

Some Theory on Sparse Matrix-Vector Multiplication (SpMV)

Sparse Matrix Vector Multiplication (SpMV)

- Key ingredient in some matrix diagonalization algorithms
 - Lanczos, Davidson, Jacobi-Davidson
- Store only N_{nz} nonzero elements of matrix and RHS, LHS vectors with N_r (number of matrix rows) entries
- "Sparse": N_{nz} ~ N_r
- Average number of nonzeros per row: $N_{nzr} = N_{nz}/N_r$

SpMVM characteristics

- For large problems, SpMV is inevitably memory-bound
 - Intra-socket saturation effect on modern multicores
- SpMV is easily parallelizable in shared and distributed memory
 - Load balancing
 - Communication overhead
- Data storage format is crucial for performance properties
 - Most useful general format on CPUs: Compressed Row Storage (CRS)
 - Depending on compute architecture

CRS matrix storage scheme

- val[] stores all the nonzeros (length N_{nz})
- col_idx[] stores the column index of each nonzero (length N_{nz})
- row_ptr[] stores the starting index of each new row in val[] (length: N_r)

Case study: Sparse matrix-vector multiply

- Strongly memory-bound for large data sets
 - Streaming, with partially indirect access:

```
!$OMP parallel do schedule(???)
do i = 1,Nr
  do j = row_ptr(i), row_ptr(i+1) - 1
    C(i) = C(i) + val(j) * B(col_idx(j))
  enddo
enddo
!$OMP end parallel do
```

- Usually many spMVMs required to solve a problem
- Now let's look at some performance measurements...

- Strongly memory-bound for large data sets → saturating performance across cores on the chip
- Is the observed performance good or bad?
- Is there a "light speed" for SpMV?

Optimization?

Deriving useful upper performance limits

Roofline model delivers upper performance limit *P* for a loop:

$$P = \min\left(P_{max}, \frac{b_S}{B_C}\right)$$

- *b_S*: max. memory bandwidth
- B_c: code balance in byte/flop (inverse of computational intensity)
- *P_{max}*: max. theoretical performance of loop, assuming data is in the L1 cache
 - SpMV: $C(i) = C(i) + val(j) * B(col_idx(j))$
 - 4 loads, 1 store, 1 multiply, 1 add \rightarrow load bound in L1 \rightarrow insignificant! (?)

SpMV node performance model – CRS (1)

Min. load traffic [B]:
$$(8 + 4) N_{nz} + (4 + 8)N_r + 8 N_c$$
Min. store traffic [B]: $8 N_r$ Total FLOP count [F]: $2 N_{nz}$

$$B_{C,min} = \frac{12 N_{nz} + 20 N_r + 8 N_c}{2 N_{nz}} \frac{B}{F} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}$$
Nonzeros per row $(N_{nzr} = \frac{N_{nz}}{N_r})$ or column $(N_{nzc} = \frac{N_{nz}}{N_c})$
Lower bound for code balance: $B_C^{min} \ge 6 \frac{B}{F} \rightarrow I_{max} \le \frac{1}{6} \frac{F}{B}$

SpMV node performance model – CRS (2)

$$B_{C}^{min} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}$$
$$B_{C}(\alpha) = \frac{12 + 20/N_{nzr} + 8\alpha}{2} \frac{B}{F}$$

Consider square matrices: $N_{nzc} = N_{nzr}$ and $N_c = N_r$ Note: $B_C (1/N_{nzr}) = B_{C,min}$

Parameter (α) quantifies additional traffic for **B(:)** (irregular access):

$$\alpha \ge \frac{1}{N_{nzc}}$$

$$\alpha N_{nzc} \geq 1$$

The " α effect"

- DP CRS code balance
- α quantifies the traffic for loading the RHS
 - $\alpha = 0 \rightarrow \text{RHS}$ is in cache
 - $\alpha = 1/N_{nzr}$ \rightarrow RHS loaded once
 - $\alpha = 1 \rightarrow \text{no cache}$
 - $\alpha > 1 \rightarrow$ Houston, we have a problem!
- "Target" performance = b_S/B_c
- Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict α ?

- Not in general
- Simple cases (banded, block-structured): Similar to layer condition analysis

 \rightarrow But we can learn more by measuring the actual code balance, B_C^{meas}

 $B_C(\alpha) = \frac{12 + 20/N_{nzr} + 8\alpha}{2} \frac{B}{F}$ $= \left(6 + 4\alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F}$

Measure B_c (RHS extra traffic quantification)

$$B_C(\alpha) = \left(6 + 4\alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F} = \frac{V_{meas}}{N_{nz} \cdot 2F} = B_C^{meas}$$

V_{meas} is the measured overall memory data traffic (using, e.g., likwid-perfctr)

н

Example: kkt_power matrix from the UoF collection on one Intel Sandy Bridge socket

■
$$N_{nz} = 14.6 \cdot 10^6$$
, $N_{nzr} = 7.1 \Rightarrow B_C^{min} = 7.97 \frac{B}{F}$
■ $V_{meas} \approx 258 \text{ MB} \Rightarrow B_C^{meas} = 8.83 \frac{B}{F}$

 $\frac{B_C^{meas}}{B_C^{min}} = 1.11$

Now back to the start...

