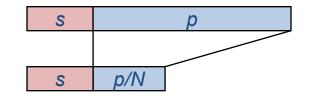
- Load (actually, time) imbalance across workers
 - Serial fraction is a "special case" of this
- Synchronization time
- Communication overhead
- Waiting time due to dependencies
- Resource bottlenecks (e.g., memory or network bandwidth)



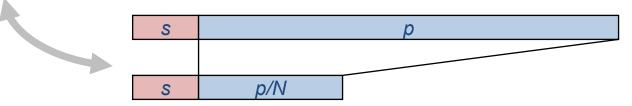
 $S(N) = \frac{T(1)}{T(N)} = \frac{1}{s + \frac{1-s}{N} + c(N)}$

All is not lost: weak scaling

- Increasing problem size often mainly enlarges "parallel" workload p
 - Then Speed-up increases with problem size



Scalability in terms of parallel speedup and parallel efficiency improves when scaling the problem size!



- For some application fields: Solve problems as big as possible
- \rightarrow Increase (parallel) workload with available workers / processors
- \rightarrow This is called "weak scaling"

Weak scaling

- Assume simple and optimistic scenario: Parallel Workload increases linearly with N, i.e. $p \rightarrow N p$

$$\rightarrow T(N) = s + \frac{N p}{N} = s + p$$

- \rightarrow Runtime stays constant if workload is increased linearly with N
- \rightarrow Performance increases linearly with N
- How long does it take to solve the workload of N processors on 1 processor

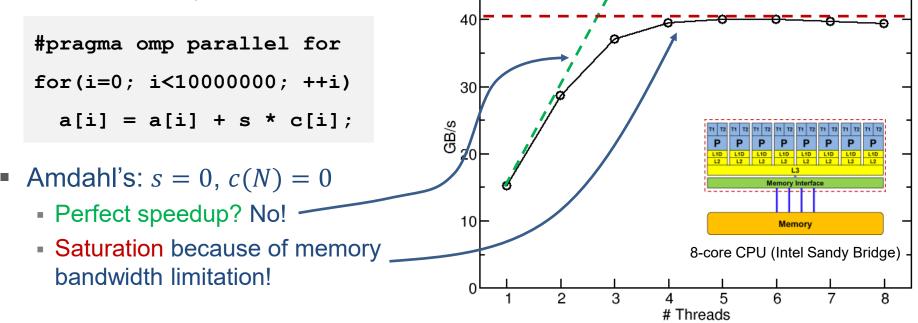
 $\Rightarrow T_N(1) = s + N p$

$$\Rightarrow S(N) = \frac{T_N(1)}{T(N)} = \frac{s+Np}{s+p} = \frac{s+Np}{T_S(1)} = s + (1-s)N$$

Speed-Up increases
linearly with N
Gustafson's Law
("weak scaling" – performance scaling)

Resource bottlenecks

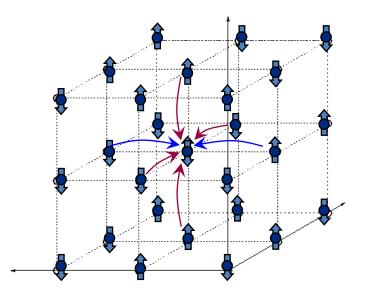
- Amdahl's Law assumes perfect scalability of resources
- Reality: Computer architecture is plagued by bottlenecks!
- Example: array update loop



"Common sense" optimizations: A Monte Carlo spin code

Optimization of a Spin System Simulation

- 3-D cubic lattice
- One variable ("spin") per grid point with values
- +1 or -1
- Next-neighbor interaction terms
- Code chooses spins randomly and flips
 them as required by MC algorithm



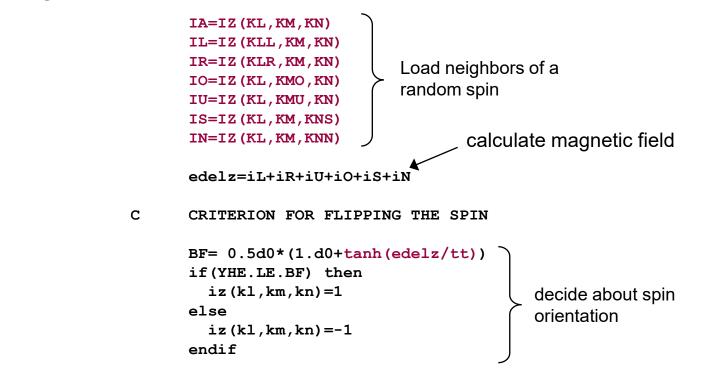
Optimization of a Spin System Simulation

- Systems under consideration
 - 50.50.50 = 125000 lattice sites
 - 2¹²⁵⁰⁰⁰ different configurations
 - Computer time: 2¹²⁵⁰⁰⁰ · 1 ns ≈ 10³⁷⁰⁰⁰ years without MC ☺

Memory requirement of original program ≈ 1 MByte

Optimization of a Spin System Simulation: Original Code

Program Kernel:



Optimization of a Spin System Simulation: Code Analysis

- Profiling shows that
 - 30% of computing time is spent in the tanh function
 - Rest is spent in the line calculating edelz
- Why?
 - tanh is expensive by itself
 - Compiler fuses spin loads and calculation of edelz into a single line
- What can we do?
 - Try to reduce the "strength" of calculations (here tanh)
 - Try to make the CPU move less data
- How do we do it?
 - Observation: argument of tanh is always integer in the range -6..6 (tt is always 1)
 - Observation: Spin variables only hold values +1 or -1

Optimization of a Spin System Simulation: Making it Faster

Strength reduction by tabulation of tanh function

 $BF = 0.5d0*(1.d0+tanh_table(edelz))$

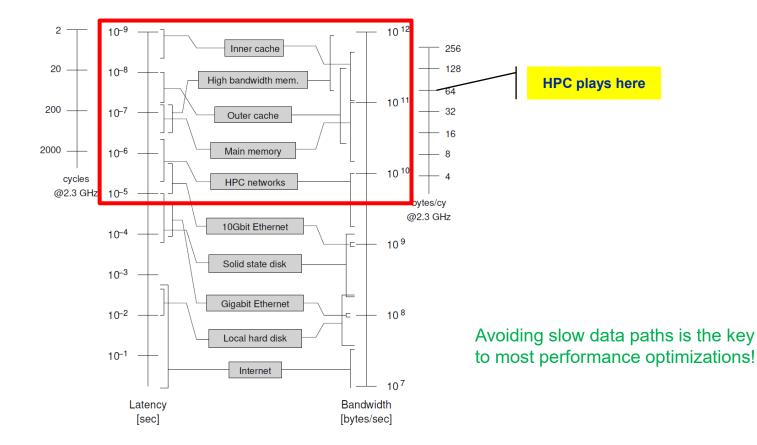
- Performance increases by 30% as table lookup is done with "lightspeed" compared to tanh calculation
- By declaring spin variables with INTEGER*1 instead of INTEGER*4 the memory requirement is reduced to about ¹/₄
 - Better cache reuse
 - Factor 2–4 in performance depending on platform
 - Why don't we use just one bit per spin?
 - Bit operations (mask, shift, add) too expensive \rightarrow no benefit
- Potential for a variety of data access optimizations
 - But: choice of spin must be absolutely random!

Pentium 4 (2.4 GHz)



Code balance and machine balance

Latency and bandwidth in modern computer environments



Code balance

 Code balance (B_C) quantifies the requirements of a loop code:

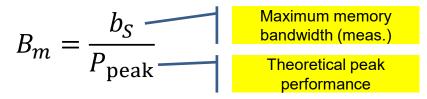
 $B_c = \frac{\text{data transfer [bytes]}}{\text{artihmetic ops [flops]}}$

- Example: Vector triad A(:)=B(:)+C(:)*D(:)
 - B_c = (4+1) Words / 2 Flops = 20 bytes/flop (including write allocate)
 - Often used: "Computational Intensity" $I = 1/B_c$
- General rule: Reducing the code balance of a loop by optimizations will do something good for the performance!

- For refined analysis, code balance can also be defined for all memory hierarchy levels: B_c^{mem} , B_c^{L3} , B_c^{L2}
 - Memory transfers are not always the data bottleneck!

Machine Balance

For quick comparisons the concept of machine balance is useful



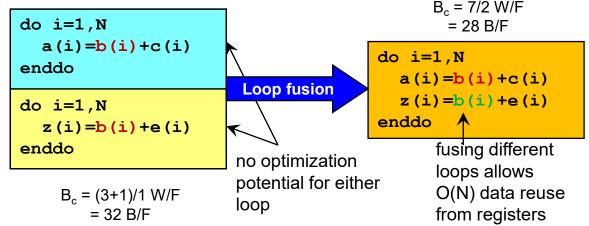
- Machine Balance = How much input data can be delivered for each FP operation? ("Memory Gap characterization")
 - Assuming balanced MULT/ADD
- Rough estimate: $B_m \ll B_c \rightarrow$ strongly memory-bound code
- Typical values (main memory):

Intel Sandy Bridge 8-core 2.7 GHz (2011) ≈ 0.23 B/FIntel Haswell 14-core 2.3 GHz (2014) $B_m = 60$ GB/s / (14 x 2.3 x 16) GF/s ≈ 0.12 B/FNvidia Ampere A100 (2021) ≈ 0.13 B/F (0.65 B/F)Intel Xeon Ice Lake Platinum (2021) ≈ 0.07 B/F

Code optimization by data access optimization

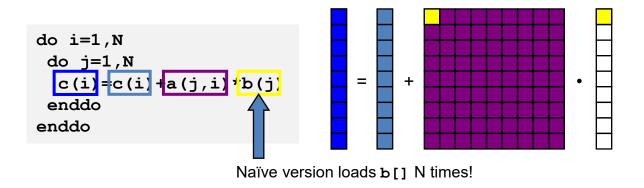
Data access – general considerations

- Case 1: O(N)/O(N) Algorithms
 - O(N) arithmetic operations vs. O(N) data access operations
 - Examples: Scalar product, vector addition, sparse MVM etc.
 - Performance limited by memory BW for large N ("memory bound")
 - Limited optimization potential for single loops
 - ...at most a constant factor for multi-loop operations
 - Example: successive vector additions



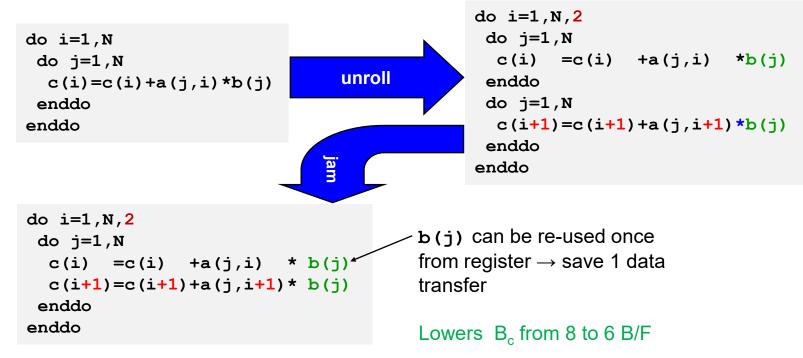
Data access – general guidelines

- Case 2: O(N²)/O(N²) algorithms
 - Examples: dense matrix-vector multiply, matrix addition, dense matrix transposition etc.
 - Nested loops
 - Memory bound for large N
 - Some optimization potential (at most constant factor)
 - Can often enhance code balance by outer loop unrolling
 - Example: dense matrix-vector multiplication



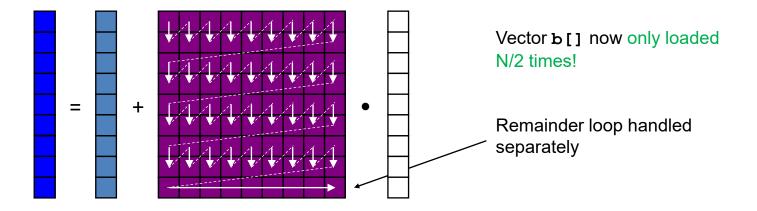
Data access – general guidelines

- O(N²)/O(N²) algorithms cont'd
 - "Unroll & jam" optimization (or "outer loop unrolling")



Data access – general guidelines

- O(N²)/O(N²) algorithms cont'd
 - Data access pattern for 2-way unrolled dense MVM:



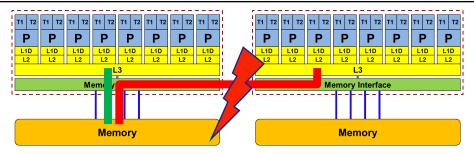
Still lower code balance by more aggressive unrolling (i.e., m-way instead of 2-way)

- Significant code bloat (try to use compiler directives if possible)
- Large cache $\rightarrow b[]$ may be in cache even without unrolling!

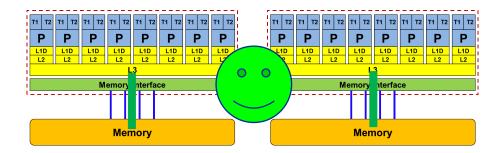
ccNUMA and its implications for performance

ccNUMA and node topology

- ccNUMA:
 - Whole memory is transparently accessible by all cores
 - but physically distributed across multiple locality domains (LDs)
 - with varying bandwidth and latency
 - and potential contention (shared memory paths)
- How do we make sure that memory access is always as "local" and "distributed" as possible?



Note: Page placement is implemented in units of OS pages (often 4kB, possibly more)



ccNUMA default placement policy

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the processor that touches it first!

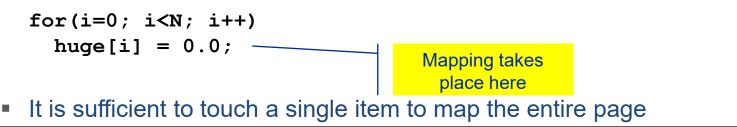
(Except if there is not enough local memory available)

• Caveat: "to touch" means "to write," not "to allocate"

Example:

Memory not mapped here yet

double *huge = (double*)malloc(N*sizeof(double));



Coding for ccNUMA data locality

Most simple case: explicit initialization

```
const int n=10000000;
```

```
a=(double*)malloc(n*sizeof(double));
```

b=(double*)malloc(n*sizeof(double));

```
...
for(int i=0; i<n; ++i)
    a[i] = 0.;
...
#pragma omp parallel for</pre>
```

```
for(int i=0; i<n; ++i)
    b[i] = function(a[i]);</pre>
```

```
const int n=10000000;
a=(double*)malloc(n*sizeof(double));
b=(double*)malloc(n*sizeof(double));
. . .
#pragma omp parallel
#pragma omp for schedule(static)
for(int i=0; i<n; ++i)</pre>
   a[i] = 0.;
. . .
#pragma omp for schedule(static)
for(int i=0; i<n; ++i)</pre>
   b[i] = function(a[i]);
}
```

Summary on ccNUMA issues

- If the code is core bound, ccNUMA is not an issue
 - However, most codes have at least some memory boundedness
- Apply first-touch placement
 - Look at initialization loops
 - Consider loop lengths and static scheduling
 - C++ and global/static objects may require special care
- NUMA balancing is active on many Linux systems today
 - Slow process, may take many seconds (configurable), not a silver bullet
 - Still a good idea to do parallel first touch
- If dynamic scheduling cannot be avoided
 - Still a good idea to do parallel first touch