

Some Theory on Sparse Matrix-Vector Multiplication (SpMV)

Sparse Matrix Vector Multiplication (SpMV)

- Key ingredient in some matrix diagonalization algorithms
	- Lanczos, Davidson, Jacobi-Davidson
- Store only N_{nz} nonzero elements of matrix and RHS, LHS vectors with N_r (number of matrix rows) entries
- "Sparse": $N_{nz} \sim N_r$
- Average number of nonzeros per row: $N_{n zr} = N_{nz}/N_r$

SpMVM characteristics

- **For large problems, SpMV is inevitably memory-bound**
	- Intra-socket saturation effect on modern multicores
- SpMV is easily parallelizable in shared and distributed memory
	- Load balancing
	- Communication overhead
- Data storage format is crucial for performance properties
	- Most useful general format on CPUs: Compressed Row Storage (CRS)
	- Depending on compute architecture

CRS matrix storage scheme

- **val []** stores all the nonzeros (length N_{nz}
- **col_idx[]** stores the column index of each nonzero (length N_{nz})
- **row_ptr[]** stores the starting index of each new row in **val[]** (length: N_r)

Case study: Sparse matrix-vector multiply

- **Strongly memory-bound for large data sets**
	- Streaming, with partially indirect access:

```
do i = 1, N_rdo j = row_ptr(i), row_ptr(i+1) - 1
  C(i) = C(i) + val(j) * B(col\_idx(j))enddo
enddo
!$OMP parallel do schedule(???)
!$OMP end parallel do
```
- Usually many spMVMs required to solve a problem
- Now let's look at some performance measurements...
- Strongly memory-bound for large data sets \rightarrow saturating performance across cores on the chip
- Is the observed performance good or bad?
- Is there a "light speed" for SpMV?

Optimization?

Deriving useful upper performance limits

Roofline model delivers upper performance limit P for a loop:

$$
P = \min\left(P_{max}, \frac{b_S}{B_C}\right)
$$

- b_s : max. memory bandwidth
- B_c : code balance in byte/flop (inverse of computational intensity)
- P_{max} : max. theoretical performance of loop, assuming data is in the L1 cache
	- SpMV: **C(i) = C(i) + val(j) * B(col_idx(j))**
	- 4 loads, 1 store, 1 multiply, 1 add \rightarrow load bound in L1 \rightarrow insignificant! (?)

SpMV node performance model – CRS (1)

```
real*8 val(N_{nz})
                                          integer*4 col_idx(N_{nz})integer*4 row_ptr(N_r)real*8 C(N_r)real*8 B(N_c)do i = 1, N_rdo j = row_ptr(i), row_ptr(i+1) - 1 
 C(i) = C(i) + val(j) * B(col\_idx(j))enddo
enddo
```
Min. load traffic [B]:
$$
(8 + 4) N_{nz} + (4 + 8)N_r + 8 N_c
$$

Min. store traffic [B]: $8 N_r$
Total FLOP count [F]: $2 N_{nz}$

$$
B_{C,min} = \frac{12 N_{nz} + 20 N_r + 8 N_c}{2 N_{nz}} \frac{B}{F} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}
$$

Nonzeros per row $(N_{nzr} = N_{nz}/N_r)$ or column $(N_{nzc} = N_{nz}/N_c)$
Lower bound for code balance: $B_c^{min} \ge 6 \frac{B}{F}$ $\rightarrow I_{max} \le \frac{1}{6} \frac{F}{B}$

SpMV node performance model – CRS (2)

do i = 1, Nr do j = row_ptr(i), row_ptr(i+1) - 1 C(i) = C(i) + val(j) * B(col_idx(j)) enddo enddo

$$
B_C^{min} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}
$$

$$
B_C (\alpha) = \frac{12 + 20/N_{nzr} + 8 \alpha}{2} \frac{B}{F}
$$

Consider square matrices: $N_{nzc} = N_{nzr}$ and $N_c = N_r$ Note: B_C ($\frac{1}{2}$ N_{nz} = $B_{C,min}$

Parameter (α) quantifies additional traffic for **B(:)** (irregular access):

$$
\alpha \ge \frac{1}{N_{nzc}}
$$

$$
\alpha N_{nzc} \geq 1
$$

The " α effect"

- DP CRS code balance
- *α* quantifies the traffic for loading the RHS
	- α = 0 \rightarrow RHS is in cache
	- $\alpha = 1/N_{n zr} \rightarrow$ RHS loaded once
	- $\alpha = 1 \rightarrow \infty$ cache
	- $\alpha > 1 \rightarrow$ Houston, we have a problem!
- **Target**" performance = b_S/B_c
- Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict α ?

- Not in general
- Simple cases (banded, block-structured): Similar to layer condition analysis

 \rightarrow But we can learn more by measuring the actual code balance, B_c^{meas}

 $B_C(\alpha) =$ $12 + 20/N_{nzr} + 8 \alpha$ \overline{z} $\boldsymbol{\beta}$ \boldsymbol{F} $= 6 + 4 \alpha +$ 10 N_{nz} $\boldsymbol{\beta}$ \boldsymbol{F}

Measure B_c (RHS extra traffic quantification)

$$
B_C(\alpha) = \left(6 + 4\alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F} = \frac{V_{meas}}{N_{nz} \cdot 2 F} = B_C^{meas}
$$

 V_{meas} is the measured overall memory data traffic (using, e.g., likwid-perfctr)

F

Example: kkt_power matrix from the UoF collection on one Intel Sandy Bridge socket

■
$$
N_{nz} = 14.6 \cdot 10^6
$$
, $N_{nzr} = 7.1 \rightarrow B_C^{min} = 7.97 \frac{\text{B}}{\text{F}}$
■ $V_{meas} \approx 258 \text{ MB} \rightarrow B_C^{meas} = 8.83 \frac{\text{B}}{\text{F}}$

 $\frac{1}{B_C^{min}} = 1.11$

 $B_{\mathcal C}^{meas}$

11% extra traffic \rightarrow optimization potential!

Now back to the start…

