
Modern computer architecture

An introduction for software developers



2Basic Node Architecture

Multi-core today: Intel Xeon Ice Lake (2021)

 Xeon “Ice Lake SP” (Platinum/Gold/Silver/Bronze):
Up to 40 cores running at 2+ GHz (+ “Turbo Mode” 3.7 GHz),

 Simultaneous Multithreading
 reports as 80-way chip

 ~15 Billion Transistors / ~10 nm / up to 270 W

 Die size: up to ~600 mm2

 Clock frequency:
flexible 

2-socket server

. . . . . .

Optional: “Sub-NUMA 
Clustering” (SNC) mode
(a.k.a.) Cluster-on-Die

https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595

(c) NHR@FAU 2022

https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595


A deeper dive into core architecture



4Basic Node Architecture

Stored Program Computer

C
PU

Control Unit

Execution Unit

Load-Store Unit

M
em

or
y

Program code Binary data

f3 0f 58 04
82 48 83 c0
39 77 0f 58
f3 0f 58 04
82 48 83 c0
39 77 0f 58 

addss
add
cmp
ja
mulpd
add

f3 0f 58 04
82 48 83 c0
39 77 0f 58
f3 0f 58 04
82 48 83 c0
39 77 0f 58 

f3 0f 58 04
82 48 83 c0
39 77 0f 58
f3 0f 58 04
82 48 83 c0
39 77 0f 58 

1.056
1000
.label
2983
-493.98
true

Primary work Secondary work

1 Instruction execution

2 Data transfers

(c) NHR@FAU 2022



..LABEL:
movsd xmm2, [rdi+rdx*8]
addsd xmm1, xmm2
inc rdx
cmp rax, rdx
jb ..LABEL

5Basic Node Architecture

From high level code to actual execution
for(int i=0; i<N; i++){
sum += a[i];

}

sum in 
register xmm1

N in 
register rax

C
om

pi
le

r

Conditional jump to label if 
loop continues

Counter increment

addsd: Add 2nd argument to 1st argument 
and store result in 1st argument

Compare register 
content

i in 
register rdx

sizeof(double)

Load a[i] to register xmm2

&a[0]

(c) NHR@FAU 2022



6Basic Node Architecture

General-purpose cache based microprocessor core

 Implements “Stored Program Computer” 
concept (Turing 1936)

 Similar designs on all modern systems
 (Still) multiple potential bottlenecks

The clock cycle is the “heartbeat” of the core

Stored-program computer

Modern CPU core

(c) NHR@FAU 2022



Pipelining, Superscalarity, SIMD, SMT

In-core features



8Basic Node Architecture

Important in-core features
Pipelining: 

Instruction execution in 
multiple steps

Fetch Instruction 4
from L1I

Decode 
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode 
Instruction 2

Decode 
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 3
from L1I

Decode 
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode 
Instruction 2

Decode 
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 2
from L1I

Decode 
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode 
Instruction 2

Decode 
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 1
from L1I

Decode 
Instruction 1

Execute
Instruction 1

Fetch Instruction 5
from L1I

Decode
Instruction 5

Decode 
Instruction 9

Execute
Instruction 5

Fetch Instruction 9
from L1I

Fetch Instruction 13
from L1I

Superscalarity:
Multiple instructions

per cycle

Simultaneous Multi-Threading:
Multiple instruction sequences in parallel

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

+

+

+

+

Single Instruction Multiple Data: 
Multiple operations per instruction

(c) NHR@FAU 2022



(c) NHR@FAU 2022Basic Node Architecture

Instruction level parallelism (ILP): pipelining, superscalarity

Pipelining

Independent instructions
(of one kind, e.g., ADD):

Superscalar execution
across multiple pipelines

4-way superscalar:

Massive boost in 
instruction throughput

 Instructions can be 
reordered on the fly

I5 I4 I3 I2 I1

1 2 3 4 5Cycle
12345

Throughput: 
1 instruction per cycle after pipeline is full
 5x speedup

Single instruction takes 5 cycles (latency)

9

pipeline stages



10Basic Node Architecture

Superscalar out-of-order execution and steady state
Instruction execution

Hardware takes care of executing instructions as soon as their operands are available:
Out-Of-Order (OOO) execution

for(int i=1; i<n; ++i) 
a[i] = a[i] + c;

LOAD
(Latency: 4 cy) ADD

(Latency: 3cy)

STORE
(Latency: 2 cy)

“Steady state:”
3 instructions/cy

(“3-way superscalar execution”)

Instructions Per Cycle: IPC=3
Cycles Per Instruction: CPI=0.33

Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 6
Cycle 7
Cycle 8
Cycle 9
Cycle 10
Cycle 11
Cycle 12
Cycle 13
Cycle 14
Cycle 15
Cycle 16
…

load a[1]
load a[2]
load a[3]
load a[4]
load a[5] add a[1]=c,a[1]
load a[6] add a[2]=c,a[2]
load a[7] add a[3]=c,a[3]
load a[8] add a[4]=c,a[4] store a[1]
load a[9] add a[5]=c,a[5] store a[2]
load a[10] add a[6]=c,a[6] store a[3] 
load a[11] add a[7]=c,a[7] store a[4] 
load a[12] add a[8]=c,a[8] store a[5]
load a[13] add a[9]=c,a[9] store a[6]
load a[14] add a[10]=c,a[10] store a[7]
load a[15] add a[11]=c,a[11] store a[8]
load a[16] add a[12]=c,a[12] store a[10]
… … …

(c) NHR@FAU 2022



11Basic Node Architecture

Simultaneous multi-threading (SMT)

St
an

da
rd

 c
or

e
2-

w
ay

 S
M

T

(c) NHR@FAU 2022



12Basic Node Architecture

SIMD processing
 Single Instruction Multiple Data (SIMD) operations allow the execution of the same operation on “wide” 

registers from a single instruction
 x86 SIMD instruction sets:

 SSE: register width = 128 Bit  2 double precision floating point operands 
 AVX: register width = 256 Bit  4 double precision floating point operands
 AVX-512: … you guessed it!

 Adding two registers holding double precision floating point operands: 

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A[
0]

B[
0]

C
[0

]64 Bit

25
6 

bi
t

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:
R2 ADD [R0,R1]

SIMD execution:
V64ADD [R0,R1] R2

(c) NHR@FAU 2022



13Basic Node Architecture

Single-core DP floating-point performance

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 � 𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹 � 𝑛𝑛𝑆𝑆𝑆𝑆𝐹𝐹𝑆𝑆 � 𝑓𝑓
Super-

scalarity
FMA
factor

SIMD
factor

Clock
Speed

Typical
representatives

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹

[inst./cy] 𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹
𝑛𝑛𝑆𝑆𝑆𝑆𝐹𝐹𝑆𝑆

[ops/inst.] @market Ex. model 𝑓𝑓 [Gcy/s] 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[GF/s]

Intel Nehalem 2 1 2 Q1/2009 X5570 2.93 11.7

Intel Sandy Bridge 2 1 4 Q1/2012 E5-2680 2.7 21.6

Intel Haswell 2 2 4 Q3/2014 E5-2695 v3 2.3 36.8

Intel Skylake 2 2 8 Q3/2017 Gold 6148 2.4 76.8

Intel Ice Lake 2 2 8 Q2/2021 Platinum 8360Y 2.4 76.8

AMD Zen (Naples) 2 2 2 Q1/2017 Epyc 7451 2.3 18.4

AMD Zen2 (Rome) 2 2 4 Q4/2019 Epyc 7642 2.3 36.8

AMD Zen3 (Milan) 2 2 4 Q4/2020 Epyc 7713 2.0 32.0

Fujitsu A64FX 2 2 8 Q2/2020 FX700 1.8 57.6

(c) NHR@FAU 2022



Intel(R) Xeon(R) Gold 6148 CPU

Lowest frequency 
measured while running 

LINPACK

Maximum Turbo 
frequency as queried 
from the processor

AVX512 base: 1.6GHz

Basic Node Architecture

Multi-core today: Turbo mode

The processor 
dynamically overclocks 
to exploit more of the TDP 
envelope if fewer cores 
are active

(c) NHR@FAU 2022 14



Example: The sum reduction



16Basic Node Architecture

A “simple” example: The sum reduction

 Loop-carried dependency on summation variable
 Execution stalls at every ADD until previous ADD is complete

No pipelining?
No SIMD?

…In single precision on an AVX-
capable core (ADD latency = 3 cy)

How fast can this loop possibly run
with data in the L1 cache?

for (int i=0; i<N; i++){
sum += a[i];

}

(c) NHR@FAU 2022



17Basic Node Architecture

Applicable peak for the sum reduction (I)
Plain scalar code, no SIMD

LOAD r1.0  0
i  1
loop: 
LOAD r2.0  a(i)
ADD r1.0  r1.0 + r2.0
++i ? loop

result  r1.0

ADD pipes utilization:

 1/24 of ADD peak

s

SI
M

D
 la

ne
s

for (int i=0; i<N; i++){
sum += a[i];

}

SIMD lane

(c) NHR@FAU 2022



18Basic Node Architecture

Applicable peak for the sum reduction (II)
Scalar code, 3-way “modulo variable expansion”

LOAD r1.0  0
LOAD r2.0  0
LOAD r3.0  0
i  1

loop: 
LOAD r4.0  a(i)     
LOAD r5.0  a(i+1)   
LOAD r6.0  a(i+2)   

ADD r1.0  r1.0 + r4.0  # scalar ADD
ADD r2.0  r2.0 + r5.0  # scalar ADD
ADD r3.0  r3.0 + r6.0  # scalar ADD

i+=3 ? loop
result  r1.0+r2.0+r3.0

 1/8 of ADD peak

s1 s2 s3

for (int i=0; i<N; i+=3){
s1 += a[i+0];
s2 += a[i+1];
s3 += a[i+2];

}
sum = sum + s1+s2+s3;

(c) NHR@FAU 2022



19Basic Node Architecture

Applicable peak for the sum reduction (III)
SIMD vectorization (8-way MVE) x 

pipelining (3-way MVE)

LOAD [r1.0,…,r1.7]  [0,…,0]
LOAD [r2.0,…,r2.7]  [0,…,0]
LOAD [r3.0,…,r3.7]  [0,…,0]
i  1

loop: 
LOAD [r4.0,…,r4.7]  [a(i),…,a(i+7)]     # SIMD LOAD
LOAD [r5.0,…,r5.7]  [a(i+8),…,a(i+15)]  # SIMD
LOAD [r6.0,…,r6.7]  [a(i+16),…,a(i+23)] # SIMD

ADD r1  r1 + r4  # SIMD ADD
ADD r2  r2 + r5  # SIMD ADD
ADD r3  r3 + r6  # SIMD ADD

i+=24 ? loop
result  r1.0+r1.1+...+r3.6+r3.7


AD

D
 p

ea
k

s11 s21 s31

s12 s22 s32

s13 s23 s33

s14 s24 s34

s15 s25 s35

s16 s26 s36

s17 s27 s37

s10 s20 s30

for (int i=0; i<N; i+=24){
s10 += a[i+0]; s20 += a[i+8]; s30 += a[i+16];
s11 += a[i+1]; s21 += a[i+9]; s31 += a[i+17];
s12 += a[i+2]; s22 += a[i+10]; s32 += a[i+18];
s13 += a[i+3]; s23 += a[i+11]; s33 += a[i+19];
s14 += a[i+4]; s24 += a[i+12]; s34 += a[i+20];
s15 += a[i+5]; s25 += a[i+13]; s35 += a[i+21];
s16 += a[i+6]; s26 += a[i+14]; s36 += a[i+22];
s17 += a[i+7]; s27 += a[i+15]; s37 += a[i+23];

}
sum = sum + s10+s11+…+s37;

(c) NHR@FAU 2022



20Basic Node Architecture

Sum reduction
Questions
 When can this performance actually be achieved?
 No data transfer bottlenecks
 No other in-core bottlenecks 

 Need to execute (3 LOADs + 3 ADDs + 1 increment + 1 compare + 1 branch) in 3 cycles

 What does the compiler do?
 If allowed and capable, the compiler will do this automatically

 Is the compiler allowed to do this at all?
 Not according to language standards
 High optimization levels can violate language standards

 What about the “accuracy” of the result?
 Good question ;-)

(c) NHR@FAU 2022



In-cache performance (L2, L3)
Main memory performance

Memory Hierarchy



22Basic Node Architecture

Von Neumann bottleneck reloaded: “DRAM gap”

SSE2

AVX

AVX512

FMA

DP peak performance and peak main memory bandwidth for a single Intel processor (chip)

Main memory access speed not 
sufficient to keep CPU busy…

 Introduce fast on-chip caches, 
holding copies of recently used data 
items

Approx. 
15 F/B

(c) NHR@FAU 2022



23Basic Node Architecture

Memory hierarchy

You can either build a
small and fast memory
or a
large and slow memory

Purpose of many optimizations: use data in fast memory

Memory

L3 Cache

Disk

L2 Cache

L1 Cache10-9

10-8

10-7

10-4

Latency [s]

1012

1011

109

Bandwidth 
[bytes/s]

Core

(c) NHR@FAU 2022



24Basic Node Architecture

Data transfers in a memory hierarchy

Caches help with getting instructions and data to the CPU “fast”

How does data travel from memory to the CPU and back?

 Remember: Caches are organized in cache lines (e.g., 64 bytes)

 Only complete cache lines are transferred between memory
hierarchy levels (except registers)

 Registers can only “talk” to the L1 cache

 MISS: Load or store instruction does not find the data in acache
level
 CL transfer required

 Example: Array copy A(:)=C(:)

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS
ST A(1)MISS

write
allocate

evict
(delayed)

3 CL 
transfers

LD C(2..Ncl)
ST A(2..Ncl) HIT

C(:) A(:)

(c) NHR@FAU 2022



25Basic Node Architecture

Avoiding the write-allocate transfer
Disadvantages of write-allocate:

• Cache pollution (if data not needed anytime soon)
• Additional data traffic

Solution 1: 
Nontemporal stores

 A.k.a. “streaming 
stores,” store instruction 
with a “nontemporal
hint”

 Write “directly” to 
memory, ignoring the 
normal cache hierarchy

 Avoids cache pollution, 
but stored data ends up
in memory

Solution 2: 
Cache line claim

 Special instructions (e.g., 
on POWER, A64FX) or
automatic in hardware
(Arm, Intel Ice Lake)

 Core claims CL in some
level when guranteed to be
overwritten completely

 Allows stored data to
remain in cache
 does not reduce cache
pollution

(c) NHR@FAU 2022

CPU registers

Cache

Memory

CL

CPU registers

Cache

Memory

CL

(1) ST miss

(2) Claim CL (no WA)

(3) Commit ST



L1
32 KiB

L2
256 KiB

L3
25 MiB

27Basic Node Architecture

Getting the data from far away

(c) NHR@FAU 2022

!

A(:) = B(:) + C(:) * D(:)

Varying loop length,
repeat many times

IvyBridge core 2.2GHz



Memory bandwidth scaling
Node topology and performance

Multicore Chips



29Basic Node Architecture

Node topology of HPC systems

© Intel

~ 8 billion
transistors in 

500 mm2

Registers

L1 cache

L2 cache

Core

core

core

core

core

core

core

core

core

core

core

core

core
…

Chip (many cores) 

Socket

M
em

ory
M

em
ory

Socket

N
ode

(2 sockets,
possibly m

ultiple chips
per socket) 

Pipelines

L3 cache

Potential scalability
bottlenecks

(c) NHR@FAU 2022



30Basic Node Architecture

Putting the cores & caches together
AMD Epyc 7742 64-Core Processor («Rome»)

 Core features:
 Two-way SMT
 Two 256-bit SIMD FMA units (AVX2)
16 flops/cycle
 32 KiB L1 data cache per core
 512 KiB L2 cache per core

 64 cores per socket hierarchically built up from
 16 CCX with 4 cores and 16 MiB of L3 cache
 2 CCX form 1 CCD (silicon die)
 8 CCDs connected to IO device “Infinity Fabric” (memory controller & PCIe)

 8 channels of DDR4-3200 per IO device
 MemBW: 8 ch x 8 byte x 3.2 GHz = 204.8 GB/s

 ccNUMA feature (boot time option): 
 Nodes Per Socket (NPS)=1 , 2 or 4
 NPS=4  4 ccNUMA domains

Socket

(c) NHR@FAU 2022



31Basic Node Architecture

Scalable and saturating behavior
Clearly distinguish between “saturating” and “scalable” performance on the chip level

One of the most important performance signatures

shared resources 
may show 
saturating 
performance

parallel resources 
show
scalable 
performance

(c) NHR@FAU 2022



32Basic Node Architecture

Parallelism in a modern compute node

Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

Parallel resources:
 Execution/SIMD units
 Cores
 Inner cache levels
 Sockets / ccNUMA domains
 Multiple accelerators

Shared resources:
 Outer cache level per socket
 Memory bus per socket
 Intersocket link
 PCIe bus(es)
 Other I/O resources

Other I/O

1
2

3
4 5

1

2

3

4

5

6

6
7

7

8

8

9

9

10

10

How does your application react to all of those details?
(c) NHR@FAU 2022



NVIDIA “Ampere” A100
vs. 
AMD Zen2 “Rome”

Interlude:
A glance at accelerator technology



34Basic Node Architecture

Nvidia A100 “Ampere” SXM4 specs
Architecture

 54.2 B Transistors
 ~ 1.4 GHz clock speed
 ~ 108 “SM” units

 64 SP “cores” each (FMA)
 32 DP “cores” each (FMA)
 4 “Tensor Cores” each
 2:1 SP:DP 

performance

 9.7 TFlop/s DP peak (FP64)
 40 MiB L2 Cache

 40 GB (5120-bit) HBM2
 MemBW ~ 1555 GB/s (theoretical)
 MemBW ~ 1400 GB/s (measured)

𝑃𝑃𝑠𝑠𝑐𝑐𝑝𝑝𝑝𝑝𝑆𝑆𝐹𝐹 = 𝑛𝑛𝑆𝑆𝐹𝐹 ⋅ 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑛𝑛𝐹𝐹𝐹𝐹 � 𝑓𝑓

# SMs # CUDA 
cores/SM

# FP
ops/cy

𝑛𝑛𝑆𝑆𝐹𝐹 = 108
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 32
𝑛𝑛𝐹𝐹𝐹𝐹 = 2flops

cy
𝑓𝑓 = 1.4Gcy

s

© Nvidia

(c) NHR@FAU 2022



35Basic Node Architecture

Trading single thread performance for parallelism:
GPGPUs vs. CPUs

GPU vs. CPU 
light speed estimate

2 x AMD EPYC 7742 ”Rome” NVidia Tesla A100 “Ampere”

Cores@Clock 2 x 64 @ 2.25 GHz 108 SMs @ ~1.4 GHz

FP32 Performance/core 72 GFlop/s ~179 GFlop/s

Threads@STREAM ~16 ~ 100000

FP32 peak 9.2 TFlop/s ~19.5 TFlop/s

Stream BW (meas.) 2 x 180 GB/s 1400 GB/s

Transistors / TDP ~2x40 Billion / 2x225 W 54 Billion/400 W

(c) NHR@FAU 2022

~2x

~4x



Node topology and 
programming models



37Basic Node Architecture

Parallel programming models: Pure MPI
 Machine structure is invisible to user:

  Very simple programming model
  MPI “knows what to do”!?

 Performance issues
 Intranode vs. internode MPI
 Node/system topology

(c) NHR@FAU 2022



38Basic Node Architecture

Parallel programming models: Pure threading
 Machine structure is invisible to user

 Very simple programming model
 Threading SW (OpenMP, pthreads,

TBB,…) “should” know about the details
 OpenMP 4++: some support
 Performance issues
 Synchronization overhead
 Memory access
 Node topology

(c) NHR@FAU 2022



39Basic Node Architecture

Conclusions about architecture
 Performance is a result of

 How many instructions you require to implement an algorithm
 How efficiently those instructions are executed on a processor
 Runtime contribution of the triggered data transfers

 Modern computer architecture has a rich “topology”

 Node-level hardware parallelism takes many forms
 Sockets/devices – CPU: 1-4 or more, GPGPU: 1-8 
 Cores – moderate (CPU: 20-128, GPGPU: 10-100)
 SIMD – moderate (CPU: 2-16) to massive (GPGPU: 10’s-100’s) 
 Superscalarity (CPU: 2-6)

 Performance of programs is sensitive to architecture
 Topology/affinity influences overheads of popular programming models
 Standards do not contain (many) topology-aware features

 Things are starting to improve slowly (MPI 3.0, OpenMP 4.0)
 Apart from overheads, performance features are largely independent of the programming model

(c) NHR@FAU 2022


	Modern computer architecture
	Multi-core today: Intel Xeon Ice Lake (2021)
	A deeper dive into core architecture
	Stored Program Computer
	From high level code to actual execution
	General-purpose cache based microprocessor core
	In-core features
	Important in-core features
	Instruction level parallelism (ILP): pipelining, superscalarity
	Superscalar out-of-order execution and steady state
	Simultaneous multi-threading (SMT)
	SIMD processing
	Single-core DP floating-point performance
	Multi-core today: Turbo mode
	Example: The sum reduction
	A “simple” example: The sum reduction
	Applicable peak for the sum reduction (I)
	Applicable peak for the sum reduction (II)
	Applicable peak for the sum reduction (III)
	Sum reduction
	Memory Hierarchy
	Von Neumann bottleneck reloaded: “DRAM gap”
	Memory hierarchy
	Data transfers in a memory hierarchy
	Avoiding the write-allocate transfer
	Getting the data from far away
	Multicore Chips
	Node topology of HPC systems
	Putting the cores & caches together�AMD Epyc 7742 64-Core Processor («Rome»)
	Scalable and saturating behavior
	Parallelism in a modern compute node
	Interlude:�A glance at accelerator technology
	Nvidia A100 “Ampere” SXM4 specs
	Trading single thread performance for parallelism:�GPGPUs vs. CPUs
	Node topology and �programming models
	Parallel programming models: Pure MPI
	Parallel programming models: Pure threading
	Conclusions about architecture

