
Case Study: 
Dense Matrix-Vector Multiplication



2

Dense matrix-vector multiplication in DP 

do c = 1 , NC 

do r = 1 , NR

y(r)=y(r) + A(r,c)* x(c)

enddo

enddo

(c) RRZE 2020 Dense MVM analysis

do c = 1 , NC 

tmp=x(c)

do r = 1 , NR

y(r)=y(r) + A(r,c)* tmp

enddo

enddo



3

dMVM scaling w/ OpenMP

(c) RRZE 2020 Dense MVM analysis

!$omp parallel do reduction(+:y)
do c = 1 , NC 

do r = 1 , NR
y(r) = y(r) + A(r,c) * x(c)

enddo ; enddo
!$omp end parallel do

Intel Xeon E5 2695 v3 (Haswell-EP), 2.3 GHz, CoD mode, Core Pmax=18.4 GF/s, 
Caches: 32 KB / 256 KB / 35 MB, PageSize: 2 MB; ifort V15.0.1.133; bS = 32 Gbyte/s

Roofline limit
BC = 4 Byte/Flop
bS = 32 GB/s

Single-core Roofline limit
BC = 4 Byte/Flop
bS (1core) = 14.3 GB/s?

NR=40,000; NC=10,000



4

 Vectorization strategy: 4-way inner loop unrolling
 One register holds tmp in each of its 4 entries (“broadcast”)

 Loop kernel requires/consumes 3 AVX registers 
 Extra 3-way unrolling required to overcome ADD pipeline stalls 

DMVM (DP) – Reminder on AVX vectorization

(c) RRZE 2020 Dense MVM analysis

do c = 1,NC 

tmp=x(c)

do r = 1,NR,4  ! R is multiple of 4

y(r)   = y(r)   + A(r,c)  * tmp
y(r+1) = y(r+1) + A(r+1,c)* tmp
y(r+2) = y(r+2) + A(r+2,c)* tmp
y(r+3) = y(r+3) + A(r+3,c)* tmp

enddo

enddo



5

DMVM (DP) – Single core performance vs. column height

(c) RRZE 2020 Dense MVM analysis

Intel Xeon E5 2695 v3 (Haswell-EP), 2.3 GHz, CoD mode, Core Pmax=18.4 GF/s, 
Caches: 32 KB / 256 KB / 35 MB, PageSize: 2 MB; ifort V15.0.1.133; bS = 32 Gbyte/s

Performance drops as number 
of rows (inner loop length) 
increases.

Does computational intensity 
change?

Single-core Roofline limit (BC = 4 B/F)

NR

NC=104



6

DMVM data traffic analysis

Dense MVM analysis

A(r,c)

do c = 1 , NC 
tmp=x(c)
do r = 1 , NR

y(r)=y(r) + A(r,c)* tmp
enddo

enddo

NR

y(:) is loaded and stored in each outer
iteration for c>1 update y(:) in cache

A(:,:) is loaded from memory – no
data reuse

y(:) may not fit in innermost cache 
more traffic from lower level caches for 
larger NR

tmp stays in a register during inner loop

(c) RRZE 2020

= + *

NC

Analysis: Distinguish code 
balance in memory (𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) 
from code balance in relevant 
cache level(s) (𝐵𝐵𝐶𝐶𝐿𝐿𝐿, 𝐵𝐵𝐶𝐶𝐿𝐿2,…)!



7

Code balance, reloaded!

 Code balance can be defined for any data path:

𝑉𝑉𝑖𝑖 = data volume over data path 𝑖𝑖
𝑊𝑊 = amount of work done with the data

 In principle, the Roofline model can be expressed for
those multiple bottlenecks:

 However, the perfect overlap condition is invalid for
the single-core cache hierarchy
 But code balance is still useful for qualitative analysis…

(c) RRZE 2020 Dense MVM analysis

Registers

L1

L2

L3

Memory

𝐵𝐵𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝑐𝑐𝐿𝐿𝐿

𝐵𝐵𝑐𝑐𝐿𝐿2

𝐵𝐵𝑐𝑐𝑖𝑖 =
𝑉𝑉𝑖𝑖
𝑊𝑊

𝑃𝑃 = min 𝑃𝑃max, min𝑖𝑖 �𝑏𝑏𝑆𝑆
𝑖𝑖

𝐵𝐵𝑐𝑐𝑖𝑖



8

DMVM (DP) – Single core data traffic analysis

(c) RRZE 2020 Dense MVM analysis

size(y(1:NR)) 
= 160 kB

size(y(1:NR)) 
= 16 kB

likwid-perfctr
measurements

y Exceeding inner cache size: 
 (8+8) Byte for RD + WR on y

𝐵𝐵𝐶𝐶𝐿𝐿𝐿 = 24B/2F

𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 8B/2F

𝐵𝐵𝐶𝐶𝐿𝐿2 = 24B/2F

𝐵𝐵𝐶𝐶𝐿𝐿𝐿 = 8B/2F

NR



9

Reducing traffic by blocking

(c) RRZE 2020 Dense MVM analysis

A(r,c)

do c = 1 , NC 
tmp=x(c)
do r = 1 , NR

y(r)=y(r) + A(r,c)* tmp
enddo

enddo

do rb = 1 , NR , Rb
rbS = rb
rbE = min((rb+Rb-1), NR)
do c = 1 , NC 
do r = rbS , rbE

y(r)=y(r) + A(r,c)*x(c)
enddo

enddo
enddo

NR

Rb

y(:) may
not fit into
some cache
 more
traffic for
lower level

y(rbS:rbE) 
may fit into
some cache if
Rb is small
enough
 traffic
reduction



10

Reducing traffic by blocking

(c) RRZE 2020 Dense MVM analysis

Rb

= + *

 LHS only updated once in some cache level if blocking is applied
 Price: RHS is loaded multiple times instead of once!

 How often?  NR / Rb times
 RHS traffic: NC x NR / Rb

 LHS traffic:  2 x NR

 Matrix:         NR x NC

 Without blocking:  𝑁𝑁𝑅𝑅 × 𝑁𝑁𝐶𝐶
𝑁𝑁𝑅𝑅

+ 2𝑁𝑁𝐶𝐶 + 𝑁𝑁𝑅𝑅 ≈ 3𝑁𝑁𝑅𝑅2 if 𝑁𝑁𝑅𝑅 ,𝑅𝑅𝑏𝑏 ≫ 1 and 𝑁𝑁𝐶𝐶 = 𝑁𝑁𝑅𝑅

Overall: 𝑁𝑁𝑅𝑅 × 𝐶𝐶
𝑅𝑅𝑏𝑏

+ 2 + 𝑁𝑁𝑅𝑅 ≈ 𝑁𝑁𝑅𝑅2 if 𝑁𝑁𝑅𝑅,𝑅𝑅𝑏𝑏 ≫ 1
and 𝑁𝑁𝐶𝐶 = 𝑁𝑁𝑅𝑅



11

DMVM (DP) – Reducing traffic by inner loop blocking

 “1D blocking” for inner loop
 Blocking factor Rb  cache level

 Fully reuse subset of y(rbS:rbE)
from L1/L2 cache

(c) RRZE 2020 Dense MVM analysis

do rb = 1 , NR , Rb

rbS = rb
rbE = min((rb+Rb-1), NR)

do c = 1 , NC 
do r = rbS , rbE

y(r)=y(r) + A(r,c)*x(c)
enddo

enddo

enddo

L2 cache 
blocking

L1 cache 
blocking

NR

NC=104



12

DMVM (DP) – Validation of blocking optimization

(c) RRZE 2020 Dense MVM analysis

Rb= 2000

NR



13

DMVM (DP) – OpenMP parallelization

(c) RRZE 2020 Dense MVM analysis

!$omp parallel do reduction(+:y)
do c = 1 , NC 
do r = 1 , NR

y(r) = y(r) + A(r,c) * x(c)
enddo ; enddo
!$omp end parallel do

!$omp parallel do private(rbS,rbE)  
do rb = 1 , NR , Rb
rbS = rb
rbE = min((rb+Rb-1), NR)
do c = 1 , NC 
do r = rbS , rbE

y(r) = y(r) + A(r,c) * x(c)
enddo ; enddo ; enddo
!$omp end parallel do

plain code

blocked code



14

DMVM (DP) – OpenMP parallelization & saturation

(c) RRZE 2020 Dense MVM analysis

blocking good for
single thread
performance (reduced
in-cache traffic)

memory traffic
unchanged
 saturation
unchanged!

saturation influenced
by serial performance

Intel Xeon E5 2695 v3 (Haswell-EP) CoD
2.3 GHz base clock speed, bS = 32 GB/s 

Roofline limit
BC = 4 Byte/Flop
bS = 32GB/s

So, is blocking
useless? 
 NO (see later)

Can we do 
anything to
improve 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚?
 NO, not here

single-core RL 



16

Conclusions from the dMVM example
 We have found the reasons for the breakdown of single-core 

performance with growing number of matrix rows
 LHS vector fitting in different levels of the cache hierarchy
 Validated theory by performance counter measurements

 Inner loop blocking was employed to improve code balance in L3 
and/or L2
 Validated by performance counter measurements

 Blocking led to better single-threaded performance

 Saturated performance unchanged (as predicted by Roofline)
 Because the problem is still small enough to fit the LHS at least into the L3 

cache

(c) RRZE 2020 Dense MVM analysis


	Case Study: �Dense Matrix-Vector Multiplication
	Dense matrix-vector multiplication in DP 
	dMVM scaling w/ OpenMP
	DMVM (DP) – Reminder on AVX vectorization
	DMVM (DP) – Single core performance vs. column height
	DMVM data traffic analysis
	Code balance, reloaded!
	DMVM (DP) – Single core data traffic analysis
	Reducing traffic by blocking
	Reducing traffic by blocking
	DMVM (DP) – Reducing traffic by inner loop blocking
	DMVM (DP) – Validation of blocking optimization
	DMVM (DP) – OpenMP parallelization
	DMVM (DP) – OpenMP parallelization & saturation
	Conclusions from the dMVM example

