
Some Theory on
Sparse Matrix-Vector Multiplication (SpMV)

(c) NHR@FAU 2021 2OOKAMI Webinar | SpMV

Sparse Matrix Vector Multiplication (SpMV)

 Key ingredient in some matrix diagonalization algorithms
 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors with Nr (number
of matrix rows) entries

 “Sparse”: Nnz ~ Nr

 Average number of nonzeros per row: Nnzr = Nnz/Nr

= + • Nr

General case:
some indirect
addressing
required!

(c) NHR@FAU 2021 3OOKAMI Webinar | SpMV

SpMVM characteristics
 For large problems, SpMV is inevitably memory-bound

 Intra-socket saturation effect on modern multicores

 SpMV is easily parallelizable in shared and distributed memory
 Load balancing
 Communication overhead

 Data storage format is crucial for performance properties
 Most useful general format on CPUs:

Compressed Row Storage (CRS)
 Depending on compute architecture

(c) NHR@FAU 2021 4OOKAMI Webinar | SpMV

CRS matrix storage scheme

…

column index

ro
w

 in
de

x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

 val[] stores all the nonzeros (length
Nnz)

 col_idx[] stores the column index
of each nonzero (length Nnz)

 row_ptr[] stores the starting index
of each new row in val[] (length: Nr)

(c) NHR@FAU 2021 5OOKAMI Webinar | SpMV

Case study: Sparse matrix-vector multiply

 Strongly memory-bound for large data sets
 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Now let’s look at some performance measurements…

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))
enddo
enddo

!$OMP parallel do schedule(???)

!$OMP end parallel do

(c) NHR@FAU 2021 6OOKAMI Webinar | SpMV

Performance characteristics

 Strongly memory-bound for large data sets saturating performance
across cores on the chip

 Is the observed performance
good or bad?

 Is there a
“light speed”
for SpMV?

 Optimization?

“DLR1” matrix
Nnz= 40 x 106, Nnzr= 143.7
schedule(static)
1 socket Xeon Gold 6248

(c) NHR@FAU 2021 7OOKAMI Webinar | SpMV

Deriving useful upper performance limits
Roofline model delivers upper performance limit 𝑃𝑃 for a loop:

 𝑏𝑏𝑆𝑆: max. memory bandwidth
 𝐵𝐵𝐶𝐶: code balance in byte/flop (inverse of computational intensity)
 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚: max. theoretical performance of loop, assuming data is in the L1

cache
 SpMV:
 4 loads, 1 store, 1 multiply, 1 add load bound in L1 insignificant! (?)

𝑃𝑃 = min 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,
𝑏𝑏𝑆𝑆
𝐵𝐵𝐶𝐶

C(i) = C(i) + val(j) * B(col_idx(j))

(c) NHR@FAU 2021 8OOKAMI Webinar | SpMV

SpMV node performance model – CRS (1)
real*8 val(Nnz)
integer*4 col_idx(Nnz)
integer*4 row_ptr(Nr)
real*8 C(Nr)
real*8 B(Nc)

Min. load traffic [B]: (8 + 4) 𝑁𝑁𝑛𝑛𝑛𝑛 + 4 + 8 𝑁𝑁𝑟𝑟 + 8 𝑁𝑁𝑐𝑐
Min. store traffic [B]: 8 𝑁𝑁𝑟𝑟
Total FLOP count [F]: 2 𝑁𝑁𝑛𝑛𝑛𝑛

𝐵𝐵𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 =
12 𝑁𝑁𝑚𝑚𝑛𝑛 + 20 𝑁𝑁𝑟𝑟 + 8 𝑁𝑁𝑐𝑐

2 𝑁𝑁𝑛𝑛𝑛𝑛

𝐵𝐵
𝐹𝐹 =

Nonzeros per row (𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 = �𝑁𝑁𝑛𝑛𝑛𝑛
𝑁𝑁𝑟𝑟) or column (𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐 = �𝑁𝑁𝑛𝑛𝑛𝑛

𝑁𝑁𝑐𝑐)

Lower bound for code balance: 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 6 B
F 𝐼𝐼max ≤ 1

6
F
B

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))

enddo
enddo

12 + 20/𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 + 8/𝑁𝑁𝑛𝑛𝑛𝑛𝑐𝑐

2
𝐵𝐵
𝐹𝐹

(c) NHR@FAU 2021 9OOKAMI Webinar | SpMV

SpMV node performance model – CRS (2)

𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 =
12 + 20/𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 + 8/𝑁𝑁𝑛𝑛𝑛𝑛𝑐𝑐

2
𝐵𝐵
𝐹𝐹

𝐵𝐵𝐶𝐶 (𝛼𝛼) =
12 + 20/𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 + 𝟖𝟖 𝜶𝜶

2
𝐵𝐵
𝐹𝐹

Parameter (𝛼𝛼) quantifies
additional traffic for B(:)
(irregular access):

𝛼𝛼 ≥ �1
𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐

𝛼𝛼𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐 ≥ 1
Consider square matrices: 𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐 = 𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 and 𝑁𝑁𝑐𝑐 = 𝑁𝑁𝑟𝑟
Note: 𝐵𝐵𝐶𝐶 �1 𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 = 𝐵𝐵𝐶𝐶 ,𝑚𝑚𝑚𝑚𝑚𝑚

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))

enddo
enddo

•

(c) NHR@FAU 2021 10OOKAMI Webinar | SpMV

The “𝜶𝜶 effect”

DP CRS code balance
 α quantifies the traffic

for loading the RHS
 𝛼𝛼 = 0 RHS is in cache
 𝛼𝛼 = 1/𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 RHS loaded once
 𝛼𝛼 = 1 no cache
 𝛼𝛼 > 1 Houston, we have a problem!

 “Target” performance = 𝑏𝑏𝑆𝑆/𝐵𝐵𝑐𝑐
 Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict 𝛼𝛼?
 Not in general
 Simple cases (banded, block-structured): Similar to layer condition analysis

 But we can learn more by measuring the actual code balance, 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐶𝐶 (𝛼𝛼) =
12 + 20/Nnzr+ 8 𝛼𝛼

2
𝐵𝐵
𝐹𝐹

= 6 + 4 𝛼𝛼 +
10
𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

𝐵𝐵
𝐹𝐹

(c) NHR@FAU 2021 11OOKAMI Webinar | SpMV

Measure Bc (RHS extra traffic quantification)

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the measured overall memory data traffic (using, e.g., likwid-perfctr)

Example: kkt_power matrix from the UoF collection
on one Intel Sandy Bridge socket

 𝑁𝑁𝑚𝑚𝑛𝑛 = 14.6 � 106, 𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 = 7.1 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 7.97 B
F

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 258 MB 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 8.83 B
F

𝐵𝐵𝐶𝐶 𝛼𝛼 = 6+4α+
10
𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

B
F

=
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚𝑛𝑛 � 2 F
= 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 1.11
11% extra traffic

optimization potential!

(c) NHR@FAU 2021 12OOKAMI Webinar | SpMV

Now back to the start…

 𝑏𝑏𝑆𝑆 = 110 ⁄GB s , 𝐵𝐵𝐶𝐶𝑏𝑏𝑚𝑚𝑚𝑚𝑏𝑏 = 6 ⁄B F
 Maximum CRS SpMV performance:

𝑃𝑃𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏 = 18.3 ⁄GF s

 DLR1 has 𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 = 143.7
 light speed for DLR1:
𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 6.13 B

F 𝑃𝑃 ≤ 18.0 GF
s

 Measured maximum: 17.2 GF/s
 DLR1 causes almost minimum CRS code
balance (as expected)

“DLR1” matrix
Nnz= 40 x 106, Nnzr= 143.7

1 socket Xeon Gold 6248

	Some Theory on�Sparse Matrix-Vector Multiplication (SpMV)
	Sparse Matrix Vector Multiplication (SpMV)
	SpMVM characteristics
	CRS matrix storage scheme
	Case study: Sparse matrix-vector multiply
	Performance characteristics
	Deriving useful upper performance limits
	SpMV node performance model – CRS (1)
	SpMV node performance model – CRS (2)
	The “𝜶 effect”
	Measure Bc (RHS extra traffic quantification)
	Now back to the start…

