
Introduction to OpenMP
Part 1
Markus Wittmann

based on work by

R. Bader (LRZ), G. Hager (RRZE), V. Weinberg (LRZ)

Outline

▪ introduction

▪ basic overview

▪ parallel construct

▪ barrier

▪ data sharing

▪ worksharing loops

▪ reductions

▪ more details on

▪ parallel construct

▪ worksharing loops

▪ worksharing constructs single & sections

▪ synchronization

▪ critical, atomic, locks

▪ optional

▪ thread private data

▪ thread affinity

▪ API routines & environment variables

▪ 9:00 – 12:00 course

▪ 12:00 – 13:00 break

▪ 13:00 – 16:00 course

▪ interspersed breaks and hands-on

Introduction

2024-03-05 4Introduction to OpenMP Part 1

OpenMP – What is it

▪ directives and runtime functions for parallelization via threads

▪ supported languages: C, C++, Fortran

▪ in this course: C also includes C++, except where mentioned differently

▪ requires compiler & runtime library support

▪ standard: https://www.openmp.org/

▪ latest version: OpenMP 5.2 (Nov. 2021)

▪ https://www.openmp.org/specifications/

▪ documentation,

▪ OpenMP API x.y Examples,

▪ OpenMP API x.y Reference Guide

▪ Contains: parallelization, synchronization, tasking, accelerator offloading,

SIMD support, loop transformations, …

https://www.openmp.org/
https://www.openmp.org/specifications/

2024-03-05 5Introduction to OpenMP Part 1

Compiling OpenMP applications sequentially

▪ OpenMP applications can be executed sequentially

▪ directives are ignored

▪ if runtime functions are used

▪ they need to be guarded off

▪ a stubs library must be used (if available)

▪ it is no requirement that OpenMP applications can be compiled without

OpenMP enabled

2024-03-05 6Introduction to OpenMP Part 1

Shared Memory Architectures

0 1 16 17 18 19 34 35 36 37 52 53 54 55 70 71

L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

L3 L3 L3 L3

memory memory memory memory

0 1

L1 L1

L2 L2

L3

memo

ry

OpenMP targets all range of shared memory architectures

2024-03-05 7Introduction to OpenMP Part 1

Fork-Join Model of Parallel Regions

▪ parallel execution happens in

parallel regions

▪ follow fork-join model

▪ initial thread

▪ works serially, sequential part

▪ fork – begin of parallel region

▪ executed by team of threads

▪ join – end of parallel region

▪ threads wait in an barrier until all have

arrived

▪ after join serial execution continues

initial

thread
thread thread

serial

execution

fork

join

serial

execution

parallel

execution

barrier

parallel region

fork

join

thread ids 0 1 2

parallel

execution

serial

execution

thread

3

2024-03-05 8Introduction to OpenMP Part 1

OpenMP Directives – C/C++

▪ directives specify OpenMP behavior

▪ depending on the directive the

following statement or loop might be

associated

▪ _Pragma("omp ...") instead of

#pragma works too

▪ C++: no directives in constexpr

functions or constant expressions

#pragma omp <directive> [<clause>[, <clause>[...]]]

statement;

#pragma omp barrier

statement;

#pragma omp parallel

{

statement;

statement;

}

barrier has

no associated
statements

parallel is

associated with
following statement

to associate

multiple statements
use a {} block

C/C++

ignored when

OpenMP is not
enabled

2024-03-05 9Introduction to OpenMP Part 1

OpenMP Directive with C++ Attribute Syntax

Requires ≥ v5.1

or

▪ depending on directive binds to the following statement

▪ use {} to associate a block

▪ no ordering of subsequent attributes, use

[[omp :: <directive> [<clause> [<clause ...]]]]

[[using omp : <directive> [<clause> [<clause ...]]]]

[[omp :: sequence([omp::<directive>...[, omp::<directive>...]])]]

2024-03-05 10Introduction to OpenMP Part 1

OpenMP Directives – Fortran

!$omp <directive> [<clause>[, <clause>[…]]]

<statement(s)>

!$omp end <directive>

!$omp parallel

statement1

statement2

!$omp end parallel

!$omp parallel

block

statement1

statement2

end block
OpenMP ≥v5.1 + F2008 block

→ !$omp end is optional here

!$omp <directive> […]

start with !$omp,

ignored when OpenMP is
not enabled

if statement(s) are
associated !$omp end … is

required to mark the end

statement

!$omp barrier

statement

C/C++

Directives and Continuation Lines

continued directives on the next line

#pragma omp parallel \

num_threads(2)

!$omp parallel &

!$omp& num_threads(2)

!$omp parallel

!$omp+ num_threads(2)

\ at end of line
Fortran

& at end of line

free form

fixed form

non-whitespace

2024-03-05 12Introduction to OpenMP Part 1

Example

▪ control no. of threads by environment variable OMP_NUM_THREADS

▪ see later for details

▪ without specifying OMP_NUM_THREADS the default is implementation defined

▪ typically as many threads as cores are available are used

#pragma omp parallel

printf("hello\n");

!$omp parallel

write(*,'(a)') 'hello'

!$omp end parallel

> OMP_NUM_THREADS=2 ./a.out

hello

hello

> OMP_NUM_THREADS=4 ./a.out

hello

hello

hello

hello

C/C++: Fortran:

Output: Output:

s
t
m
t
s

s
t
m
t
s

s
t
m
t
s

s
t
m
t
s

s
t
m
t
s

s
t
m
t
s

output might

be interleaved

2024-03-05 13Introduction to OpenMP Part 1

Compilation and Linking

▪ enable OpenMP through flags

▪ for GCC (gcc, g++, gfortran), LLVM (clang, clang++, flang) add -fopenmp
▪ gcc -fopenmp example.c -o example

▪ best practice for gcc:
also add –Wall (includes –Wunknown-pragmas),

generates warnings when directives are mistyped or not supported

▪ for Intel Classic (icc, icpc, ifort), Intel oneAPI (icx, icpx, ifx) add -qopenmp
▪ ifort -qopenmp example.F90 -o example

▪ for Intel oneAPI don't use –fopenmp,

it uses LLVM OpenMP RT, might miss Intel extensions

required for

compiling and linking

2024-03-05 14Introduction to OpenMP Part 1

Conditional Compilation

▪ enabling OpenMP defines _OPENMP in preprocessor

▪ do not define/undefine_OPENMP

▪ Using _OPENMP define for conditional compilation:

▪ OpenMP specific API call is guarded off

▪ for Fortran use sentinels if no preprocessor support is available:

▪ free source form:

▪ fixed source form:

int thread_id = 0;

#ifdef _OPENMP

thread_id = omp_get_thread_num();

#endif

integer :: thread_id

thread_id = 0

#ifdef _OPENMP

thread_id = omp_get_thread_num();

#endif

C/C++: Fortran:

!$
!$ thread_id = omp_get_thread_num()

*$!$ c$

2024-03-05 15Introduction to OpenMP Part 1

_OPENMP define

▪ enabling OpenMP defines _OPENMP

▪ set to year and month when the supported

OpenMP standard was released

▪ format yyyymm → yyyy = year, mm = month

▪ do not define/undefine _OPENMP

▪ causes undefined behavior

▪ Fortran: _OPENMP requires preprocessor

support

▪ typically .F90 files are preprocessed

▪ typically .f90 files are not

▪ except corresponding flags are specified

Fortran alternatively:

omp.h or omp_lib module

define integer constant

openmp_version that has the

same value as _OPENMP

_OPENMP version date

200805 3.0 May 2008

201107 3.1 July 2011

201311 4.0 Nov. 2013

201511 4.5 Nov. 2015

201611 5.0 preview 1 Nov. 2016

201711 5.0 preview 2 Nov. 2017

201811 5.0 Nov. 2018

202011 5.1 Nov. 2020

202111 5.2 Nov. 2021

2024-03-05 16Introduction to OpenMP Part 1

Using Runtime Function and Types

C/C++

#include <omp.h>

int tid = omp_get_thread_num();

Fortran

use omp_lib

implicit none

integer :: tid

tid = omp_get_thread_num();

implicit none

include "omp_lib.h"

integer :: tid

tid = omp_get_thread_num();

preferred in

Fortran

2024-03-05 17Introduction to OpenMP Part 1

Useful Runtime Functions

▪ int/integer omp_get_thread_num()

▪ get id of current thread

▪ int/integer omp_get_num_threads()

▪ get number of threads in current region (sequential or parallel)

▪ int/integer omp_get_max_threads()

▪ get maximum number of threads in the next parallel region without a
num_threads clause

▪ double (precision) omp_get_wtime()

▪ get elapsed time in seconds since some point in time

▪ mostly useful for measuring durations

▪ might not be synchronized between threads

to use API functions:
C/C++: #include <omp.h>
Fortran: use omp_lib or include "omp.h"

2024-03-05 18Introduction to OpenMP Part 1

OpenMP Example – C

#include <stdio.h>

#include <omp.h>

int main(int argc, char *argv[])

{

printf("sequential part\n");

#pragma omp parallel

{

printf("thread %d of %d\n",

omp_get_thread_num(),

omp_get_num_threads());

}

printf("sequential part again\n");

return 0;

}

include OpenMP header for using runtime
functions, omp_get_thread_num() and

omp_get_num_threads()

parallel construct, each created

thread executes the associated block

each thread prints its thread id and the

total no. of threads inside the parallel

region

at the end all threads wait in an implicit

barrier until all have arrived, then

execution continues sequentially

$ gcc -fopenmp -o a.out omp.c

$ OMP_NUM_THREADS=<n> ./a.out

without OMP_NUM_THREADS, number of

threads used is implementation

specific

2024-03-05 19Introduction to OpenMP Part 1

OpenMP Example – Fortran

program omp_application

use omp_lib

implicit none

print *, "sequential part"

!$omp parallel

print *, "thread ", &

omp_get_thread_num(), &

" of ", &

omp_get_num_threads()

!$omp end parallel

print *, "sequential part again"

end program

use OpenMP module omp_lib for

using runtime functions

parallel construct, each created

thread executes the associated block

each thread prints its thread id and the

total no. of threads inside the parallel

region

at the end all threads wait in an implicit

barrier until all have arrived, then

execution continues sequentially

$ gfortran -fopenmp -o a.out omp.F90

$ OMP_NUM_THREADS=<n> ./a.out

without OMP_NUM_THREADS, number of

threads used is implementation

specific

2024-03-05 20Introduction to OpenMP Part 1

Exercise

▪ in directory 00-preparation

▪ ensure C or F90 OpenMP source compiles correctly

▪ which OpenMP standard is supported

▪ run with different no. of OpenMP threads

parallel Construct

2024-03-05 23Introduction to OpenMP Part 1

parallel Construct

each thread executes the same associated statement/structured block

▪ associated structured block is executed in a fork-join fashion

▪ when a thread encounters a parallel region, all threads start executing the

associated statement/block

▪ afterwards threads wait in implicit barrier at the end until all threads have

arrived

#pragma omp parallel [clauses...]

structured block

!$omp parallel [clauses...]

structured block

!$omp end parallel

C/C++: Fortran:

b
l
o
c
k

b
l
o
c
k

b
l
o
c
k

b
l
o
c
k

2024-03-05 24Introduction to OpenMP Part 1

Structured Block

▪ statement or multiple statements

▪ C/C++: statements grouped together in { } block

▪ Fortran: blocks require

▪ or Fortran 2008: BLOCK / END BLOCK

▪ one entry at the top, one exit at the bottom

▪ C/C++:

▪ calling exit(), _Exit(), quick_exit(), abort() OK

▪ throw, co_await, co_yield, co_return OK, if the entry/exit criteria is not violated

▪ Fortran: STOP or ERROR STOP OK

▪ no branch into or branch out

!$omp … / !$omp end …

≥v5.1

2024-03-05 25Introduction to OpenMP Part 1

Clauses for parallel Construct

▪

▪ parallel execution of the region depends on value of expression, e.g.

▪ if omp_in_parallel() evaluates to

▪ true: parallel region is executed in parallel,

▪ false: region is executed serially

▪ active parallel region: executed by > 1 thread

▪ inactive parallel region: executed by one thread

#pragma omp parallel if (!omp_in_parallel())

parallel [clauses...]

structured block

syntax:

if (expression)

avoids nested

parallel regions

▪

▪ no. of threads to execute parallel region with

▪ integer must be > 0

▪ overrides env. var. OMP_NUM_THTREADS

▪

▪ bind threads to certain places

▪ keyword: can be close, master (deprecated), primary, spread

▪ see later at Runtime Functions and Environment Variables

▪ clauses:

▪ shared, private, firstprivate, default, reduction,

▪ copyin → see later thread private memory

proc_bind(keyword)

2024-03-05 26Introduction to OpenMP Part 1

Clauses for parallel Construct

num_threads(int-expr)

barrier Construct

2024-03-05 28Introduction to OpenMP Part 1

barrier construct

▪ all threads in current parallel region

must enter the barrier before they

can continue

▪ explicit barrier

▪ in contrast to implicit barrier at the

end of some constructs (parallel, …)

▪ used for

▪ synchronization

▪ debugging

▪ try to avoid

#pragma omp parallel

{

/* work */

#pragma omp barrier

/* work */

}

parallel

end parallel

work

work

work
work

barrier

work work work work

Data Sharing

2024-03-05 30Introduction to OpenMP Part 1

Data Environment

▪ data environment

▪ the variables associated with a region

▪ variables there can be

▪ shared

▪ accessible by all threads executing the region

▪ private

▪ each thread has its own for the duration of the

region

▪ threadprivate

▪ see later

thread threadthread

shared

private private private

thread
private

thread
private

thread
private

2024-03-05 31Introduction to OpenMP Part 1

Data Sharing Attributes

▪ by default most variables are shared

▪ static/global (C/C++) or save/common (Fortran)

variables

▪ local variables outside the scope of construct

▪ except

▪ variables* defined inside the construct are private

▪ i.e. declared inside {}-block or BLOCK/END BLOCK

▪ variables* local to functions/routines called from within the region are private

▪ loop iteration variables of worksharing loops are private

▪ see later for do/for construct

* non-static (C/C++) or without save attribute (Fortran)

int g = 1;

void fn() {

static int a = 0;

int s = 1;

#pragma omp parallel

{

static int b = 1;

int p = omp_get_thread_num();

printf("s=%d p=%d g=%d\n",

s, p, g);

}

}

2024-03-05 32Introduction to OpenMP Part 1

Example – 1

int p = 1;

#pragma omp parallel

{

/* p shared or private */

}

integer :: p

p = 1

!$omp parallel

! p shared or private

!$omp end parallel

2024-03-05 33Introduction to OpenMP Part 1

Example – 2

void foo() {

static int i = 1;

#pragma omp parallel

{

/* i shared or private? */

}

}

subroutine foo()

integer, save :: i = 1

!$omp parallel

! i shared or private?

!$omp end parallel

end subroutine

2024-03-05 34Introduction to OpenMP Part 1

Example – 3

#pragma omp parallel

{

int j = 2;

/* j shared or private? */

}

!$omp parallel

block

integer :: j

j = 2

! j shared or private?

end block

!$omp end parallel

2024-03-05 35Introduction to OpenMP Part 1

Example – 4

#pragma omp parallel

{

static int j = 2;

/* j shared or private? */

}

!$omp parallel

block

integer, save :: j = 2

/* j shared or private? */

end block

2024-03-05 36Introduction to OpenMP Part 1

Example – 5

void foo() {

int k = …

/* k shared or private? */

}

void bar() {

#pragma omp parallel

{

foo();

}

}

subroutine foo()

integer :: k

! k shared or private?

end subroutine

subroutine bar()

!$omp parallel

call foo()

!$omp end parallel

end subroutine

2024-03-05 37Introduction to OpenMP Part 1

Example – 6

void foo() {

static int l = …

/* l shared or private? */

}

void bar() {

#pragma omp parallel

foo();

}

subroutine foo()

integer, save l = …

! l shared or private?

end subroutine

subroutine bar()

!$omp parallel

call foo()

!$omp end parallel

end subroutine

2024-03-05 38Introduction to OpenMP Part 1

Data-Sharing Attribute Clauses

▪ clauses for explicitly specifying how a variable should be treated

▪ supported by several directives, e.g., parallel, do/for, single, sections, task, …

▪ clauses:
▪ shared(var1, var2, …)

▪ private(var3, var4, …)

▪ private + special operation
▪ firstprivate(var5, var6, …)

▪ lastprivate, see later do/for construct clauses

▪ change default:

▪ C/C++:

▪ best practice: default(none)

▪ every variable referenced must appear in a shared/private/… clause

▪ avoids incorrect assumptions about shared/private

default(shared|private|firstprivate|none)

default(shared|none) ≤ v5.0

2024-03-05 39Introduction to OpenMP Part 1

shared clause

▪ treat listed variables as shared

▪ be careful when

▪ concurrently writing to

▪ concurrently writing and reading

▪ shared variables

▪ without coordination races might

occur

▪ see critical, atomic , flush

parallel shared(i)

end parallel

i=5

int i = 5;

#pragma omp parallel shared(i)

{

printf("%d\n", i);

i = omp_get_thread_num();

}

printf("%d\n", i);

i=0
i=1

i=2

i=3

printf(i)
printf(i)

printf(i)

printf(i)

printf(i)

which values

will be printed

is undefined

2024-03-05 40Introduction to OpenMP Part 1

private clause

▪ new uninitialized variable of

the same type and name as the

original one

▪ declared locally without initializer

▪ private variables disappear

after the end of the region

▪ privatized variables hide original

variables

▪ C++: privatized variable

initialization depends on default

ctor

parallel private(i)

end parallel

i=5

i=? i=? i=? i=?

int i = 5;

#pragma omp parallel private(i) \

num_threads(4)

{

i = omp_get_thread_num();

}

printf("%d\n", i); // prints: 5

i

i=0 i=1 i=2 i=3

assigning to private variable has

no effect on original variable

int i = 5;

#pragma omp parallel …

{

int i;

...

}

...

2024-03-05 41Introduction to OpenMP Part 1

firstprivate clause

▪ listed variables become

▪ private and

▪ initialized with value from
original variable

▪ C++: initialized via copy

assignment (copy ctor)

int i = 5;

#pragma omp parallel \

firstprivate(i)

{

printf("%d\n", i);

/* prints 5 for each thread */

}

parallel firstprivate(i)

end parallel

i=5

i=5 i=5 i=5 i=5

struct X { };

X x;

#pragma omp parallel firstprivate(x)

{

// X x = x

}

#pragma omp parallel \

firstprivate(i)

{ int i = i;

... }

flush Construct

2024-03-05 43Introduction to OpenMP Part 1

flush directive

▪ threads can have a temporary view to

memory

▪ writes from one thread do not need to be

▪ visible to other threads immediately

▪ reflected in memory

▪ flush in the encountering thread

▪ writes changes to memory

▪ updates variables from memory

▪ implicitly happens at

▪ explicit/implicit barriers

▪ entry/exit of critical sections and lock functions

int flag = 0;

#pragma omp parallel num_threads(2)

{

if (omp_get_thread_num() == 0) {

flag = 1;

}

else {

while (!flag) { /* wait */ }

work();

}

}
might never

leave

2024-03-05 44Introduction to OpenMP Part 1

flush directive

▪ can be limited to certain variables

by providing a list

▪ flush is implied in all

implicit/explicit barriers

int flag = 0;

#pragma omp parallel num_threads(2)

{

if (omp_get_thread_num() == 0) {

flag = 1;

#pragma omp flush

}

else {

#pragma omp flush

while (!flag) {

/* wait */

#pragma omp flush

}

work();

}

}

works but

inefficient, see
atomic

construct later

Worksharing Constructs for Loop Parallelization

for / do construct

2024-03-05 46Introduction to OpenMP Part 1

Manually Parallelize Loops

▪ sometimes it is necessary to

manually distribute iterations of

a loop over threads

▪ distribute iterations (nearly)

equally across threads:

int n = ...;

#pragma omp parallel

{

int tid = omp_get_thread_num();

int nt = omp_get_num_threads();

int per_thread = n / nt;

int rem = n % nt;

int lb = tid * per_thread;

lb += tid < rem ? tid : rem;

int ub = lb + per_thread;

ub += tid < rem ? 1 : 0;

for (int i = lb; i < ub; ++i) {

/* work */

}

}

for (int i = 0; i < n; ++i) {

/* work */

}

for/do Construct

C/C++ Fortran

#pragma omp for

for (i = 0; i < n; ++i) {

<structured block>

} // impl. barrier

!$omp do

do i = 1, n

<structured block>

end do

! impl. barrier

!$omp end do

▪ for and do distribute the iterations of one or more associated loops over

threads

▪ loop counter will be private

▪ implicit barrier at the end

▪ require an enclosing parallel region, else orphaned construct

▪ ensure loop iterations are independent

for [clauses] do [clauses]

clauses:
private, firstprivate, lastprivate,

reduction, nowait, schedule, collapse,
…

2024-03-05 48Introduction to OpenMP Part 1

Example

▪ How are the iterations distributed over threads?

▪ without specification it is implementation defined

▪ specify via schedule clause

const int n = 1000; double a[n], b[n];

/* initialize b */

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < n; ++i) {

a[i] = b[i]

}

}

integer, paramter :: n = 1000

integer :: i

real(8) :: a(n), b(n)

! initialize b

!$omp parallel

!$omp do

do i = 1, n

a(i) = b(i)

end do

!$omp end do

!$omp end parallel

iteration space

distributed over
threads

implicit barrier at

the end

C/C++ Fortran

2024-03-05 49Introduction to OpenMP Part 1

Fortran special

!$omp parallel

!$omp do

do i = 1, N

do j = 1, N

end do

end do

!$omp end do

!$omp end parallel

int i, j;

#pragma omp parallel

#pragma omp for

for (i = 0; i < N; ++i) {

for (j = 0; j < N; ++j) {

}

}

loop counter variable of

associated loop is
always private

only Fortran: loop counter
variables inside parallel

region are always private

(if not specified otherwise)

shared

C/C++ Fortran

2024-03-05 50Introduction to OpenMP Part 1

Combined parallel do/for Construct

▪ parallel and for/do construct can be merged

▪ all clauses of parallel and for/do can be applied except nowait

▪ only one implicit barrier at the end

#pragma omp parallel for \

[clauses parallel + for]

!$omp parallel do [clauses parallel + do]

...

!$omp end parallel do

Reductions

reductions allow for aggregating values of

private variables computed in parallel

▪ rid: reduction identifier

▪ operation to perform: +, -, *, …

▪ variables: variables to reduce

▪ privatizes listed variables

▪ listed variables must be shared

▪ according to rid variables are

▪ initialized + combined at the end

supported by directives:

2024-03-05 52Introduction to OpenMP Part 1

reduction clause
int s = 4, n = ...;

#pragma omp parallel

{

#pragma omp for reduction(+:s)

for (int i = 0; i < 8; ++i)

s += i;

}

printf("%d\n", s);

parallel

s=0 s=0 s=0 s=0

end for

s=32

+

s=4

reduction(rid:variables)

for reduction(+:s)

end parallel

s privatized and 0

initialized because of +

s=1 s=5 s=9 s=13

parallel, for/do, sections, simd , loop, scope,

taskloop, teams (not handled here)

2024-03-05 53Introduction to OpenMP Part 1

reduction clause

▪ multiple reductions possible:

▪ listed variable is only allowed to
occur in one reduction clause

C/C++ Fortran

rid initializer rid initializer

+ 0 + 0

- 0 - 0

* 1 * 1

& ~0 .and. .true.

| 0 .or. .false.

^ 0 .eqv. .true.

&& 1 .neqv. .false.

|| 0 max min(type)

max min(type) min max(type)

min max(type) iand all bits

one

ior 0

ieor 0

reduction(+:a, b) reduction(*:c, d)

▪ predefined reductions for

arithmetic types:

deprecated

since v5.2

2024-03-05 54Introduction to OpenMP Part 1

Reduction on Array (Sections)

▪ variables in reduction clauses can

be arrays or sections of arrays

▪ requirements:

▪ need to be contiguous

▪ C/C++: requires array section syntax

▪ initialization/reduction is performed

elementwise

int a[10];

#pragma omp parallel \

reduction(+:a[0:10])

integer :: a(10)

!$omp parallel reduction(+:a)

lower bound

length

2024-03-05 55Introduction to OpenMP Part 1

Exercise

▪ Pi computation

User-defined Reductions – Syntax

▪ extend predefined rid for different types types (comma separated)

▪ introduce own identifiers for rid

combiner

describe how private instances are reduced:

special variables:

input: omp_in

input and output: omp_out

declare reduction(rid : types : combiner) \

initializer(init_expr)

initializer

how private variable omp_priv is initialized

(optionally with omp_orig):

omp_priv = initializer (C/C++)

omp_priv initializer (C++)

function-name(argument-list) (C/C++)

omp_priv = expression (F)

subroutine-name(argument-list) (F)

init_expr:

omp_out <op>= omp_in

omp_out = omp_in <op> omp_out

fn(…, &omp_out, …, &omp_in, …)

2024-03-05 57Introduction to OpenMP Part 1

User-defined Reductions – Example

implement "+" reduction for std::complex<double>:

#pragma omp declare \

reduction(+: std::complex<double>: omp_out += omp_in) \

initializer(omp_priv std::complex<double>{})

…

std::complex<double> c;

#pragma omp parallel for reduction(+:c)

for (size_t i = 0; i < n; ++i) {

c += i;

}

<rid> type(s)

combiner expression
omp_in: input value(s)

omp_out: in-/output value

initialize private copies:
omp_priv represents copy

perform +

reduction on c

2024-03-05 58Introduction to OpenMP Part 1

User-defined Reductions

▪ more complex combiner expressions, e.g., for std::vector<T>:

▪ must be specified for each type T used

#pragma omp declare \

reduction(+ : std::vector<double> : std::transform(omp_out.begin(), \

omp_out.end(), omp_in.begin(), omp_out.begin(), std::plus<double>())) \

initializer(omp_priv = decl_type(omp_orig)(omp_orig.size()))

…

std::vector<double> v(n, 0.0);

#pragma omp parallel for reduction(+:v)

for (size_t i = 0; i < n; ++i) {

v[i] = static_cast<double>(i);

}

<rid> type(s), fill in as needed
combiner expression

is an STL algorithm

create a new std::vectorwith

omp_orig.size() zeros,

perform + reduction on v

2024-03-05 59Introduction to OpenMP Part 1

User-defined Reductions

▪ more complex combiner expressions for std::vector<T>:

▪ must be specified for each type T used

#pragma omp declare \

reduction(+ : std::vector<double> : \

[](decltype(omp_out) & out, decltype(omp_in) & in) { \

for (size_t i = 0ul; i < out.size(); ++i) { out[i] += in[i]; } \

}(omp_out, omp_in))) \

initializer(omp_priv decltype(omp_orig)(omp_orig.size()))

…

combiner expression

is a lambda invocation

2024-03-05 60Introduction to OpenMP Part 1

scope construct

▪ introduces a new “scope” inside a parallel region

▪ mostly used to perform reductions

▪ implicit barrier at the end
int sum = 0;

#pragma omp parallel

{

...

#pragma omp scope reduction(+:sum)

{

sum += omp_get_thread_num();

}

...

/* use sum */

...

}

scope [reduction(rid:var-list)] [allocate] \

[firstprivate] [private] [nowait]

impl. barrier

≥ v5.0

Worksharing Constructs for Loop Parallelization

for / do construct clauses

2024-03-05 62Introduction to OpenMP Part 1

Loop Schedules

▪ for/do schedule clause supports different schedules

▪ static

▪ fixed size chunks, static chunk to thread mapping

▪ dynamic

▪ fixed size chunks, non-deterministic mapping of chunks to threads

▪ guided

▪ reduce chunk size over time, non-deterministic mapping of chunks to threads

▪ auto

▪ implementation defined

▪ runtime

▪ choose schedule at runtime, either programmatically or via environment variable

2024-03-05 63Introduction to OpenMP Part 1

schedule clause: static

#pragma omp parallel num_threads(3)

#pragma omp for schedule(static)

for (int i = 0; i < 10; ++i) {

/* work */;

}

▪ effect

▪ chunks are distributed round-robin over

threads

▪ mapping of chunk to thread is

deterministic

▪ chunk_size is an integer expression:

▪ chunks will have chunk_size iterations

▪ last chunk can be smaller

▪ without chunk_size:

▪ each thread gets exactly one (nearly)
equally sized chunk

schedule(static[,chunk_size])

static

static

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

iterations

static, 3 0 1 2 3 4 5 6 7 8 9

#pragma omp parallel num_threads(3)

#pragma omp for schedule(static, 3)

for (int i = 0; i < 10; ++i) {

/* work */

}

threads

0 1 2

10

10

2024-03-05 64Introduction to OpenMP Part 1

schedule clause: dynamic

▪ iterations are divided into chunks of
size chunk_size

▪ chunk_size is 1 if not provided

▪ chunk_size is an integer expression

▪ threads request next chunk when they

have finished one

▪ no strict round-robin assignment of

chunks to threads

▪ no deterministic mapping of thread to

chunk

▪ NOTE: if load balancing is an issue,

dynamic is better suited than static

#pragma omp parallel num_threads(3)

#pragma omp for schedule(dynamic, 3)

for (int i = 0; i < 11; ++i) {

/* work */

}

schedule(dynamic[,<chunk_size>])

iterations

dynamic

dynamic,3

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

mapping differs

from run to run

threads

0 1 2

2024-03-05 65Introduction to OpenMP Part 1

schedule clause: guided

▪ larger chunks at the beginning,

getting smaller to the end of the

iteration space

▪ chunk_size = 1 by default

▪ chunk_size = k, k > 1

▪ smallest chunk_size will be k except

for maybe the last iteration

▪ chunk to thread mapping non-

deterministic

▪ NOTE: useful when load imbalances

exist, less overhead than dynamic

10

10

guided

guided

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

#pragma omp parallel num_threads(3)

#pragma omp for schedule(guided)

for (int i = 0; i < 11; ++i) {

/* work */;

}

schedule(guided[,<chunk_size>])

iterations

mapping differs

from run to run

threads

0 1 2

2024-03-05 66Introduction to OpenMP Part 1

schedule clause: auto and runtime

▪ auto:

▪ implementation defined scheduling will be used

▪ runtime: chosen at runtime

▪ initial value is implementation defined

▪ set via environment variable
OMP_SCHEDULE=[modifier:]kind[,chunk_size]

▪ kind: static, dynamic, guided, or auto

▪ chunk_size: same meaning as if specified at schedule

▪ run binary with: OMP_SCHEDULE=static,512 ./openmp-binary

▪ set via runtime call omp_set_schedule(omp_sched_t kind, int chunk_size)

▪ retrieve runtime scheduling:
▪ omp_get_schedule(omp_sched_t *kind, int *chunk_size)

2024-03-05 67Introduction to OpenMP Part 1

order of chunks

▪ monotonic

▪ thread processes assigned chunk in increasing logical order

▪ nonmonotonic

▪ chunks are assigned to threads in any order

▪ not allowed: nonmonotonic and ordered clause

▪ do not depend on the order of the execution of the chunks (except for
ordered)

▪ defaults

▪ ≤ v4.5: monotonic

▪ ≥ v5.0: nonmonotonic (except for static and ordered)

schedule(: <schedule>[,<chunk_size>])
monotonic

nonmonotonic

2024-03-05 68Introduction to OpenMP Part 1

collapse(n) clause

▪ merge iteration space of n nested

loops into one logical iteration

space

▪ distribute resulting iterations over

threads

▪ these n loops become associated

loops

▪ typically more evenly distributed no.

of iterations

#pragma omp parallel

#pragma omp for collapse(2) \

schedule(static) \

num_threads(3)

for (int x = 0; x < 5; ++x) {

for (int y = 0; y < 5; ++y) {

/* work on (x, y) */

} }

▪ distribute 5*5 instead of 5 iterations

▪ distribution of iterations over 3 threads:

▪ without collapse: 2, 2, 1

▪ with collapse: 9, 8, 8 or 9, 9, 7

2024-03-05 69Introduction to OpenMP Part 1

collapse(n) clause

▪ NOTE: only as many loops are

associated as specified

▪ through collapse(2) only loop over

x and y is associated

▪ loop over z is not associated

!$omp parallel &

!$omp for collapse(2) &

!$omp schedule(static)

do x = 1, nx

do y = 1, ny

do z = 1, nz

! work on (x, y, z)

end do

end do

end do

!$omp end do

!$omp end parallel

2024-03-05 70Introduction to OpenMP Part 1

lastprivate clause

▪ listed variables are privatized

▪ value from sequentially last iteration

is assigned to original variable

▪ if sequentially last iteration is not

performed or no assignment takes

place

▪ value of variable after construct is

undefined

▪ use conditional modifier

▪ original variable gets value of

sequentially last assignment

lastprivate([conditional:]var1[,...]])

int i, s = 1000;

int u = -2, n = 100;

#pragma omp parallel

#pragma omp for shared(n) \

lastprivate(s, u)

for (i = 0; i < n; ++i) {

if (i < n - 1) u = i;

s = i + 3;

}

printf("s=%d u=%d n=%d\n",

s, u, n);

// output:

// s=102 u=??? n=100

no assignment in

last iteration

assignment in

every iteration

undefined value of
u, use conditional

modifier

▪ also supported: private, firstprivate

2024-03-05 71Introduction to OpenMP Part 1

ordered construct and clause

execute parts of a loop’s body in its original

sequential order, e.g. for output, loop dependencies

1. requires for/do loop* with clause:

2. requires construct:

▪ construct must be nested within region that has an
ordered clause

for … ordered[(n)] do … ordered[(n)]

ordered

{ structed-block }

ordered

structued-block

end ordered

#pragma omp parallel

#pragma omp for ordered

for (int i = 0; i < ni; ++i) {

/* P1 */

#pragma omp ordered

{ /* P2 */ }

/* P3 */

}

i=0 i=1 i=2 i=ni-1

P1

P1

P1 P1

P2

P2

P2

P2

loop

iteration

P3
P3

P3
P3

ti
m

e

…

* or simd construct, see part 2 of this course

2024-03-05 72Introduction to OpenMP Part 1

ordered clause restrictions

▪ clause

▪ n specifies how many perfectly nested loops are associated

▪ n must be ≤ no. of associated loops (by collapse)

▪ if n is unspecified, the same no. as specified for collapse is used

▪ if n is specified linear clause must not be specified

▪ C++: if n is specified, assoc. loops must not be range-based loops

▪ associated loops must be rectangular

for … ordered[(n)] do … ordered[(n)]

2024-03-05 73Introduction to OpenMP Part 1

nowait clause

▪ no implicit barrier at the end of the

loop

▪ threads finished early do not have

to wait and can proceed

▪ might lead to better utilization of

resources

#pragma omp parallel

{

#pragma omp for nowait

for (...) { /* first loop */ }

/* work without race between

the two loops */

#pragma omp for nowait

for (...) { /* second loop */ }

/* more work without race */

} /* all threads will wait here */WARNING: use nowait only if no

race-conditions between the loop

and the following code exist
!$omp do

do i = 1, n

...

end do

!$omp end do nowait

for Fortran

place at the end
directive

Canonical Loop Forms

2024-03-05 76Introduction to OpenMP Part 1

Canonical Loop Forms

▪ do/for (and other constructs) require a well formed loop

for (range-decl : range-expr)

decl/expr as

defined by C++

• range-expr must be

invariant to outer loops

• derived iterator must

be a random-access-

iterator

for (init-expr; test-expr; incr-expr)

var = lb

int-type var = lb

ptr-type var = lb

random-access-it it = lb

var op ub

ub op var

op: <, <=, >, >=, !=

++var, var++,

--var, var--,

var += incr,

var -= incr,

var = var + incr,

var = incr + var,

var = var - incr

loop iteration variable var

must not be modified by

intervening code or loop

body

only one

variable

allowed

C/C++: C++:

lb & ub

loop invariant to

outermost

associated loop

incr:

• integer expression

• loop invariant to

associated outermost loop

2024-03-05 77Introduction to OpenMP Part 1

Canonical Loop Forms

▪ do/for (and other constructs) require a well formed loop

DO var = lb, ub[, incr]

…

END DO

loop iteration variable var

must not be modified by

intervening code or loop body

lb & ub

loop invariant to

outermost

associated loop

integer type

Fortran:

• integer expression

• loop invariant to

associated outermost loop

do ...

[intervening-code]

do ...

...

end do

[intervening-code]

end do

Loop Nests

▪ collapse(n) allows for associating

loops to for/do construct

▪ associated nested loops must meet

certain requirements

▪ intervening-code optional

▪ if not present: perfectly nested loop

nest

▪ must not contain OpenMP

directive/API call in region

for (...)

{

[intervening-code]

for (...) {

...

}

[intervening-code]

}

must be of the form as

described on previous

slides

more loops possible

C/C++:

▪ no iteration statement

▪ no break, no continue

for enclosing loop

Fortran:

▪ no loops

▪ no array expression

▪ no exit, no cycle

2024-03-05 79Introduction to OpenMP Part 1

Exercise

▪ parallelize ray tracer

Worksharing Constructs: single, sections

2024-03-05 81Introduction to OpenMP Part 1

single Construct

▪ execute structured block by only

one thread

▪ all other threads wait in impl.

barrier at the end

▪ remove barrier with nowait

▪ which thread executes the block is

implementation defined

▪ might change from run to run

▪ requires surrounding parallel

region

#pragma omp parallel

{

/* work done by every thread */

#pragma omp single

{

/* executed by only one thread */

} /* impl. barrier */

/* work done by every thread */

}

single [clauses]

private,

firstprivate,

copyprivate,

nowait

parallel

single

impl. barrier

end parallel

work

2024-03-05 82Introduction to OpenMP Part 1

copyprivate clause

▪ at the end of a single clause:

broadcast a private variable's value to the

other thread’s variable with the same

name

#pragma omp parallel

{

int i = 0;

#pragma omp single copyprivate(i)

{

i = omp_get_thread_num();

}

/* for all threads i=<thread id> of

thread that executed the single

region */

}

parallel

single copyprivate(i)

impl. barrier

end parallel

i=2

i=0 i=0 i=0 i=0

i=2 i=2 i=2

thread id 0 1 2 3

sections Construct

▪ distribute different structured

blocks to threads

▪ syntax:

▪ requires a parallel region

▪ each section marks a structed

block to be distributed

▪ implicit barrier at the end of
sections construct

▪ remove with nowait

▪ mapping of structured blocks to

threads is implementation defined

#pragma omp parallel

#pragma omp sections

{

#pragma omp section

work1();

#pragma omp section

work2();

} /* impl. barrier */

sections [clauses]

section

first section

directive is
optional

2024-03-05Introduction to OpenMP Part 1 83

private, firstprivate,

lastprivate,

reduction, nowait

parallel

sections

impl. barrier

end parallel

work1() work2()

Constructs: master, masked

2024-03-05 85Introduction to OpenMP Part 1

master construct – deprecated

▪ syntax:

▪ equivalent to

▪ execute structured block by thread

with ID 0

▪ no implicit barrier at the end

▪ deprecated since v5.1 in favor of
masked

master

structured block

parallel

end parallel

master

work2

work2
work2

work2

work1 work1
work1

work1

structured

block

#pragma omp parallel

{

/* work1 */

#pragma omp master

/* executed by thread 0 */

/* work2 */

}

tid 0

master
master

master

if (omp_get_thread_num() == 0) {

/* structured block */

}

2024-03-05 86Introduction to OpenMP Part 1

masked construct

▪ execute structured block only by

certain threads

▪ syntax:

▪ without filter, thread with id 0 is

used

▪ expr in filter returns the thread id(s)

to use

▪ executing thread compares value of
expr with its ID

▪ no barrier on entry or end of

construct

▪ replaces deprecated master

construct since v5.1

masked [filter(expr)]

≥ v5.1

#pragma omp parallel num_threads(2)

{

#pragma omp masked filter(1)

{

/* executed by thread 1 */

} /* no barrier here */

...

}

#pragma omp parallel

{

#pragma omp masked

{ /* tid 0 */ }

...

}

#pragma omp parallel

{

#pragma omp master

{ /* tid 0 */ }

...

}

Synchronization: critical construct

2024-03-05 88Introduction to OpenMP Part 1

critical construct

▪ useful for coordinating access to

shared resources

▪ associated block can only be

entered by one thread at a time

▪ all critical regions with the

same name belong together

▪ all unnamed critical regions

belong together

#pragma omp parallel

{

/* work */

#pragma omp critical

{ … }

/* more work */

}

work

critical

region

more

work

work

critical

region

wait to

enter

more

work

work

critical

region

wait to

enter

more

work

syntax: critical [(name)]

structured-block

89Introduction to OpenMP Part 1

critical construct

#pragma omp parallel

{

/* work1 */

#pragma omp critical

{ ... } /* 1 */

/* work2 */

#pragma omp critical

{ ... } /* 2 */

/* work3 */

}

C/C++:

▪ if the two critical regions don’t have to be
exclusive to each other the name argument

provides a way to lift this restriction by

giving each region a different name

work1

critical

region 1

work2

work1

critical

region 1

wait to

enter

work2

work1

critical

region 1

wait to

enter

work2
critical

region 2

wait for

enter

critical

region 2

critical

region 2

wait for

enter Bwork3

work3

work3

wait for

enter

2024-03-05

2024-03-05 90Introduction to OpenMP Part 1

critical construct

work1
#pragma omp parallel

{

/* work1 */

#pragma omp critical(A)

{ ... }

/* work2 */

#pragma omp critical(B)

{ ... }

/* work3 */

}

critical

region A

work2

work1

critical

region A

wait to

enter A

work2

work1

critical

region A

wait to

enter A

work2

critical

region B
wait for

enter B

critical

region B

critical

region B

wait for

enter B

work3

work3

work3

C/C++:

▪ if the two critical regions don’t have to be
exclusive to each other the name argument

provides a way to lift this restriction by

giving each region a different name

2024-03-05 91Introduction to OpenMP Part 1

critical construct

!$omp parallel

! work1

!$omp critical(A)

...

!$omp end critical(A)

! work2

!$omp critical(B)

...

!$omp end critical(B)

! work3

!$omp end parallel

end critical requires the same

name as the corresponding
critical directive

Fortran:

2024-03-05 92Introduction to OpenMP Part 1

critical construct

▪ the exclusive access to critical

regions

▪ without a name

▪ or with the same name

works throughout the application

▪ is not restricted to the lexically

surrounding code

void work1(var) {

#pragma omp critical

{ /* work on var */ }

}

void work2(var) {

#pragma omp critical

{ /* work on var */ }

}

critical regions in work1 and work2

will never be entered by two
threads at the same time

2024-03-05 93Introduction to OpenMP Part 1

critical construct

Performance:

▪ keep amount of code inside critical regions as short as possible

▪ reduces amount of waiting time for other threads

▪ for coordinating access to single variables atomic construct might be

better suited

Synchronization: Atomics

2024-03-05 96Introduction to OpenMP Part 1

atomic update

▪ update a storage location atomically

▪ read,

▪ compute,

▪ write

▪ mutually exclusive to all other

threads using atomic updates

▪ uses hardware instructions,

if available

▪ faster than a critical region

▪ requirements regarding alignment

have to be met

x++; x--;

++x; --x;

x op= expr;

x = x op expr;

x = expr op x;

x = x op expr

x = expr op x

x = intr(x, expr-list)

x = intr(expr-list, x)

#pragma omp atomic [update]

update-expr

!$omp atomic

update-expr

!$omp end atomic

u
p
d
a
t
e
-
e
x
p
r

u
p
d
a
t
e

-
e
x
p
r

+, *, -, /, &, ^, |, <<, >>

o
p

+, *, -, /, .AND., .OR.,
.EQV., .NEQV.o

p

lvalue of scalar type

type must be scalar

scalar var of

intrinsic type

MAX, MIN, IAND, IOR, IEOR

scalar expression

i
n
t
r

C/C++

Fortran

default

performed as if it is one

operation and other

threads cannot interfere

atomic update Examples

▪ counting threads ▪ counting even and odd numbers

int counter = 0;

#pragma omp parallel

{

#pragma omp atomic

counter += 1;

}

int histogram[2] = {0, 0};

#pragma omp parallel for

for (int i = 0; i < N; ++i) {

#pragma omp atomic

++histogram[i % 2];

}

WARNING: don't do this in real code, performance is poor

often providing each thread with its own data + reduction yields a better solution

2024-03-05 98Introduction to OpenMP Part 1

atomic read and write

▪ atomically read/write value

▪ requires specification of clause:
read / write

▪ further clauses:

▪ capture: obtain original or updated

value

▪ compare: conditionally update

variable

#pragma omp atomic read

v = x

!$omp atomic read

v = x

!$omp atomic read

!$omp atomic write

x = expr

!$omp atomic write

#pragma omp atomic write

x = expr

≥v5.0

C/C++

Fortran

ensure value of x is read/written

atomically, no part of x can change

until after the operation

2024-03-05 99Introduction to OpenMP Part 1

atomic capture

▪ atomically update a value and keep the value before/after the update

▪ before: fetch-and-op

▪ after: op-and-fetch

#pragma omp atomic capture

• v = update-expr;

• { v = x; update-expr; }

• { update-expr; v = x; }

captured value

updated value

!$omp atomic capture

statement

v = x

!$omp end atomic

!$omp atomic capture

v = x

statement

!$omp end atomic

C/C++ Fortran

#pragma omp atomic capture

{ v = x; x += counter; }

#pragma omp atomic capture

{ x += counter; v = x; }

2024-03-05 100Introduction to OpenMP Part 1

atomic capture Example

struct items_t { ... };

int n_items = ...;

struct items_t * items = ...;

int cur_idx = 0;

#pragma omp parallel shared(n_items, items, cur_idx)

{

int idx;

do {

#pragma omp atomic capture

{ idx = cur_idx; ++cur_idx; }

if (idx < n_items) process(&items[idx]);

} while (idx < n_items);

}

WARNING: other constructs might be suited better

T0 T1 T2 cur_idx

idx
++

idx
++

idx
++

idx

++
idx

++

Synchronization: Locks

2024-03-05 102Introduction to OpenMP Part 1

Locks

▪ runtime functions for mutual exclusion

▪ locks are represented by variables

▪ task that owns a lock (successfully set a lock) can continue

▪ two types

▪ simple locks

▪ can only be locked if unlocked

▪ nested locks

▪ owning task can lock multiple times

▪ owning task must unlock the lock

the same number of times it locked it

omp_nest_lock_t

integer (kind=omp_nest_lock_kind)

omp_lock_t

integer (kind=omp_lock_kind)

C/C++

Fortran

C/C++

Fortran

2024-03-05 103Introduction to OpenMP Part 1

Simple Locks

▪ init:

▪ lock

▪ set (blocking lock):

▪ on return lock is locked, task owns the lock

▪ if already locked, waits until lock becomes unset

▪ dead lock if owning task tries to set the lock again

▪ test (non-blocking lock)

▪ true: if lock was set

▪ false: lock was not set, already set by another task

▪ unspecified behavior if calling task already owns the lock

▪ unset (unlock):

▪ lock must be in locked state

▪ task unlocking must own the lock

▪ destroy:

▪ every other state transition is non-conforming

uninitialized

unlocked

locked

init destroy

setunset
test

omp_init_lock(omp_lock_t *)

omp_set_lock(omp_lock_t *)

omp_unset_lock(omp_lock_t *)

omp_destroy_lock(omp_lock_t *)

omp_test_lock(omp_lock_t *)

seriallparallel

Example

typedef struct

{

omp_lock_t lock;

size_t value;

} item;

...

size_t n_items = 10;

size_t n_indices = 1000;

item items[n_items];

for (size_t i = 0; i < n_items; ++i) {

omp_init_lock(&items[i].lock);

}

size_t indices[n_indices];

for (size_t i = 0; i < n_indices; ++i) {

indices[i] = rand() % n_items;

}

#pragma omp parallel for

for (size_t i = 0; i < n_indices; ++i) {

item * it = &items[indices[i]];

omp_set_lock(&it->lock);

++it->value;

omp_unset_lock(&it->lock);

}

for (size_t i = 0; i < n_items; ++i) {

omp_destroy_lock(&items[i].lock);

}

threads

ti
m

e

i
t
e
m
s
[
0
.
.
9
]

one iteration of
parallel for loop

seriallparallel

2024-03-05 105Introduction to OpenMP Part 1

Nested Locks

▪ behave similar to simple locks except that

a task owning a lock can lock it multiple

times

▪ a lock reaches it unlocked state if it is

unlocked as many times it was locked

▪ must happen by the same task, as only the

owning task can lock it multiple times

▪ similar routines like simple locks, named

▪ every other state transition is non-conforming

omp_*_nest_lock(omp_nest_lock_t*)

uninitialized

unlocked

locked

init destroy

setunset

unset/set/test

test

Thread Private Memory: threadprivate directive

2024-03-05 107Introduction to OpenMP Part 1

threadprivate directive

▪ threadprivate variables are

▪ preserved over parallel regions (with

restrictions)

▪ tied to the thread

▪ global or static variables, replicated for

each thread

▪ outside parallel regions only primary thread
can access its threadprivate variables

thread threadthread

memory

private private private

thread
private

thread
private

thread
private

private private private

2024-03-05 108Introduction to OpenMP Part 1

threadprivate directive

▪ threadprivate directive declares a

variable thread private

▪ initialized for threads that encounter

definition

▪ uninitialized for remaining threads

▪ values of threadprivate variables are

preserved between parallel regions for
threads != initial thread, iff:

▪ not nested parallel regions

▪ both regions use the same no. of threads

and affinity policy

▪ no order construct that specifies
concurrent

▪ OMP_DYNAMIC is false at entry of both

regions

static int id = 0;

#pragma omp threadprivate(id)

#pragma omp parallel

id = omp_get_thread_num();

printf("pt: %d\n", id);

#pragma omp parallel

printf("%d", id);

declare id threadprivate

initialized only for thread 0

new threads get their

own (uninitialized)
id variable

2024-03-05 109Introduction to OpenMP Part 1

copyin clause

▪ copyin clause of parallel construct

▪ propagate value of primary thread to
other threads executing parallel

region

static int id = 1;

#pragma omp threadprivate(id)

#pragma omp parallel copyin(id)

printf("id: %d\n", id);

thread threadthread

memory

id = 1 id = ? id = ?

only threadprivate

variables are allowed

parallel copyin(id)

memory

id = 1 id = 1 id = 1

parallel copyin(id)

b
e

fo
re

e
n
te

ri
n
g

p
a

ra
lle

l
re

g
io

n
a

ft
e

r
e

n
te

ri
n
g

p
a

ra
lle

l
re

g
io

n

Thread Affinity

2024-03-05 111Introduction to OpenMP Part 1

Thread Affinity

▪ controls to which places threads are assigned

▪ a.k.a. thread binding, thread pinning

0 1 16 17 18 19 34 35 36 37 52 53 54 55 70 71

L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

L3 L3 L3 L3

memory memory memory memory

▪ Why does it matter?

▪ use shared/separate resources

▪ avoid thread migration

cores

cache

levels

2024-03-05 112Introduction to OpenMP Part 1

Places – Where Threads Can Be Executed

▪ env. var.

▪ values can be an abstract name

▪ selected only a certain amount:
abstract-name(count)

▪ hardware ids of cores, format examples
▪ <id>[,<id>[,…]]

▪ {<ids>}

▪ {<ids>},{<ids>},…

▪ {<ids>}[:<len>[:<stride>]]

OMP_PLACES

OMP_PLACES="0,2,4,6,8"

OMP_PLACES="{0,1},{2,3}"

OMP_PLACES="{0}:5:2"

abstract name description

threads HW threads, a.k.a. SMT-threads, virtual cores

cores physical CPU cores

ll_caches cores sharing a last level cache

numa_domains cores belonging to the same NUMA domain

sockets cores belonging to a socket

what is supported depends

on the OpenMP version

OMP_PLACES="cores"

OMP_PLACES="cores(4)"

OMP_PLACES="sockets"

OMP_PLACES="sockets(2)"

2024-03-05 113Introduction to OpenMP Part 1

Control Affinity Policy

▪ env. var. for setting affinity policy

OMP_NUM_THREADS=4

OMP_PLACES=cores

spread

close

OMP_PROC_BIND

value description

false disable affinity, proc_bind clause (parallel construct) is ignored

true enable affinity, strategy is implementation defined

close bind threads to adjacent places

→typically used low latency

spread distribute threads equally over available places

→ typically used for high bandwidth or separate resources

primary bind all threads to the place of the initial thread

OMP_PROC_BIND=

2024-03-05 114Introduction to OpenMP Part 1

Show where threads are bound to

▪ env. var.

▪ print where threads are bound to

OMP_DISPLAY_AFFINITY=true

$ OMP_NUM_THREADS=6 OMP_PLACES=cores \

OMP_PROC_BIND=true OMP_DISPLAY_AFFINITY=true ./a.out

level 1 thread 0x7f07a55e77c0 affinity 0-1

level 1 thread 0x7f07a51ff640 affinity 2-3

level 1 thread 0x7f07a49fe640 affinity 4-5

level 1 thread 0x7f07a41fd640 affinity 6-7

level 1 thread 0x7f07a39fc640 affinity 8-9

level 1 thread 0x7f07a31fb640 affinity 10-11

SMT enabled, i.e. one

physical core houses
two virtual cores

OpenMP Runtime Functions and Environment Variables

115

2024-03-05 116Introduction to OpenMP Part 1

Runtime Functions

▪ get id of current thread
▪ int omp_get_thread_num(void);

▪ integer function omp_get_thread_num()

▪ get number of threads in current region (sequential or parallel)
▪ int omp_get_num_threads();

▪ integer function omp_get_num_threads()

▪ get maximum number of threads in the next parallel region without a
num_threads clause

▪ int omp_get_max_threads();

▪ integer function omp_get_max_threads()

to use API functions:
C/C++: #include <omp.h>
Fortran: use omp_lib or include "omp.h"

2024-03-05 117Introduction to OpenMP Part 1

Runtime Functions

▪ get number of processors/cores
▪ int omp_get_num_procs();

▪ integer function omp_get_num_procs()

▪ get if inside a parallel region (true/false)
▪ int omp_in_parallel();

▪ logical function omp_in_parallel()

▪ print information about OpenMP
▪ void omp_display_env(int verbose);

▪ subroutine omp_display_env(verbose)

logical,intent(in) :: verbose

▪ if verbose = true→ print vendor specific information too

2024-03-05 118Introduction to OpenMP Part 1

Runtime Functions

▪ get elapsed time in seconds since some point in time
▪ double omp_get_wtime();

▪ double precision function omp_get_wtime()

▪ mostly useful for measuring durations

▪ might not be synchronized between threads

▪ resolution in seconds of omp_get_wtime
▪ double omp_get_wtick();

▪ double precision function omp_get_wtick()

t = omp_get_wtime();

/* work */

dur = omp_get_wtime() – t;

2024-03-05 119Introduction to OpenMP Part 1

Environment Variables

▪ OMP_NUM_THREADS=n

▪ use n threads for parallel regions

▪ priority: OMP_NUM_THREADS < omp_set_num_threads()< num_threads clause

▪ OMP_DYNAMIC=true|false

▪ if true the runtime may use a different number of threads for executing parallel

regions

▪ OMP_THREAD_LIMIT=n

▪ maximum number of threads to use

▪ OMP_STACKSIZE=n[BKMG]

▪ stack size of OpenMP threads (not including the initial thread)

▪ without unit, KiB (1024 B) are assumed, units K, M, G are base 2 based

▪ often: increase for Fortran, if arrays don't fit onto the stack

2024-03-05 120Introduction to OpenMP Part 1

Environment Variables

▪ OMP_WAIT_POLICY=active|passive

▪ hint of how waiting threads should behave

▪ active: actively check for work

▪ passive: might sleep when waiting

▪ OMP_DISPLAY_AFFINITY=true|false

▪ print to which cores OpenMP threads are bound when created

2024-03-05 121Introduction to OpenMP Part 1

Environment Variables

▪ OMP_SCHEDULE=[modifier:](static|dynamic|guided|auto)[,chunk]

▪ schedule to use for loops with clause schedule(runtime)

▪ modifier: optional, can be monotonic or nonmonotonic

▪ chunk: optional, chunk size

▪ OMP_MAX_TASK_PRIORITY=n

▪ maximum task priority that can be used in priority clause of task construct

▪ OMP_DISPLAY_ENV=true|false|vebose

▪ print information about OpenMP settings

▪ verbose → print vendor specific information too

▪ use env. var. OMP_AFFINITY_FORMAT to change output

2024-03-05 122Introduction to OpenMP Part 1

OMP_DISPLAY_ENV example

> OMP_DISPLAY_ENV=true ./binary

OPENMP DISPLAY ENVIRONMENT BEGIN

_OPENMP='201611'

[host] OMP_AFFINITY_FORMAT='OMP: pid %P tid %i thread %n bound to OS proc set {%A}'

[host] OMP_ALLOCATOR='omp_default_mem_alloc'

[host] OMP_CANCELLATION='FALSE'

[host] OMP_DEBUG='disabled'

[host] OMP_DEFAULT_DEVICE='0'

[host] OMP_DISPLAY_AFFINITY='FALSE'

[host] OMP_DISPLAY_ENV='TRUE'

[host] OMP_DYNAMIC='FALSE'

[host] OMP_MAX_ACTIVE_LEVELS='1'

[host] OMP_MAX_TASK_PRIORITY='0'

[host] OMP_NESTED: deprecated; max-active-levels-var=1

[host] OMP_NUM_TEAMS='0'

[host] OMP_NUM_THREADS: value is not defined

[host] OMP_PLACES: value is not defined

[host] OMP_PROC_BIND='false'

[host] OMP_SCHEDULE='static'

[host] OMP_STACKSIZE='8M'

[host] OMP_TARGET_OFFLOAD=DEFAULT

[host] OMP_TEAMS_THREAD_LIMIT='0'

[host] OMP_THREAD_LIMIT='2147483647'

[host] OMP_TOOL='enabled'

[host] OMP_TOOL_LIBRARIES: value is not defined

[host] OMP_TOOL_VERBOSE_INIT: value is not defined

[host] OMP_WAIT_POLICY='PASSIVE'

OPENMP DISPLAY ENVIRONMENT END

Resources

2024-03-05 124Introduction to OpenMP Part 1

Resources

▪ https://www.openmp.org/specifications/

▪ OpenMP API x.y Specification

▪ OpenMP API x.y Examples

▪ OpenMP API x.y Reference Guide

▪ some kind of cheat sheet

▪ Books:

▪ B. Chapman, G. Jost, R. v. d. Pas: Using OpenMP. MIT Press, 2007, ISBN

978-0262533027

▪ R. v. d. Pas, E. Stotzer, C. Terboven: Using OpenMP – The Next Step. MIT

Press, 2017, ISBN 978-0-262-53478-9

highly

recommended

https://www.openmp.org/specifications/

