FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

Erlangen Regional
Computing Center

“Simple” performance modeling:
The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

77
y : / - f ‘\
& ¢ p
» | 4 \ (
(] oy f
/ / ¢ {

R.W. Hockney and I.J. Curington: f;,,: A parameter to characterize memory and communication bottlenecks.
Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schénauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

Performance Modeling — Motivation =

FRIEDRICH-ALEXANDER
UNIVERSITAT _

Maximum floating point (FP) performance: / Clock Speed
— FP Flop
Ppeak = Ncore * nsyper "NpEma - nSIMQ) f [S]

1 Superscalarity FMA factor SIMD factor

! I

! I

! I

|

| | 1$OMP PARALLEL DO
1| L1D L1D L1D L1D L1D L1D L1D L1D —
! ! T~ dok=1, 400
|

! |

! I

! I

L2 L2 L2 L2 o L2 L2 L2 L2 doj =1, 400; doi =1, 400
- y(i,j, k)= b*(x(i-1,3,k)+ x(i+1l,j,k)+ x(i,3J-1,k)+
| Memory Interface | f? x(i,3+1,k)+ x(1,3,k-1)+ x(i,3,k+1))
S --F-F-F---"--=--=-==-=-u enddo; enddo
u enddo
‘/////’ 1$OMP END PARALLEL DO
[Memory }

\

Maximum main memory bandwidth

Byt
bs = Ncpannel -8 Byte - f | > e]

S

A simple performance model for loops

Simplistic view of the hardware:

Execution units
max. performance

Data path,
bandwidth bg
- Unit: byte/s

Data source/sink

Simplistic view of the software:

! may be multiple levels
do i = 1,<sufficient>
<complicated stuff doing

causing
transfer>

Computational intensity

N
I=5

—> Unit: flop/byte

Roofline Model

FRIEDRICH-ALEXANDER
IIIIIIIII

FRIEDRICH-ALEXANDER
IIIIIIIIIII

Naive Roofline Model =

How fast can tasks be processed? P [flop/s]

The bottleneck is either
The execution of work: Ppeak [flop/s]

The data path: I - bg [flop/byte x byte/s]

P =min(P ..k, [« bs)

(O]
This is the “Naive Roofline Model” £ P
O ea
High intensity: P limited by execution 5 peak
Low intensity: P limited by data transfer %
<

Best use of resources

Roofline is an “optimistic” model —
(“|ight speed”) Intensity

Roofline Model

FRIEDRICH-ALEXANDER
IIIIIIIIIII

The Roofline Model in computing — Basics =

Apply the naive Roofline model in practice

Machine parameter #1: Peak performance: Ppeak E‘
Machine parameter #2: Memory bandwidth: bg E]
Code characteristic: Computational intensity: I E]
8 X I
Machine propertieS: 7 Ppeak
P = 2.5GF/s
p =4E z T ! double s=0, al[];
peak S - . ' for (i=0; i<N; ++i) {
s L N ! s = s + a[i] * a[i];}
GB £ |
bS — 10? £ osk E |
_2F _ F
il E | 1_|83_o.25 /g
| | | R— |

9 —

Application property: [/ ve4 132 116 18 1/4 12 1

Computational intensity / [F/B]

Roofline Model 5

Code balance: more examples =22 £ oo

double a[], b[]; B: = 24B / 1F = 24 B/F
for (i=0; i<N; ++i) {

a[i] = a[i] + b[i];} /1=0.042 F/B
double a[], bl[]; Bc =24B/ 2F = 12 B/F

for (i=0; i<N; ++i) {

ali] = a[i]+w I=0.083 F/B

Scalar — can be kept in register

float s=0, a[l; B:.=4B/2F =2 B/F
for (i=0; i<N; ++i) {
()= s + a[i] * a[il;} I=0.5F/B
Scalar — can be kept in register
float s=0, a[], b[]; B-. =8B /2F =4 B/F
for (i=0; i<N; ++i) {
()= s + a[i] * b[i];} I=0.25F/B

Scalar — can be kept in register

Roofline Model

FRIEDRICH-ALEXANDER
IIIIIIIIIII

Prerequisites for the Roofline Model =

The roofline formalism is based on some (crucial) prerequisites:

There is a clear concept of “work” vs. “traffic”
“‘work” = flops, updates, iterations...
“traffic” = required data to do “work”

Machine input parameters: Peak Performance and Peak Bandwidth
Application/kernel is expected to achieve is limits theoretically

Assumptions behind the model:

Data transfer and core execution overlap perfectly!
Either the limit is core execution or it is data transfer

Slowest limiting factor “wins”; all others are assumed
to have no impact

Latency effects are ignored, i.e., perfect streaming mode
“‘Steady-state” code execution (no wind-up/-down effects)

Roofline Model

FRIEDRICH-ALEXANDER
UNIVERSITAT

The Roofline Model in computing — Basics =

Compare capabilities of different machines:

| 1 | 1 : 1 I IF 1 LI I I b I d 1 I I
- : : _ memory-boun :
i ! " on all architectures : i Assumlng double
2 =i J .
= S B | T™~—u precision —
Z 1000k 5 g I — for single precision:
C o N I ; P 2> 2-P
% F! 21 1 peak peak
Q™ 1 | I
b
o
3 | (I
& 100 : : =
=
o i | == NVIDIA P100 I
-4 Intel Knights Landing
5] i = 2x Intel Haswell I Icompute-bound >
~ | lon all architectures -
(|
10F , , I =
:I | 1 i 1 1 :I 1] 1| I l 1l ' I .

0.1 | 10
Computational Intensity [[F/B]

Roofline always provides upper bound — but is it realistic?

If code is not able to reach this limit (e.g., contains add operations
only), machine parameters need to be redefined (e.9., Pyeax 2 Ppear/2)

Roofline Model

A refined Roofline Model

FRIEDRICH-ALEXANDER
IIIIIIIIIII

P...x = Applicable peak performance of a loop, assuming that data
comes from the level 1 cache (this is not necessarily P,..)
-2 e.qg., P,. =176 GFlop/s

| = Computational intensity (“work” per byte transferred) over the
slowest data path utilized (code balance B; = /)
- e.g., 1 =0.167 Flop/Byte - B; = 6 Byte/Flop

bs = Applicable (saturated) peak bandwidth of the slowest data path

utilized (measure attainable bandwidth using, e.g. STREAM)

- e.g., bs = 56 GByte/s

Expected performance:

P = min(P,.x, I - bg) = min (Pm

A

ax’ o
B¢

[Byte/s]

[Byte/Flop]

Roofline Model

Refined Roofline model: graphical representation

FRIEDRICH-ALEXANDER
UNIVERSITAT _

Multiple ceilings may apply

= Different bandwidths /data paths
—> different inclined ceilings

= Different P,
—> different flat ceilings

In fact, P, ., should always come

from code analysis; generic
ceilings are usually impossible
to attain

10

—
o
no

Performance P [Gflop/s]

—
o

Computational intensity / [flop/byte]

1 LI ||||I 1 1 LI ||||I 1 1 LI ||||I 1 1 1
i peak 1
’ R4 i
* e
3 & ' E
- @, no SIMD 1
- Sl Al REE :
[N]
o A A
NS : no ADD, no SIMD 1
V4 ./$
7
, 7? _
-/ a E
4 |
L ./, ,&QJ .
| lll ||||I | | 1 | ||||I | |] | ||||I | | |
10 10° 10’

Roofline Model

10

Estimating per-core P, on a given architecture £5&s &gy

Haswell/Broadwell port scheduler model:

Instruction reorder
buffer

//\\

ALU ALU LOAD LOAD STORE ALU ALU AGU

'FADD 32b1‘ 32b1‘ 32b¢ JUMP

Retire 4 pops

Haswell/Broadwell

Roofline Model 11

Example: P, of vector triad on Haswell =

FRIEDRICH-ALEXANDER
IIIIIIIIIII

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {
A[i] = B[1] + C[i] * D[i];

}

Minimum number of cycles to process one AVX-vectorized iteration
(equivalent to 4 scalar iterations) on one core?

- Assuming full throughput:

Cycle 1: LOAD + LOAD + STORE
Cycle 2: LOAD + LOAD + FMA + FMA
Cycle 3: LOAD + LOAD + STORE Answer: 1.5 cycles

Roofline Model

12

Example: P, of vector triad on Haswell@2.3 =22 £ oo

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {
A[i] = B[1] + C[i] * D[i];

}

What is the performance in GFlops/s per core and the bandwidth in
GBytes/s?

120007_
I See also

One AVX iteration (1.5 cycles) does 4 x 2 = 8 flops:
http://tiny.cc/IntelPort7

8000

8 flops Gflops
2310 cy/s - P> _ 19, 27 2P

Performance [MFlop/s]

1.5cy S e

Gflops bytes Gbyte -
12.27 - 16 = 196 - N
S flop S T

Roofline Model

http://tiny.cc/IntelPort7

FRIEDRICH-ALEXANDER
IIIIIIIIIII

P...x + bandwidth limitations: The vector triad =

Vectortriad A(:)=B(:)+C(:)*D(:) on a 2.3 GHz 14-core Haswell chip

Consider full chip (14 cores):

Memory bandwidth: bg = 50 GB/s

Code balance (incl. write allocate):
B. = (4+1) Words / 2 Flops = 20 B/F > I=0.05 F/B

2> 1- bg=2.5 GF/s (0.5% of peak performance)

Poeax | core = 36.8 Gflop/s ((8+8) Flops/cy x 2.3 GHz)
P | core = 12.27 Gflop/s (see prev. slide)

2 Pax =14 7 12.27 Gflop/s =172 Gflop/s (33% peak)

P = min(Py.x, I - bg) = min(172,2.5) GFlop/s = 2.5 GFlop/s

Roofline Model

14

Tracking code optimizations in the Roofline Model =

FRIEDRICH-ALEXANDER
IIIIIIIIIII

Hit the BW bottleneck by — T — T
good serial code

10

Increase intensity to make
better use of BW
bottleneck

o
N

Increase intensity and go
from memory bound to
core bound

Performance P [Gflop/s]

—
o
T T
|||||||I

Hit the core bottleneck by
good serial code

1 L1 111 II 1 1 L1 111 II 1 1 L1 111 II 1 1 1
10" 10° 10’
Computational intensity / [flop/byte]

Roofline Model 16

Factors to consider in the Roofline Model =

FRIEDRICH-ALEXANDER
UNIVERSITAT

Bandwidth-bound (simple case) Core-bound (may be complex)

1. Accurate traffic calculation (write- 1. Multiple bottlenecks: LD/ST,
allocate, strided access, ...) arithmetic, pipelines, SIMD,
2. Practical # theoretical BW limits execution ports
3. Saturation effects > consider full 2. Limitis linear in # of cores
socket only B S
g Stencil Update ! ! / .
8 ("Jacobi") i 4
16— E wl i L]
8 : /] —
%w 4 1 2 3 4 s 6 70 8 ' a
3 3
a 1 — a =
0.5 - 0.5~
0.25 — 025
/64 1/32 1/16 1/8 1/4 1|/2 Il ’é 1/64 ll|32 ll[l6 118 114 1/2 1 2

Computational intensity [F/B] Computational intensity [F/B]

Roofline Model

17

Shortcomings of the roofline model =

FRIEDRICH-ALEXANDER
UNIVERSITAT

Saturation effects in multicore chips are not explained
Reason: “saturation assumption”
Cache line transfers and core execution do sometimes not overlap perfectly
It is not sufficient to measure single-core STREAM to make it work

Only increased “pressure” on the memory

interface can saturate the bus

- need more cores! -
In-cache performance is not correctly
predicted

A(:)=B(:)+C(:)*D(:)

The ECM performance model gives more
insight:

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring
performance and power properties of modern multicore chips
via simple machine models. Concurrency and Computation: i

Practice and Experience (2013).
DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

p—
i
[
|

Memory bandwidth [GB/s]

._.
-]
|
|

N
[
|

e

R
=
whk
-
w
o -
=
o0

Roofline Model 18

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

