
Case study:

Sparse Matrix-Vector Multiplication

(c) NHR@FAU 2022 2Roofline Case Studies | SpMV

Sparse Matrix Vector Multiplication (SpMV)

▪ Key ingredient in some matrix diagonalization algorithms

▪ Lanczos, Davidson, Jacobi-Davidson

▪ Store only Nnz nonzero elements of matrix and RHS, LHS vectors with Nr (number

of matrix rows) entries

▪ “Sparse”: Nnz ~ Nr

▪ Average number of nonzeros per row: Nnzr = Nnz/Nr

= + • Nr

General case:
some indirect
addressing
required!

(c) NHR@FAU 2022 3Roofline Case Studies | SpMV

SpMVM characteristics

▪ For large problems, SpMV is inevitably memory-bound

▪ Intra-socket saturation effect on modern multicores

▪ SpMV is easily parallelizable in shared and distributed memory

▪ Load balancing

▪ Communication overhead

▪ Data storage format is crucial for performance properties

▪ Most useful general format on CPUs:

Compressed Row Storage (CRS)

▪ Depending on compute architecture

(c) NHR@FAU 2022 4Roofline Case Studies | SpMV

CRS matrix storage scheme

…

column index

ro
w

 in
d

ex

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

▪ val[] stores all the nonzeros (length
Nnz)

▪ col_idx[] stores the column index
of each nonzero (length Nnz)

▪ row_ptr[] stores the starting index
of each new row in val[] (length: Nr)

(c) NHR@FAU 2022 5Roofline Case Studies | SpMV

Case study: Sparse matrix-vector multiply

▪ Strongly memory-bound for large data sets

▪ Streaming, with partially indirect access:

▪ Usually many spMVMs required to solve a problem

▪ Now let’s look at some performance measurements…

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1

C(i) = C(i) + val(j) * B(col_idx(j))

enddo

enddo

!$OMP parallel do schedule(???)

!$OMP end parallel do

(c) NHR@FAU 2022 6Roofline Case Studies | SpMV

Performance characteristics

▪ Strongly memory-bound for large data sets → saturating performance

across cores on the chip

▪ Performance seems to depend on the matrix

▪ Can we explain

this?

▪ Is there a

“light speed”

for SpMV?

▪ Optimization?

???

???

10-core Ivy

Bridge, static

scheduling

(c) NHR@FAU 2022 7Roofline Case Studies | SpMV

SpMV node performance model – CRS (1)

real*8 val(Nnz)

integer*4 col_idx(Nnz)

integer*4 row_ptr(Nr)

real*8 C(Nr)

real*8 B(Nc)

Min. load traffic [B]: (8 + 4) 𝑁𝑛𝑧 + 4 + 8 𝑁𝑟 + 8 𝑁𝑐
Min. store traffic [B]: 8 𝑁𝑟
Total FLOP count [F]: 2 𝑁𝑛𝑧

𝐵𝐶,𝑚𝑖𝑛 =
12 𝑁𝑛𝑧 + 20 𝑁𝑟 + 8 𝑁𝑐

2 𝑁𝑛𝑧

𝐵

𝐹
=

Nonzeros per row (𝑁𝑛𝑧𝑟 = ൗ𝑁𝑛𝑧
𝑁𝑟) or column (𝑁𝑛𝑧𝑐 = ൗ𝑁𝑛𝑧

𝑁𝑐)

Lower bound for code balance: 𝐵𝐶,𝑚𝑖𝑛 ≥ 6
B
F

→ 𝐼max ≤
1
6
F
B

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1

C(i) = C(i) + val(j) * B(col_idx(j))

enddo

enddo

12 + 20/𝑁𝑛𝑧𝑟 + 8/𝑁𝑛𝑧𝑐

2

𝐵

𝐹

(c) NHR@FAU 2022 8Roofline Case Studies | SpMV

SpMV node performance model – CRS (2)

𝐵𝐶,𝑚𝑖𝑛 =
12 + 20/𝑁𝑛𝑧𝑟 + 8/𝑁𝑛𝑧𝑐

2

𝐵

𝐹

𝐵𝐶 (𝛼) =
12 + 20/𝑁𝑛𝑧𝑟 + 𝟖 𝜶

2

𝐵

𝐹

Parameter (𝛼) quantifies
additional traffic for B(:)

(irregular access):

𝛼 ≥ ൗ1 𝑁𝑛𝑧𝑐

𝛼𝑁𝑛𝑧𝑐 ≥ 1
Consider square matrices: 𝑁𝑛𝑧𝑐 = 𝑁𝑛𝑧𝑟 and 𝑁𝑐 = 𝑁𝑟
Note: 𝐵𝐶 ൗ1 𝑁𝑛𝑧𝑟 = 𝐵𝐶,𝑚𝑖𝑛

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1

C(i) = C(i) + val(j) * B(col_idx(j))

enddo

enddo

•

(c) NHR@FAU 2022 9Roofline Case Studies | SpMV

The “𝜶 effect”

DP CRS code balance

▪ α quantifies the traffic

for loading the RHS

▪ 𝛼 = 0 → RHS is in cache

▪ 𝛼 = 1/𝑁𝑛𝑧𝑟 → RHS loaded once

▪ 𝛼 = 1 → no cache

▪ 𝛼 > 1 → Houston, we have a problem!

▪ “Target” performance = 𝑏𝑆/𝐵𝑐
▪ Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict 𝛼?

▪ Not in general

▪ Simple cases (banded, block-structured): Similar to layer condition analysis

→ Determine 𝛼 by measuring the actual memory traffic (→ measured code balance 𝐵𝐶
𝑚𝑒𝑎𝑠)

𝐵𝐶 (𝛼) =
12 + 20/𝑁𝑛𝑧𝑟+ 8 𝛼

2

𝐵

𝐹

= 6 + 4 𝛼 +
10

𝑁𝑛𝑧𝑟

𝐵

𝐹

(c) NHR@FAU 2022 10Roofline Case Studies | SpMV

Determine 𝜶 (RHS traffic quantification)

▪ 𝑉𝑚𝑒𝑎𝑠 is the measured overall memory data traffic (using, e.g., likwid-perfctr)

▪ Solve for 𝛼:

Example: kkt_power matrix from the UoF collection

on one Intel SNB socket

▪ 𝑁𝑛𝑧 = 14.6 ∙ 106, 𝑁𝑛𝑧𝑟 = 7.1

▪ 𝑉𝑚𝑒𝑎𝑠 ≈ 258 MB

→ 𝛼 = 0.36, 𝛼𝑁𝑛𝑧𝑟 = 2.5

→ RHS is loaded 2.5 times from memory

and:

𝐵𝐶 𝛼 = 6+4α+
10

𝑁𝑛𝑧𝑟

B

F
=

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 F
(= 𝐵𝐶

𝑚𝑒𝑎𝑠)

𝛼 =
1

4

𝑉𝑚𝑒𝑎𝑠

𝑁𝑛𝑧 ∙ 2 bytes
− 6 −

10

𝑁𝑛𝑧𝑟

𝐵𝐶 (𝛼)

𝐵𝐶,𝑚𝑖𝑛

= 1.11

11% extra traffic →

optimization potential!

(c) NHR@FAU 2022 11Roofline Case Studies | SpMV

Three different sparse matrices

Matrix 𝑁 𝑁𝑛𝑧𝑟 𝐵𝐶,𝑚𝑖𝑛 [B/F] 𝑃𝑜𝑝𝑡 [GF/s]

DLR1 278,502 143 6.1 7.64

scai1 3,405,035 7.0 8.0 5.83

kkt_power 2,063,494 7.08 8.0 5.83

DLR1 scai1 kkt_power

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, 𝑏𝑆 = 46.6 ΤGB s

→ Roofline: 𝑃𝑜𝑝𝑡 = ൗ
𝑏𝑆

𝐵𝐶,𝑚𝑖𝑛

(c) NHR@FAU 2022 12Roofline Case Studies | SpMV

Now back to the start…

▪ 𝑏𝑆 = 46.6 ΤGB s , 𝐵𝑐 = 6 ΤB F

▪ Maximum spMVM performance:

𝑃𝑚𝑎𝑥 = 7.8 ΤGF s

▪ DLR1 causes minimum CRS code balance

(as expected)

▪ scai1 measured balance:

𝐵𝑐
𝑚𝑒𝑎𝑠 ≈ 8.5 B/F > 𝐵𝐶,𝑚𝑖𝑛

→ good BW utilization, slightly non-optimal 𝛼

▪ kkt_power measured balance:

𝐵𝑐
𝑚𝑒𝑎𝑠 ≈ 8.8 B/F > 𝐵𝐶,𝑚𝑖𝑛

→ performance degraded by load imbalance,

fix by block-cyclic schedule

scai1, kkt_power upper limit

(c) NHR@FAU 2022 13Roofline Case Studies | SpMV

Roofline analysis for spMVM

▪ Conclusion from the Roofline analysis

▪ The roofline model does not “work” for spMVM due to the RHS traffic uncertainties

▪ We have “turned the model around” and measured the actual memory traffic to determine the

RHS overhead

▪ Result indicates:

1. how much actual traffic the RHS generates

2. how efficient the RHS access is (compare BW with max. BW)

3. how much optimization potential we have with matrix reordering

▪ Do not forget about load balancing!

▪ Consequence: Modeling is not always 100% predictive. It‘s all about learning more

about performance properties!

(c) NHR@FAU 2022 17Roofline Case Studies | SpMV

What about GPUs?

▪ GPUs need

▪ Enough work per kernel launch in order to leverage their parallelism

▪ Coalesced access to memory (consecutive threads in a warp should access

consecutive memory addresses)

▪ Plain CRS for SpMV on GPUs is not a good idea

1. Short inner loop

2. Different amount of work per thread

3. Non-coalesced memory access

▪ Remedy: Use SIMD/SIMT-friendly storage format

▪ ELLPACK, SELL-C-σ, DIA, ESB,…

0

1

2

3

4

5

6

7

8

9

10

11

W
a
rp

 t
h
re

a
d
s

(c) NHR@FAU 2022 18Roofline Case Studies | SpMV

CRS SpMV in CUDA (y = Ax)

template <typename VT, typename IT>

__global__ static void

spmv_csr(const ST num_rows,

const IT * RESTRICT row_ptrs, const IT * RESTRICT col_idxs,

const VT * RESTRICT values, const VT * RESTRICT x,

VT * RESTRICT y)

{

ST row = threadIdx.x + blockDim.x * blockIdx.x; // 1 thread per row

if (row < num_rows) {

VT sum{};

for (IT j = row_ptrs[row]; j < row_ptrs[row + 1]; ++j) {

sum += values[j] * x[col_idxs[j]];

}

y[row] = sum;

}

} 𝐵𝑐 𝛼 = 6 + 4 𝛼 +
6

𝑁𝑛𝑧𝑟

𝐵

𝐹

No write-allocate on GPUs for consecutive stores

(c) NHR@FAU 2022 19Roofline Case Studies | SpMV

SpMV CRS performance on a GPU
CRS (1 thread per row)

NVIDIA Ampere A100

Memory bandwidth 𝑏𝑆 = 1400 GB/s

▪ Strong “𝛼 effect” – large deviation from

optimal 𝛼 for many matrices
▪ Many cache lines touched b/c every thread

handles one row → bad cache usage

▪ Mediocre memory bandwidth usage

(≪ 1400 GB/s) in many cases
▪ Non-coalesced memory access

▪ Imbalance across rows/threads of warps

(c) NHR@FAU 2022 20Roofline Case Studies | SpMV

SELL-C-𝜎

Idea

▪ Sort rows according to length within sorting scope 𝜎

▪ Store nonzeros column-major in zero-padded chunks of height 𝐶

zero padding

“Chunk occupancy”:

𝛽 =
𝑁𝑛𝑧

σ
𝑖=0
𝑁𝑐 𝐶 ⋅ 𝑙𝑖

𝑙𝑖: width of chunk 𝑖

M. Kreutzer et al.: A Unified Sparse Matrix

Data Format For Efficient General Sparse

Matrix-vector Multiplication On Modern

Processors With Wide SIMD Units, SIAM

SISC 2014, DOI: 10.1137/130930352

https://dx.doi.org/10.1137/130930352

(c) NHR@FAU 2022 21Roofline Case Studies | SpMV

SELL-C-𝜎 SpMV in CUDA (y=Ax)
template <typename VT, typename IT> __global__ static void

spmv_scs(const ST C, const ST n_chunks, const IT * RESTRICT chunk_ptrs,

const IT * RESTRICT chunk_lengths, const IT * RESTRICT col_idxs,

const VT * RESTRICT values, const VT * RESTRICT x, VT * RESTRICT y)

{

ST row = threadIdx.x + blockDim.x * blockIdx.x;

ST c = row / C; // the no. of the chunk

ST idx = row % C; // index inside the chunk

if (row < n_chunks * C) {

VT tmp{};

IT cs = chunk_ptrs[c]; // points to start indices of chunks

for (ST j = 0; j < chunk_lengths[c]; ++j) {

tmp += values[cs + idx] * x[col_idxs[cs + idx]];

cs += C;

}

y[row] = tmp;

}

}

0

1

2

3

4

5

W
a

rp
 t
h

re
a

d
s

(c) NHR@FAU 2022 22Roofline Case Studies | SpMV

Code balance of SELL-C-σ (y=Ax)

When measuring 𝐵𝐶
𝑚𝑒𝑎𝑠, take care to use the “useful”

number of flops (excluding zero padding) for work

𝐵𝑆𝐸𝐿𝐿 𝛼, 𝛽, 𝑁𝑛𝑧𝑟 =
1

𝛽

8 + 4

2
+
8𝛼 + 𝛽(8 + 4/𝐶)/𝑁𝑛𝑧𝑟

2

bytes

flop

=
6

𝛽
+ 4𝛼 +

𝛽(4 + 2/𝐶)

𝑁𝑛𝑧𝑟

bytes

flop

LHS update (write only)

chunk index

Matrix data &

column index

Optimal 𝛼 =
𝛽

𝑁𝑛𝑧𝑟

(c) NHR@FAU 2022 23Roofline Case Studies | SpMV

How to choose the parameters 𝐶 and 𝜎 on GPUs?

▪ 𝐶

▪ 𝑛 × warp size to allow good utilization of GPU threads

and cache lines

▪ 𝜎

▪ As small as possible, as large as necessary

▪ Large 𝜎 reduces zero padding (brings 𝛽 closer to 1)

▪ Sorting alters RHS access pattern → 𝛼 depends on 𝜎

(c) NHR@FAU 2022 24Roofline Case Studies | SpMV

SpMV node performance model – GPU
CRS (1 thread per row) SELL-32-128

NVIDIA Ampere A100

𝑏𝑆 = 1400 GB/s

