
Some Theory on
Sparse Matrix-Vector Multiplication (SpMV)

(c) NHR@FAU 2021 2OOKAMI Webinar | SpMV

Sparse Matrix Vector Multiplication (SpMV)

 Key ingredient in some matrix diagonalization algorithms
 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors with Nr (number
of matrix rows) entries

 “Sparse”: Nnz ~ Nr

 Average number of nonzeros per row: Nnzr = Nnz/Nr

= + • Nr

General case:
some indirect
addressing
required!

(c) NHR@FAU 2021 3OOKAMI Webinar | SpMV

SpMVM characteristics
 For large problems, SpMV is inevitably memory-bound

 Intra-socket saturation effect on modern multicores

 SpMV is easily parallelizable in shared and distributed memory
 Load balancing
 Communication overhead

 Data storage format is crucial for performance properties
 Most useful general format on CPUs:

Compressed Row Storage (CRS)
 Depending on compute architecture

(c) NHR@FAU 2021 4OOKAMI Webinar | SpMV

CRS matrix storage scheme

…

column index

ro
w

 in
de

x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

 val[] stores all the nonzeros (length
Nnz)

 col_idx[] stores the column index
of each nonzero (length Nnz)

 row_ptr[] stores the starting index
of each new row in val[] (length: Nr)

(c) NHR@FAU 2021 5OOKAMI Webinar | SpMV

Case study: Sparse matrix-vector multiply

 Strongly memory-bound for large data sets
 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Now let’s look at some performance measurements…

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))
enddo
enddo

!$OMP parallel do schedule(???)

!$OMP end parallel do

(c) NHR@FAU 2021 6OOKAMI Webinar | SpMV

Performance characteristics

 Strongly memory-bound for large data sets  saturating performance
across cores on the chip

 Is the observed performance
good or bad?

 Is there a
“light speed”
for SpMV?

 Optimization?

“DLR1” matrix
Nnz= 40 x 106, Nnzr= 143.7
schedule(static)
1 socket Xeon Gold 6248

(c) NHR@FAU 2021 7OOKAMI Webinar | SpMV

Deriving useful upper performance limits
Roofline model delivers upper performance limit 𝑃𝑃 for a loop:

 𝑏𝑏𝑆𝑆: max. memory bandwidth
 𝐵𝐵𝐶𝐶: code balance in byte/flop (inverse of computational intensity)
 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚: max. theoretical performance of loop, assuming data is in the L1

cache
 SpMV:
 4 loads, 1 store, 1 multiply, 1 add  load bound in L1  insignificant! (?)

𝑃𝑃 = min 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,
𝑏𝑏𝑆𝑆
𝐵𝐵𝐶𝐶

C(i) = C(i) + val(j) * B(col_idx(j))

(c) NHR@FAU 2021 8OOKAMI Webinar | SpMV

SpMV node performance model – CRS (1)
real*8 val(Nnz)
integer*4 col_idx(Nnz)
integer*4 row_ptr(Nr)
real*8 C(Nr)
real*8 B(Nc)

Min. load traffic [B]: (8 + 4) 𝑁𝑁𝑛𝑛𝑛𝑛 + 4 + 8 𝑁𝑁𝑟𝑟 + 8 𝑁𝑁𝑐𝑐
Min. store traffic [B]: 8 𝑁𝑁𝑟𝑟
Total FLOP count [F]: 2 𝑁𝑁𝑛𝑛𝑛𝑛

𝐵𝐵𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 =
12 𝑁𝑁𝑚𝑚𝑛𝑛 + 20 𝑁𝑁𝑟𝑟 + 8 𝑁𝑁𝑐𝑐

2 𝑁𝑁𝑛𝑛𝑛𝑛

𝐵𝐵
𝐹𝐹 =

Nonzeros per row (𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 = �𝑁𝑁𝑛𝑛𝑛𝑛
𝑁𝑁𝑟𝑟) or column (𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐 = �𝑁𝑁𝑛𝑛𝑛𝑛

𝑁𝑁𝑐𝑐)

Lower bound for code balance: 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 6 B
F  𝐼𝐼max ≤ 1

6
F
B

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))

enddo
enddo

12 + 20/𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 + 8/𝑁𝑁𝑛𝑛𝑛𝑛𝑐𝑐

2
𝐵𝐵
𝐹𝐹

(c) NHR@FAU 2021 9OOKAMI Webinar | SpMV

SpMV node performance model – CRS (2)

𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 =
12 + 20/𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 + 8/𝑁𝑁𝑛𝑛𝑛𝑛𝑐𝑐

2
𝐵𝐵
𝐹𝐹

𝐵𝐵𝐶𝐶 (𝛼𝛼) =
12 + 20/𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 + 𝟖𝟖 𝜶𝜶

2
𝐵𝐵
𝐹𝐹

Parameter (𝛼𝛼) quantifies
additional traffic for B(:)
(irregular access):

𝛼𝛼 ≥ �1
𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐

𝛼𝛼𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐 ≥ 1
Consider square matrices: 𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐 = 𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 and 𝑁𝑁𝑐𝑐 = 𝑁𝑁𝑟𝑟
Note: 𝐵𝐵𝐶𝐶 �1 𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 = 𝐵𝐵𝐶𝐶 ,𝑚𝑚𝑚𝑚𝑚𝑚

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))

enddo
enddo

•

(c) NHR@FAU 2021 10OOKAMI Webinar | SpMV

The “𝜶𝜶 effect”

DP CRS code balance
 α quantifies the traffic

for loading the RHS
 𝛼𝛼 = 0  RHS is in cache
 𝛼𝛼 = 1/𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟  RHS loaded once
 𝛼𝛼 = 1  no cache
 𝛼𝛼 > 1  Houston, we have a problem!

 “Target” performance = 𝑏𝑏𝑆𝑆/𝐵𝐵𝑐𝑐
 Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict 𝛼𝛼?
 Not in general
 Simple cases (banded, block-structured): Similar to layer condition analysis

 But we can learn more by measuring the actual code balance, 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐶𝐶 (𝛼𝛼) =
12 + 20/Nnzr+ 8 𝛼𝛼

2
𝐵𝐵
𝐹𝐹

= 6 + 4 𝛼𝛼 +
10
𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

𝐵𝐵
𝐹𝐹

(c) NHR@FAU 2021 11OOKAMI Webinar | SpMV

Measure Bc (RHS extra traffic quantification)

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the measured overall memory data traffic (using, e.g., likwid-perfctr)

Example: kkt_power matrix from the UoF collection
on one Intel Sandy Bridge socket

 𝑁𝑁𝑚𝑚𝑛𝑛 = 14.6 � 106, 𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 = 7.1 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 7.97 B
F

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 258 MB 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 8.83 B
F

𝐵𝐵𝐶𝐶 𝛼𝛼 = 6+4α+
10
𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

B
F

=
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚𝑛𝑛 � 2 F
= 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 1.11
11% extra traffic 

optimization potential!

(c) NHR@FAU 2021 12OOKAMI Webinar | SpMV

Now back to the start…

 𝑏𝑏𝑆𝑆 = 110 ⁄GB s , 𝐵𝐵𝐶𝐶𝑏𝑏𝑚𝑚𝑚𝑚𝑏𝑏 = 6 ⁄B F
 Maximum CRS SpMV performance:

𝑃𝑃𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏 = 18.3 ⁄GF s

 DLR1 has 𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 = 143.7
 light speed for DLR1:
𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 6.13 B

F  𝑃𝑃 ≤ 18.0 GF
s

 Measured maximum: 17.2 GF/s
 DLR1 causes almost minimum CRS code
balance (as expected)

“DLR1” matrix
Nnz= 40 x 106, Nnzr= 143.7

1 socket Xeon Gold 6248

	Some Theory on�Sparse Matrix-Vector Multiplication (SpMV)
	Sparse Matrix Vector Multiplication (SpMV)
	SpMVM characteristics
	CRS matrix storage scheme
	Case study: Sparse matrix-vector multiply
	Performance characteristics
	Deriving useful upper performance limits
	SpMV node performance model – CRS (1)
	SpMV node performance model – CRS (2)
	The “𝜶 effect”
	Measure Bc (RHS extra traffic quantification)
	Now back to the start…

