
“Simple” performance modeling:

The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

Analytic white-box performance models

An analytic white-box performance model is a simplified

mathematical description of the hardware and its interaction

with software. It is able to predict the runtime/performance of

code from “first principles.”

June 2022Roofline Model 2

June 2022 3Roofline Model

A simple performance model for loops

Simplistic view of the hardware:

! may be multiple levels

do i = 1,<sufficient>

<complicated stuff doing

N flops causing

V bytes of data transfer>

enddo

Execution units

max. performance

𝑷𝒑𝒆𝒂𝒌

Data source/sink

Data path,

bandwidth 𝒃𝑺
→ Unit: byte/s

Simplistic view of the software:

Computational intensity 𝑰 =
𝑵

𝑽

→ Unit: flop/byte

June 2022 4Roofline Model

Naïve Roofline Model

How fast can tasks be processed? 𝑷 [flop/s]

The bottleneck is either

▪ The execution of work: 𝑃peak [flop/s]

▪ The data path: 𝐼 ∙ 𝑏𝑆 [flop/byte x byte/s]

This is the “Naïve Roofline Model”

▪ High intensity: P limited by execution

▪ Low intensity: P limited by data transfer

▪ “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆:

Best use of resources

▪ Roofline is an “optimistic” model

(think “light speed”)

𝑃 = min(𝑃peak, 𝐼 ∙ 𝑏𝑆)

Intensity

P
e

rf
o

rm
a

n
c
e

Ppeak

June 2022 5Roofline Model

The Roofline Model in computing – Basics

Machine properties:

𝑷𝒑𝒆𝒂𝒌 = 4
GF

s

𝒃𝑺 = 10
GB

s

Application property: I

double s=0, a[];

for(i=0; i<N; ++i) {

s = s + a[i] * a[i];}

𝑃 = 2.5 GF/s

𝐼 =
2 𝐹

8 𝐵
= 0.25 Τ𝐹 𝐵

Apply the naive Roofline model in practice

▪ Machine parameter #1: Peak performance: 𝑃𝑝𝑒𝑎𝑘
𝐹

𝑠

▪ Machine parameter #2: Memory bandwidth: 𝑏𝑆
𝐵

𝑠

▪ Code characteristic: Computational intensity: 𝐼
𝐹

𝐵

Machine model

Application model

June 2022 6Roofline Model

Prerequisites for the Roofline Model

▪ Data transfer and core execution overlap perfectly!

▪ Either the limit is core execution or it is data transfer

▪ Slowest limiting factor “wins”; all others are assumed

to have no impact

▪ If two bottlenecks are “close,” no interaction is assumed

▪ Data access latency is ignored, i.e. perfect streaming mode

▪ Achievable bandwidth is the limit

▪ Chip must be able to saturate the bandwidth bottleneck(s)

▪ Always model the full chip

June 2022 7Roofline Model

Refined Roofline model: graphical representation

Multiple ceilings may apply

▪ Different bandwidths / data paths

→ different inclined ceilings

▪ Different Pmax

→ different flat ceilings

In fact, Pmax should always come from

code analysis; generic ceilings are

usually impossible to attain

June 2022 8Roofline Model

A refined Roofline Model

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks.

Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

1. Pmax = Applicable peak performance of a loop, assuming that data comes from the

level 1 cache (this is not necessarily Ppeak)

→ e.g., Pmax = 176 GFlop/s

2. I = Computational intensity (“work” per byte transferred) over the slowest data path

utilized (code balance BC = I -1)

→ e.g., I = 0.167 Flop/Byte → BC = 6 Byte/Flop

3. bS = Applicable (saturated) peak bandwidth of the slowest data path utilized

→ e.g., bS = 56 GByte/s (as measured with suitable benchmark)

Performance limit:

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 𝑃max,
𝑏𝑆
𝐵𝐶

[Byte/s]

[Byte/Flop]

“F
lo

p
”

is
 n

o
t
th

e
 o

n
ly

u
s
e
fu

l
u
n
it
 o

f
w

o
rk

!

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

June 2022 9Roofline Model

Factors to consider in the Roofline Model

Bandwidth-bound (simple case)
1. Accurate traffic calculation (write-

allocate, strided access, …)

2. Practical ≠ theoretical BW limits

3. Saturation effects → consider full

socket only

Core-bound (may be complex)
1. Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,

execution ports

2. Limit is linear in # of cores

June 2022 10Roofline Model

Shortcomings of the roofline model

▪ Saturation effects in multicore chips are not explained

▪ Reason: “saturation assumption”

▪ Cache line transfers and core execution do sometimes not overlap perfectly

▪ It is not sufficient to measure single-core STREAM to make it work

▪ Only increased “pressure” on the memory

interface can saturate the bus

→ need more cores!

▪ In-cache performance is not accurately

predicted

▪ The ECM performance model gives more

insight:

A(:)=B(:)+C(:)*D(:)

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance and power properties of modern multicore chips via simple machine

models. Concurrency and Computation: Practice and Experience (2013).

DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

June 2022 11Roofline Model

Hardware features of (some) Intel Xeon processors

Microarchitecture Ivy Bridge EP Broadwell EP Cascade Lake SP Ice Lake SP

Introduced 09/2013 03/2016 04/2019 06/2021

Cores ≤ 12 ≤ 22 ≤ 28 ≤ 40

LD/ST throughput per cy:

AVX(2), AVX512 1 LD + ½ ST
2 LD + 1 ST 2 LD + 1 ST 2 LD + 1 ST

SSE/scalar 2 LD || 1 LD & 1 ST

ADD throughput 1 / cy 1 / cy 2 / cy 2 / cy

MUL throughput 1 / cy 2 / cy 2 / cy 2 / cy

FMA throughput N/A 2 / cy 2 / cy 2 / cy

L1-L2 data bus 32 B/cy 64 B/cy 64 B/cy 64 B/cy

L2-L3 data bus 32 B/cy 32 B/cy 16+16 B/cy 16+16 B/cy

L1/L2 per core 32 KiB / 256 KiB 32 KiB / 256 KiB 32 KiB / 1 MiB 48 KiB / 1.25 MiB

LLC 2.5 MiB/core
inclusive

2.5 MiB/core
inclusive

1.375 MiB/core
exclusive/victim

1.5 MiB/core
exclusive/victim

Memory 4ch DDR3 4ch DDR3 6ch DDR4 8ch DDR4

Memory BW (meas.) ~ 48 GB/s ~ 62 GB/s ~ 115 GB/s ~ 160 GB/s

S
o

u
rc

e
:

h
tt

p
s
:/
/s

o
ft
w

a
re

.i
n
te

l.
c
o

m
/c

o
n
te

n
t/
w

w
w

/u
s
/e

n
/d

e
v
e

lo
p

/d
o
w

n
lo

a
d

/i

n
te

l-
6
4
-a

n
d
-i
a
-3

2
-a

rc
h

it
e

c
tu

re
s
-o

p
ti
m

iz
a
ti
o
n

-r
e

fe
re

n
c
e
-

m
a

n
u

a
l.
h

tm
l

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html

June 2022 12Roofline Model

Estimating per-core Pmax on a given architecture

Haswell/Broadwell port scheduler model:

Port 0 Port 1 Port 5Port 2 Port 3 Port 4 Port 6 Port 7

ALU ALU ALU

FMA FMA FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 μops

32b 32b 32b

AGU

Intel Haswell/Broadwell

FADD

ALU

JUMP

Instruction reorder buffer

June 2022 13Roofline Model

Example: Pmax of vector triad on Haswell/Broadwell

Assembly code (AVX2+FMA, no additional unrolling):

Iterations are

independent →

throughput

assumption justified!

Best-case execution

time?

..B2.9:

vmovupd ymm2, [rdx+rax*8] # LOAD

vmovupd ymm1, [r12+rax*8] # LOAD

vfmadd213pd ymm1, ymm2, [rbx+rax*8] # LOAD+FMA

vmovupd [rdi+rax*8], ymm2 # STORE

add rax,4

cmp rax,r11

jb ..B2.9

remainder loop omitted

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i];

}

June 2022 14Roofline Model

Example: Pmax of vector triad on Haswell/Broadwell

Minimum number of cycles to process one AVX-vectorized iteration

(equivalent to 4 scalar iterations) on one core?

→ Assuming full throughput:

Cycle 1: LOAD + LOAD + STORE

Cycle 2: LOAD + LOAD + FMA + FMA

Cycle 3: LOAD + LOAD + STORE Answer: 1.5 cycles

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i];

}

June 2022 15Roofline Model

Example: Pmax of vector triad on Haswell @ 2.3 GHz

What is the performance in GFlops/s per core

and the bandwidth in GBytes/s?

One AVX iteration (1.5 cycles) does 4 x 2 = 8 flops:

2.3 ∙ 109 cy/s ∙
8 flops

1.5 cy
= 12.27

Gflops

s

12.27
Gflops

s
∙ 16

bytes

flop
= 196

Gbyte

s

See also

http://tiny.cc/IntelPort7

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i];

}

http://tiny.cc/IntelPort7

Vector triad A(:)=B(:)+C(:)*D(:) on a 2.3 GHz 14-core Haswell chip

Consider full chip (14 cores):

Memory bandwidth: bS = 50 GB/s

Code balance (incl. write allocate):

Bc = (4+1) Words / 2 Flops = 20 B/F → I = 0.05 F/B

→ I ∙ bS = 2.5 GF/s (0.5% of peak performance)

Ppeak / core = 36.8 Gflop/s ((8+8) Flops/cy x 2.3 GHz)

Pmax / core = 12.27 Gflop/s (see prev. slide)

→ Pmax = 14 * 12.27 Gflop/s =172 Gflop/s (33% peak)

June 2022 16Roofline Model

Pmax + bandwidth limitations: The vector triad

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 172,2.5 ΤGFlop s = 2.5 ΤGFlop s

June 2022 17Roofline Model

Code balance: more examples

double a[], b[];

for(i=0; i<N; ++i) {

a[i] = a[i] + b[i];}

BC = 24B / 1F = 24 B/F

I = 0.042 F/B

double a[], b[];

for(i=0; i<N; ++i) {

a[i] = a[i]+ s * b[i];}

BC = 24B / 2F = 12 B/F

I = 0.083 F/B

Scalar – can be kept in register

float s=0, a[];

for(i=0; i<N; ++i) {

s = s + a[i] * a[i];}

BC = 4B / 2F = 2 B/F

I = 0.5 F/B

Scalar – can be kept in register

float s=0, a[], b[];

for(i=0; i<N; ++i) {

s = s + a[i] * b[i];}

BC = 8B / 2F = 4 B/F

I = 0.25 F/B

Scalar – can be kept in register

June 2022 18Roofline Model

Tracking code optimizations in the Roofline Model

1. Hit the BW bottleneck by

good serial code
(e.g., Ninja C++ → Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., spatial loop blocking)

3. Increase intensity and go from

memory bound to core bound
(e.g., temporal blocking)

4. Hit the core bottleneck by

good serial code
(e.g., -fno-alias, SIMD intrinsics)

Core bound

Diagnostic / phenomenological Roofline modeling

Diagnostic modeling

▪ What if we cannot predict the intensity/balance?

▪ Code very complicated

▪ Code not available

▪ Parameters unknown

▪ Doubts about correctness of analysis

▪ Measure data volume 𝑉𝑚𝑒𝑎𝑠 (and work 𝑁𝑚𝑒𝑎𝑠)

▪ Hardware performance counters

▪ Tools: likwid-perfctr, PAPI, Intel Vtune,…

▪ Insights + benefits

▪ Compare analytic model and measurement → validate model

▪ Can be applied (semi-)automatically

▪ Useful in performace monitoring of user jobs on clusters

Intensity

P
e

rf
o

rm
a

n
c
e

Pmax

𝑃𝑚𝑒𝑎𝑠

𝑁𝑚𝑒𝑎𝑠

𝑉𝑚𝑒𝑎𝑠

June 2022Roofline Model 20

June 2022 21Roofline Model

Roofline and performance monitoring of clusters

Where are the “good”

and the “bad” jobs in

this diagram?

Intensity [flop/byte]

P
e
rf

o
rm

a
n
c
e
 [

G
fl
o
p

/s
]

https://github.com/RRZE-HPC/likwid/wiki/Tutorial%3A-Empirical-Roofline-Model

https://github.com/RRZE-HPC/likwid/wiki/Tutorial%3A-Empirical-Roofline-Model

