
MuCoSim Introduction (Part II)
Thomas Gruber and Katrin Nusser (HPC @ Uni Erlangen)

Thomas.Gruber@fau.de

mailto:Thomas.Gruber@fau.de

Preparation:
Copy ~unrz139/mucosim to your home
(WARNING: may overwrite existing files!)

Let‘s start with some recap:
Go to mucosim/stream and compile the code with latest Intel suite

Run code with OMP_NUM_THREADS=4 a few times and determine min. and
max. bandwidth for the copy kernel.

COMPILERS

MuCoSim Introduction

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Compilers @ RRZE

§ We provide GCC, Intel C/C++ Compiler (and PGI and others)
§ On warmup also arm-clang (/opt/arm/… license up-on-request)
§ Provided through module system
§ Common compiler names:

§ GCC: gcc and gfortran
§ Intel: icc and ifort

gcc –O3 –fopenmp –I<INCDIR> -L<LIBDIR> test.c –o test –llib
gfortran –O3 –fopenmp –I<INCDIR> -L<LIBDIR> test.f90 –o test -llib

Location(s) of headers Location(s) of libs

Library names
libtest.so → -ltest

Input file(s)
Output fileCompiler options

https://linux.die.net/man/1/gcc
https://software.intel.com/en-us/compilers

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Compilers @ RRZE
§ Common compiler switches:

§ In many cases, the Intel compiler
§ produces „better“ code and often better performing
§ provides fallbacks for GCC flags (-fopenmp accepted by ICC)

§ CUDA compilers only available at nodes with GPUs

Meaning GCC Intel compilers
General optimization level -O1, -O2, -O3

(some vendor specific options like -Ofast)
Hardware feature flags -m like -mavx2 -x like -xCORE-AVX2
Compiler feature flag -f like -fopenmp -q like -qopenmp

Compile compile/get_cpuflags.c with GCC and run it
What is the widest SIMD the system supports?

(MMX → SSE → SSE2 → SSE3 → SSE4 → AVX → AVX2 → AVX512)

Compile compile/triad.c with recent GCC and ICC and …
What‘s the minimum runtime you can achieve on the compute node?

Single hardware thread? Do optimization flags help?
All hardware threads?

Remember: Copy folder to your home/workdir/…
cp -r ~unrz139/mucosim $HOME

128 bit vectors (2 doubles, 4 floats) 256 bit vectors
(4 doubles, 8 floats)

512 bit vectors
(8 doubles, 16 floats)

MuCoSim Introduction

PERFORMANCE and TIMING

15.11.2021 | MuCoSim Introduction | HPC@RRZE

How to measure performance?
§ Performance = WORK / TIME

§ WORK:
§ 1 : Time-to-solution, carefully define problem
§ Flops : Floating-point operations (specify single-prec. or dbl.-prec.)
§ Particles|LatticeUpdates|Whatever : Algorithm related work

§ TIME:
§ UNIX time command can be confusing! Use real time

Sometimes, time is a builtin, use /usr/bin/time

§ Best practice: Use high-resolution timers around region of interest

$ time <cmd>
<output>
real 0m0.008s
user 0m0.002s
sys 0m0.002s

15.11.2021 | MuCoSim Introduction | HPC@RRZE

How to measure performance? Inside applications

§ Check snippets folder for helpful headers
§ walltime.h: timestamp() returns the current time in seconds
§ cycletime.h: cyclestamp() returns the number of cycles since boot

§ For time measurements: endstamp - startstamp

§ Careful when measuring small intervals:
§ Might be below resolution!
§ walltime.h: resolution() to check the current timer

§ Check out test_times.c for example usage

MuCoSim Introduction

LIKWID

On emmy: Close interactive session and
open a new one with :likwid property

On testfront: Keep your session

15.11.2021 | MuCoSim Introduction | HPC@RRZE

What is LIKWID?
§ A toolset for performance-oriented developers/users

§ Get system topology
§ Place threads according system topology (affinity domains)
§ Run micro-benchmarks to check system features
§ Measure hardware events during application runs
§ Determine energy consumption
§ Manipulate CPU/Uncore frequencies and prefetchers

https://github.com/RRZE-HPC/likwid/wiki

15.11.2021 | MuCoSim Introduction | HPC@RRZE

How to use LIKWID on FAU systems
§ LIKWID is available in the module system
$ module avail likwid

§ Always use newest version (currently 5.2.0)
§ Disabled on production systems:

§ likwid-setFrequencies
§ likwid-features

§ Module sets environment variables (module show likwid/<version>):
LIKWID_LIBDIR, LIKWID_INCDIR

gcc –I$LIKWID_INCDIR –LLIKWID_LIBDIR … -llikwid

Changes settings for all
following jobs on that system!
Reset yourself at end of job

15.11.2021 | MuCoSim Introduction | HPC@RRZE

System topology with LIKWID
$ likwid-topology -g

§ Thread topology
§ Cache topology
§ NUMA topology
§ Graphical topology

Socket 0: Intel Xeon CPU E5-2660 v2 @ 2.20GHz)
+---+
| +--------+ +--------+ +--------+ +-+ +--------+ +--------+ +--------+ |
| | 0 20 | | 1 21 | | 2 22 | | | | 7 27 | | 8 28 | | 9 29 | |
| +--------+ +--------+ +--------+ +-+ +--------+ +--------+ +--------+ |
| +--------+ +--------+ +--------+ +-+ +--------+ +--------+ +--------+ |
| | 32 kB | | 32 kB | | 32 kB | | | | 32 kB | | 32 kB | | 32 kB | |
| +--------+ +--------+ +--------+ +-+ +--------+ +--------+ +--------+ |
| +--------+ +--------+ +--------+ +-+ +--------+ +--------+ +--------+ |
| | 256 kB | | 256 kB | | 256 kB | | | | 256 kB | | 256 kB | | 256 kB | |
| +--------+ +--------+ +--------+ +-+ +--------+ +--------+ +--------+ |
| +---+ |
| | 25 MB | |
| +---+ |
+---+

15.11.2021 | MuCoSim Introduction | HPC@RRZE

System topology with LIKWID
$ likwid-topology
CPU name: Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz

Hardware Thread Topology

Sockets: 2
Cores per socket: 18
Threads per core: 2
[…]

NUMA Topology

NUMA domains: 4

SMT active!

ClusterOnDie / SNC active (NUMA > Sockets)

Product name

15.11.2021 | MuCoSim Introduction | HPC@RRZE

System topology with LIKWID
$ likwid-topology

Cache Topology

Level: 1
Size: 32 kB
Cache groups: (0 36) (1 37) (2 38) …

Level: 2
Size: 256 kB
Cache groups: (0 36) (1 37) (2 38) …

Level: 3
Size: 22 MB
Cache groups: (0 36 1 37 2 38 3 39 4 40 5 41 6 42 7 43 8 44

L1 Cache

Cache size Hardware threads sharing
a cache

likwid-topology –c:
more infos about caches
like cache line size,
associativity, …

How many HW threads does your compute node provide?

Does you system has CoD/SNC active?

Is SMT active?

What‘s the L3 cache size?

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Task Affinity
§ OS task scheduler places tasks (=processes/threads) on HW threads
§ OS scheduler moves tasks to different cores from time to time
§ STREAM benchmark:

This is how it
looks when you

saturate a shared
resource

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Task Affinity
§ Limiting set of possible HW threads per process/thread
§ There are several reasons for caring about affinity:

§ Eliminating performance variation
§ Making use of architectural features
§ Avoiding resource contention

§ Many tools/methods for affinity:
§ taskset: Limit set of HW threads (threads can be moved around)
§ sched.h: Application threads pin themselves
§ OpenMP/MPI-specific: Vendor-specific, often not portable
§ numactl: Limit application threads to NUMA domain (can be moved around)
§ likwid-pin

§ Choose what fits best! Remember to set thread count!

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Task Affinity - numactl
§ numactl -C <cpulist> <executable>

§ Same like taskset -> no real pinning!
§ numactl provides more features regarding memory allocation

§ Bind memory to specific NUMA domains (-m <nodelist>)
§ Interleave memory in specific NUMA domains (-i <nodelist>)

§ Some output functionality
(-s for current settings and -H for NUMA hardware inventory)

Commonly not the way to do CPU pinning! But the right way for memory pinning!

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Task Affinity - likwid-pin
§ Pin processes/threads without touching application code
§ Supports most threading solutions
§ Requirement: Application must be dynamically linked
§ Support for multiple CPU selection syntaxes:

§ Physical: 0,4,5 or 0,4-5 → CPUs with ID 0,4 and 5
§ Logical: S0:0-3 → First four phy. cores on Socket 0
§ Expression based: E:N:20:1:2 → 20 threads, one out of two

§ likwid-pin –c <cpusel> ./a.out

Skipping SMT
threadsCombine CPU selections with @

N: node
Sx: socket

My: NUMA domain
Cz: LLC

How many affinity domains does your system provide? (--help)

Compile pin/hello_pthread.c (-pthread)
Run it a few times, how often do threads share a CPU?

Pin hello_pthread (5 threads)

Pin hello_pthread to the first two physical HW threads of all sockets

What happens? Who wins?
OMP_NUM_THREADS=10 likwid-pin -c 0-4 ./hello_pthread

Run stream with 4 threads pinned differently (N:0-3, S0:0-1@S1:0-1).
What‘s the fastest CPU selection for triad?

Analysis of applications

MuCoSim Introduction

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Measurement techniques

§ Sampling

§ Tracing

§ Instrumentation

§ Profiling

Function A

Function B

Function A

Function A

Function B

Function A

Function A

Function B

Function A

Function A

Function B

Function A

§ Read state periodically

§ Follow the execution
path

§ Add read_state()
where desired

§ Create an overview
what happened

gprof, xray, perf, …

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Runtime profile - Find out hotspots in the code
§ Many tools available: gprof, xray, perf, …
§ For gprof build with –pg

§ Creates XML and tabular output files with fields:
§ Time and time share for function
§ Call and exit count
§ File and line of function

§ Run application like normal
§ Afterwards: gprof <exec> gmon.out

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Runtime profile

Time(%) Self (sec) Call count Function

44.52 2.47 100 triad()

25.96 1.44 100 add()

16.94 0.94 100 copy()

100.00 0.00 1 main()

So, how to restrict measurements to the triad() function?

Besides function runtime, how can we measure resource usage?

How often a function
was called

Inclusive timing Exclusive timing

Compile stream in runtime_profile with runtime profiling
(use *.c and include header path -I.)

Look at the hotspots in the code.
Can you name a reason for the runtime difference?

15.11.2021 | MuCoSim Introduction | HPC@RRZE

What is hardware performance monitoring?
Overview about HPM

§ Performance monitoring units (PMUs) at hardware level

§ Introduced for x86 with Intel Pentium (1994)

§ Originally used by CPU vendors for hardware validation

§ No additional CPU work to handle hardware events in PMUs

§ Accessing PMUs requires CPU work → Overhead

§ Limited number of counters per PMU (x86: 4 per unit)

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Hardware Performance Monitoring with LIKWID - likwid-perfctr

§ likwid-perfctr sets up system topology and perfmon
§ Setup, start, read and stop PMUs
§ Execute application on given CPU set (-C)
§ Evaluate counter values
likwid-perfctr –C 0 –g INST_RETIRED_ANY:FIXC0 <app>
§ LIKWID needs you to specify which counter runs which event
§ Combine multiple (event+counter)s with ‘,’
§ For advanced usage, the events can be enriched with options
threshold, invert, count_kernel, edge_detect, ...

15.11.2021 | MuCoSim Introduction | HPC@RRZE

LIKWID - HPM with likwid-perfctr
$ likwid-perfctr –C 0,1 –g L2_TRANS_L1D_WB:PMC0 ./app
+-----------------------+---------+--------------+--------------+
| Event | Counter | Core 0 | Core 1 |
+-----------------------+---------+--------------+--------------+
| Runtime (RDTSC) [s] | TSC | 2.573182e+00 | 2.573182e+00 |
| L2_TRANS_L1D_WB | PMC0 | 281176518 | 281240170 |
+-----------------------+---------+--------------+--------------+

§ Event names (in many cases) not intuitive
§ Events are architecture-specific
§ Some sound promising but return bad counts, others are broken
§ More interest in real metrics like volume of loaded/stored data

15.11.2021 | MuCoSim Introduction | HPC@RRZE

LIKWID - HPM with likwid-perfctr

§ LIKWID defines performance groups
≈ eventlist + derived metrics + documentation

§ List all groups: likwid-perfctr -a
$ likwid-perfctr -C 0,1 -g L2 ./app
+---------------------------------+-----------+-----------+

| Metric | Core 0 | Core 1 |
+---------------------------------+-----------+-----------+
Runtime (RDTSC) [s]	2.6439	2.6439
L2D load bandwidth [MBytes/s]	6744.8121	6743.6037
L2D load data volume [GBytes]	17.8325	17.8293
L2D evict bandwidth [MBytes/s]	3372.4061	3371.8019
L2D evict data volume [GBytes]	8.9163	8.9147

You can also define own
performance groups!

https://github.com/RRZE-HPC/likwid/wiki/likwid-perfctr

15.11.2021 | MuCoSim Introduction | HPC@RRZE

LIKWID - Performance groups
§ FLOPS_AVX: Packed AVX MFlops/s
§ FLOPS_DP: Double Precision MFlops/s
§ FLOPS_SP: Single Precision MFlops/s
§ DATA: Load to store ratio
§ L2: L2 cache bandwidth in MBytes/s
§ L3: L3 cache bandwidth in MBytes/s
§ MEM: Main memory bandwidth in MBytes/s
§ ENERGY: Power and Energy consumption
§ MEM_DP: Memory & DP FLOP/s & Energy
§ MEM_SP: Memory & SP FLOP/s & Energy

Overcounting on Intel
SandyBridge & IvyBridge. No
FLOPS_* groups on Intel
Haswell.

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Hardware Performance Monitoring with LIKWID - likwid-perfctr

§ $ likwid-perfctr –C 0,1 –g FLOPS_DP ./a.out
Measure DP FLOP/s of the whole application run of on CPUs 0, 1

§ $ likwid-perfctr –c 0,1 –g DATA ./a.out
Measure load/store ratio on CPUs 0,1. Application is not pinned!

§ $ likwid-perfctr –g MEM_DP –H
Get help for performance group MEM_DP

§ $ likwid-perfctr –e (| less)
List all events and counters, search with –E <searchstr>

Compile perfctr/triad.c
Measure the memory bandwidth (MEM)

from 1 to number of phys. cores per socket
At which core count does it saturate?

Compile perfctr/pi.c
Measure the FLOP rate from 4 to 10 processes on one socket

Does it have a saturation point?
How well is it vectorized? What is the max. vectorization ratio you can

achieve? Are all operations done with „best“ vectorization?

15.11.2021 | MuCoSim Introduction | HPC@RRZE

LIKWID - HPM of functions
§ LIKWID offers MarkerAPI for code region measurements

§ Compile with –DLIKWID_PERFMON

#include <likwid-marker.h>
LIKWID_MARKER_INIT; // in serial region
LIKWID_MARKER_REGISTER(“Compute”); // in parallel region

LIKWID_MARKER_START(“Compute”);
<code>
LIKWID_MARKER_STOP(“Compute”);

LIKWID_MARKER_CLOSE; // in serial region

Reduces startup
overhead

Multiple regions and
nesting allowed

Older version use
<likwid.h>

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Add marker API to code (restructure loops)

#pragma omp parallel
{
LIKWID_MARKER_START(“Compute”);
#pragma omp for

<loop>

LIKWID_MARKER_STOP(“Compute”);
}

#pragma omp parallel for
<loop>

15.11.2021 | MuCoSim Introduction | HPC@RRZE

Add marker API to code (closed-source library calls)

some_parallel_f()

#pragma omp parallel
{

LIKWID_MARKER_START(“foo”)
}
some_parallel_f()
#pragma omp parallel
{

LIKWID_MARKER_STOP(“foo”)
}

15.11.2021 | MuCoSim Introduction | HPC@RRZE

LIKWID - HPM of functions
Compile @ RRZE:
$CC –DLIKWID_PERFMON $LIKWID_INC $LIKWID_LIB code.c –o code –llikwid

Run:
likwid-perfctr –C <cpustr> -g <group> -m ./a.out

Use capital C
MarkerAPI requires pinned threads

Tells likwid-perfctr to
use MarkerAPI mode

Defined by LIKWID module at RRZE

Copy perfctr/pi.c to marker/pi.c
Add MarkerAPI calls around loop for each OpenMP thread & compile
Measure the FLOP rate from 4 to number of phys. cores per socket

Compile marker/stream.c (use -I. *.c)
What are the read and write memory bandwidths of each hotspot for 4

threads?
Compare results to the application output of stream.

Is there a difference and if yes, why?

Thomas.Gruber@fau.de

Thank you for your attention!
Erlangen National High Performance Computing Center (NHR@FAU)
Martensstraße 1, 91058 Erlangen
http://www.rrze.fau.de

mailto:Thomas.Roehl@fau.de

