NHRJFAU

Node-Level Performance Engineering

Introduction




Dimensional gymnastics

= 1 cycle = smallest unit of time on a CPU (“heartbeat”)

= Clock speed of typical CPU: 2.4 Gey/s (or GHz)
= Basic unit of work: Floating-point operation (Flop)

= Typical peak performance of 20-core CPU: P, = 1536 Gflop/s = 1.536 Tflop/s

15361097122 Flops

= How many Flops per cycle per core is that? =
© any PSP y P 2000res-2.4-109% cy-core

= Typical duration of a double precision multiply: 4 cycles

> How much time is that? —27 =1.67-107% = 1.67 ns

= Basic unit of traffic: Byte
= Unit of bandwidth: Bytes/s

= Typical memory bandwidth: 160 Gbytes/s = 1.6 - 10"" Bytes/s

160-10932%es

. i ? S —
How many bytes per cycle is that” 201050 67

Bytes
cy

Node-level Performance Engineering Tutorial (c) NHR@FAU 2022



Scalability Myth: Code scalabillity is the key issue

1SOMP PARALLEL DO
do k =1, Nk
do j=1, Nj; doi=1, Ni
y(i,j, k)= b*( x(i-1,3,k)+ x(i+l,j, k)+ x(i,j-1,k)+
x(i,3+1,k)+ x(i,3,k-1)+ x(i,3,k+1))

enddo; enddo

enddo i |
1SOMP END PARALLEL DO 8- ,
- 3D Stencil Update
7 ("Jacobi")
Changing only the compile options -
makes ’FhIS code scalable on an 8- | =2 Version 1 ,00
core chip - [** Version 2 Prepared for
| ][ ] e ] e o ] o ] o o o | the highly
P P|P|P|P|P|P|P. - parallel era!
! L:: L:: I::I I::I I::I I.:: | L:: L:: : - . . .
| L3 i i
| : | | -03 -xAVX
"t 1_
—— I | | | | | | | |
1 2 3 4 5 6 7 8

#cores

Node-level Performance Engineering Tutorial (c) NHR@FAU 2022



Scalability Myth: Code scalabillity is the key issue

!SOMP PARALLEL DO
dok =1 Nk
do j = , Nj; do i =1 , Ni

. P~

y(i,j,k)=>b*( =x(i-1,3j,k)+ x(i+l,3,k)+ x(1i,3-1,k)+
x(1,3,k-1)+ x(i,j, k+1))

x(i,j+1 ,k)+
enddo; enddo

enddo

1SOMP END PARALLEL DO

Upper limit from simple performance
model:
35 GB/s & 24 Byte/update

1

1

1

1

Lo |[wan || o |[wi0 [[wd0 |[ Lip || e || 110
T Lz L2 L2 L2 Lz Lz L
I L3

I - -

|| M Imerface .
e oo e e (i S—— oo

1500

00

@nance [IMLUP/s]

3D Stencil Update
("Jacob1")

Single core/socket efficiency
is key issue!

#cores

Node-level Performance Engineering Tutorial

(c) NHR@FAU 2022




A conversation

From a student seminar on “Efficient programming of modern multi- and manycore processors”

Student: | have implemented this algorithm on the GPGPU, and it solves a system with 26546
unknowns in 0.12 seconds, so it is really fast.

Me: What makes you think that 0.12 seconds is fast?

Student: It is fast because my baseline C++ code on the CPU is about 20 times slower.

Node-level Performance Engineering Tutorial (c) NHR@FAU 2022



Questions to ask in high performance computing

* Do | understand the performance behavior of my code?
= Does the performance behave in accordance with a model | have made?

= What is the optimal performance for my code on a given machine?
= High Performance Computing == Computing at a bottleneck

= Can | change my code so that the “optimal performance” gets higher?
= Circumventing/ameliorating the impact of the bottleneck

= My model yields wrong predictions — what's wrong?
= This is the good case, because you learn something
= Performance monitoring / microbenchmarking may help clear up the situation

Node-level Performance Engineering Tutorial (c) NHR@FAU 2022



	Node-Level Performance Engineering 
	Dimensional gymnastics
	Scalability Myth: Code scalability is the key issue
	Scalability Myth: Code scalability is the key issue
	A conversation
	Questions to ask in high performance computing

