
Modern compute node architecture (multicore)

An introduction for software developers

2Basic Node Architecture

Multi-core today: Intel Xeon Ice Lake (2021)

▪ Xeon “Ice Lake SP” (Platinum/Gold/Silver/Bronze):

Up to 40 cores running at 2+ GHz (+ “Turbo Mode” 3.7 GHz),

▪ Simultaneous Multithreading

→ reports as 80-way chip

▪ ~15 Billion Transistors / ~10 nm / up to 270 W

▪ Die size: up to ~600 mm2

2-socket server

.

Optional: “Sub-NUMA

Clustering” (SNC) mode

https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595

June 2022

https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595

A deeper dive into core architecture

4Basic Node Architecture

Stored Program Computer

C
P

U

Control Unit

Execution Unit

Load-Store Unit

M
e

m
o

ry

Program code Binary data

f3 0f 58 04

82 48 83 c0

39 77 0f 58

f3 0f 58 04

82 48 83 c0

39 77 0f 58

addss

add

cmp

ja

mulpd

add

f3 0f 58 04

82 48 83 c0

39 77 0f 58

f3 0f 58 04

82 48 83 c0

39 77 0f 58

f3 0f 58 04

82 48 83 c0

39 77 0f 58

f3 0f 58 04

82 48 83 c0

39 77 0f 58

1.056

1000

.label

2983

-493.98

true

Primary work Secondary work

1 Instruction execution

(c) NHR@FAU 2021

2 Data transfers

June 2022

5Basic Node Architecture

General-purpose cache based microprocessor core

▪ Implements “Stored Program Computer”

concept

▪ Similar designs on all modern systems

▪ (Still) multiple potential bottlenecks

The clock cycle is the “heartbeat” of the core

Modern CPU core

(c) NHR@FAU 2021 June 2022

Pipelining, Superscalarity, SIMD

In-core features

7Basic Node Architecture

5-stage multiplication pipeline: A(i)=B(i)*C(i) ; i=1,...,N

Wind-up/-down phases: Empty pipeline stages

First result is available after 5 cycles (=latency of pipeline)!

(c) NHR@FAU 2021 June 2022

8Basic Node Architecture

Instruction-level parallelism: Superscalar execution

Multiple units enable use of Instruction Level Parallelism (ILP):

Instruction stream is “parallelized” on the fly

▪ Issuing m concurrent instructions per cycle: m-way superscalar

▪ Modern processors are 3- to 6-way superscalar &

can perform 2 floating point instructions per cycles

4-way “superscalar”

t

Fetch Instruction 4

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 3

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 2

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 5

from L1I

Decode

Instruction 5

Decode

Instruction 9

Execute

Instruction 5

Fetch Instruction 9

from L1I

Fetch Instruction 13

from L1I

LOAD

STORE

MULT

ADD

Example:

(c) NHR@FAU 2021 June 2022

9Basic Node Architecture

Superscalar/OoO execution and steady state

Instruction execution

Hardware takes care of executing instructions as soon as their operands are available:

Out-Of-Order (OOO) execution

for(int i=1; i<n; ++i)

a[i] = a[i] + c;

LOAD

(Latency: 4 cy) ADD

(Latency: 3cy)

STORE

(Latency: 2 cy)

“Steady state:”

3 instructions/cy

(“3-way superscalar execution”)

Instructions Per Cycle: IPC=3

Cycles Per Instruction: CPI=0.33

(c) NHR@FAU 2021

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Cycle 9

Cycle 10

Cycle 11

Cycle 12

Cycle 13

Cycle 14

Cycle 15

Cycle 16

…

load a[1]

load a[2]

load a[3]

load a[4]

load a[5] add a[1]=c,a[1]

load a[6] add a[2]=c,a[2]

load a[7] add a[3]=c,a[3]

load a[8] add a[4]=c,a[4] store a[1]

load a[9] add a[5]=c,a[5] store a[2]

load a[10] add a[6]=c,a[6] store a[3]

load a[11] add a[7]=c,a[7] store a[4]

load a[12] add a[8]=c,a[8] store a[5]

load a[13] add a[9]=c,a[9] store a[6]

load a[14] add a[10]=c,a[10] store a[7]

load a[15] add a[11]=c,a[11] store a[8]

load a[16] add a[12]=c,a[12] store a[10]

… … …

June 2022

10Basic Node Architecture

SIMD processing

▪ Single Instruction Multiple Data (SIMD) operations allow the execution of the same operation on “wide”

registers from a single instruction

▪ x86 SIMD instruction sets:

▪ SSE: register width = 128 Bit → 2 double precision floating point operands

▪ AVX: register width = 256 Bit → 4 double precision floating point operands

▪ AVX-512: … you guessed it!

▪ Adding two registers holding double precision floating point operands:

A
[0

]
A

[1
]

A
[2

]
A

[3
]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

2
5

6
 b

it

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] →R2

(c) NHR@FAU 2021 June 2022

11Basic Node Architecture

Scalar (non-SIMD) execution

double *A, *B, *C;

for (int j=0; j<size; j++){

A[j] = B[j] + C[j];

}
Scalar execution

Register width:

▪ 1 operand (scalar)

= +

(c) NHR@FAU 2021 June 2022

12Basic Node Architecture

Data-parallel (SIMD) execution

Register widths (double prec.):

• 1 operand

• 2 operands (SSE)

• 4 operands (AVX)

• 8 operands (AVX512)

SIMD execution

= +

double *A, *B, *C;

for (int j=0; j<size; j++){

A[j] = B[j] + C[j];

}

(c) NHR@FAU 2021 June 2022

13Basic Node Architecture

SIMD by compiler

Steps (done by the compiler) for “SIMD processing”

for(int i=0; i<n;i++)

C[i]=A[i]+B[i];

for(int i=0; i<n;i+=4){

C[i] =A[i] +B[i];

C[i+1]=A[i+1]+B[i+1];

C[i+2]=A[i+2]+B[i+2];

C[i+3]=A[i+3]+B[i+3];}

//remainder loop omitted

LABEL1:

vmovupd xmm0 A[i]

vmovupd xmm1 B[i]

vaddpd xmm0,xmm1 → xmm2

vmovupd xmm2 → C[i]

inc i,4

cmp i,N

jb LABEL1

//remainder loop omitted

“Loop unrolling”

Load 256 bits starting from address of A[i] to register xmm0

Add the corresponding 64-bit entries in xmm0 and xmm1 and put the

4 results into xmm2

Store xmm2(256 bit) to address

starting at C[i]

This

should not

be done

by hand!

(c) NHR@FAU 2021 June 2022

Memory Hierarchy

15Basic Node Architecture

The “DRAM gap”

SSE2

AVX

AVX512

FMA

DP peak performance and peak main memory bandwidth for a single Intel processor (chip)

Main memory access speed not

sufficient to keep CPU busy…

→ Introduce fast on-chip caches,

holding copies of recently used data

items

Approx.

15 F/B

(c) NHR@FAU 2021 June 2022

16Basic Node Architecture

Memory hierarchy

You can either build a

small and fast memory

or a

large and slow memory.

Purpose of many optimizations is to load data from fast memory layers.

Memory

L3 Cache

Disk

L2 Cache

L1 Cache10-9

10-8

10-7

10-4

Latency [s]

1012

1011

109

Bandwidth

[bytes/s]

Core

(c) NHR@FAU 2021 June 2022

17Basic Node Architecture

Data transfers in a memory hiararchy

Caches help with getting instructions and data to the CPU “fast”

How does data travel from memory to the CPU and back?

▪ Remember: Caches are organized in cache lines (e.g., 64 bytes)

▪ Only complete cache lines are transferred between memory

hierarchy levels (except registers)

▪ Registers can only “talk” to the L1 cache

▪ MISS: Load or store instruction does not find the data in acache

level

→ CL transfer required

▪ Example: Array copy A(:)=C(:)

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1)MISS

write

allocate

evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl) HIT

C(:) A(:)

(c) NHR@FAU 2021 June 2022

18Basic Node Architecture

The parallel vector triad benchmark

A “swiss army knife” for microbenchmarking

double striad_seq(double* restrict a, double* restrict b,

double* restrict c, double* restrict d, int N, int iter) {

double S, E;

S = getTimeStamp();

for(int j = 0; j < iter; j++) {

#pragma vector aligned

for (int i = 0; i < N; i++) {

a[i] = b[i] + d[i] * c[i];

}

if (a[N/2] > 2000) printf("Ai = %f\n",a[N/2]);

}

E = getTimeStamp();

return E-S;

}

1. Report performance for different N, choose iter so that accurate time

measurement is possible

2. This kernel is limited by data transfer performance for all memory levels on

all architectures, ever!

Prevents smarty-pants

compilers from doing

“clever” stuff

Required to get optimal

code with Intel compiler!

(c) NHR@FAU 2021 June 2022

L1

32kB

L2

256kB

L3

25MB

19Basic Node Architecture

Schönauer triad on one IvyBridge core 2.2GHz

(c) NHR@FAU 2021 June 2022

Memory bandwidth scaling

Node topology and performance

Multicore Chips

21Basic Node Architecture

Node topology of HPC systems

© Intel

~ 8 billion

transistors in

500 mm2

Registers

L1 cache

L2 cache

Core

core

core

core

core

core

core

core

core

core

core

core

core

…

Chip (many cores)

S
o
c
k
e
t

M
e
m

o
ry

M
e
m

o
ry

S
o
c
k
e
t

N
o

d
e

(2
 s

o
c
k
e
ts

,

p
o
s
s
ib

ly
 m

u
ltip

le
 c

h
ip

s

p
e

r s
o
c
k
e
t)

Pipelines

L3 cache

Potential scalability

bottlenecks

(c) NHR@FAU 2021 June 2022

22Basic Node Architecture

Putting the cores & caches together

AMD Epyc 7742 64-Core Processor («Rome»)

▪ Core features:

▪ Two-way SMT

▪ Two 256-bit SIMD FMA units (AVX2)

→16 flops/cycle

▪ 32 KiB L1 data cache per core

▪ 512 KiB L2 cache per core

▪ 64 cores per socket hierarchically built up from

▪ 16 CCX with 4 cores and 16 MiB of L3 cache

▪ 2 CCX form 1 CCD (silicon die)

▪ 8 CCDs connected to IO device “Infinity Fabric” (memory controller & PCIe)

▪ 8 channels of DDR4-3200 per IO device

▪ MemBW: 8 ch x 8 byte x 3.2 GHz = 204.8 GB/s

▪ ccNUMA-feature (Boot time option):

▪ Node Per Socket (NPS)=1 , 2 or 4

▪ NPS=4 → 4 ccNUMA domains

Socket

(c) NHR@FAU 2021 June 2022

23Basic Node Architecture

Parallelism in a modern compute node

Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

Parallel resources:

▪ Execution/SIMD units

▪ Cores

▪ Inner cache levels

▪ Sockets / ccNUMA domains

▪ Multiple accelerators

Shared resources:

▪ Outer cache level per socket

▪ Memory bus per socket

▪ Intersocket link

▪ PCIe bus(es)

▪ Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

(c) NHR@FAU 2021 June 2022

24Basic Node Architecture

Scalable and saturating behavior

Clearly distinguish between “saturating” and “scalable” performance on the chip level

One of the most important performance signatures

shared resources
may show
saturating
performance

parallel resources
show
scalable
performance

(c) NHR@FAU 2021 June 2022

25Basic Node Architecture

Conclusions about architecture

▪ Performance is a result of

▪ How many instructions you require to implement an algorithm

▪ How efficiently those instructions are executed on a processor

▪ Runtime contribution of the triggered data transfers

▪ Modern computer architecture has a rich “topology”

▪ Node-level hardware parallelism takes many forms

▪ Sockets/devices – CPU: 1-4 or more

▪ Cores – moderate/large (CPU: 4-64)

▪ SIMD – moderate (CPU: 2-16)

▪ Superscalarity (CPU: 2-6)

▪ Performance of programs is sensitive to architecture

▪ “Performance portability” is a tough goal to achieve

(c) NHR@FAU 2021 June 2022

