FAU FRIEDRIj?_—_ALEXANDER
AT

N-NURNBERG

Performance Engineering

Basic skills and knowledge

Optimizing code: The big Picture

m Reduce algorithmic work
Implementation
Instruction code

Distribute work and data for optimal
utilization of parallel resources

Minimize processor work

, Avoid slow data paths

Use most effective
execution units on chip

SIMD SIMD SIMD
FMA FMA FMA
core core core

Avoid bottlenecks

Performance Engineering Basics (c) NHR@FAU 2022

Programming language influence

= Programming languages are designed to help with software engineering
requirements

= Multi-paradigm language (C++, also Fortran 2003 and newer) tend to lead
to over-engineered solutions.

= Language features do not come for free! C++ performance heavily relies
on aggressive in-lining. This often fails and makes performance fragile.

Advices:

= Keep it simple stupid! A simpler solution is a better solution.
= Extract numerically intensive tasks into simple kernels.

= Be brave when it comes to refactoring!

Performance Engineering Basics (c) NHR@FAU 2022

Performance Engineering process

Runtime profile
Algorithm/Code Application HPM performance
Analysis Benchmarking profile
For every hotspot
Performance Model Traces/HW metrics

lteratively

= Identify performance issues
= Develop performance expectation
Change runtime Optimize
configuration iImplementation

Performance Engineering Basics (c) NHR@FAU 2022

Runtime profiling with gprof

Instrumentation based with gprof
Compile with —=pg switch:
icc -pg -03 -c myfilel.c

Execute the application. During execution a file gmon.out is generated.

Analyze the results with:
gprof ./a.out | less

The output contains three parts: A flat profile, the call graph, and an alphabetical
index of routines.

The flat profile is what you are usually interested in.

Performance Engineering Basics (c) NHR@FAU 2022

Runtime profile with gprof: Flat profile

How often was

Time spent in How much time

routine itself it called was spent per call
Each sample coun as 0.01 sec®nds.

% cumulative self self tota%///

time seconds seconds calls s/call s/call name

66.86 26.14 26.14 502 0.05 0.05 ForceLJ::compute(Atom&, Neighbor&, Comm&, int)

30.77 38.17 12.03 26 0.46 0.46 Neighbor::build(Atom&)
1.43 38.73 0.56 1 0.56 38.46 Integrate::run(Atom&, Force*, Neighbor&, Comm&, Thermo&, Timeré&)
0.36 38.87 0.14 2850 0.00 0.00 Atom::pack comm(int, int*, double*, int*)
0.15 38.93 0.06 2850 0.00 0.00 Atom::unpack comm(int, int, double¥)
0.13 38.98 0.05 26 0.00 0.00 Atom::pbc()
0.10 39.02 0.04 __intel ssse3_rep_ memcpy
0.08 39.05 0.03 25 0.00 0.00 Atom::sort(Neighbors&)
0.08 39.08 0.03 1 0.03 0.03 create atoms(Atom&, int, int, int, double)
0.05 39.10 0.02 26 0.00 0.00 Comm::borders(Atom&)
0.00 39.10 0.00 1221559 0.00 0.00 Atom::pack border(int, double*, int*)
0.00 39.10 0.00 1221559 0.00 0.00 Atom::unpack border(int, double¥*)
0.00 39.10 0.00 131072 0.00 0.00 Atom::addatom(double, double, double, double, double, double)
0.00 39.10 0.00 1025 0.00 0.00 Timer::stamp(int)
0.00 39.10 0.00 502 0.00 0.00 Thermo::compute(int, Atom&, Neighbor&, Force*, Timer&, Comm&)
0.00 39.10 0.00 500 0.00 0.00 Timer::stamp()
0.00 39.10 0.00 475 0.00 0.00 Comm::communicate(Atom&)
0.00 39.10 0.00 26 0.00 0.00 Comm::exchange(Atom&)
0.00 39.10 0.00 25 0.00 0.00 Timer::stamp extra stop(int)
0.00 39.10 0.00 25 0.00 0.00 Timer::stamp extra start()
0.00 39.10 0.00 25 0.00 0.00 Neighbor::binatoms(Atom&, int)
0.00 39.10 0.00 7 0.00 0.00 Timer::barrier stop(int)
0.00 39.10 0.00 1 0.00 0.00 create box(Atom&, int, int, int, double)
0.00 39.10 0.00 1 0.00 0.00 create velocity(double, Atom&, Thermo&)

Output is sorted according to total time spent in routine.

Performance Engineering Basics (c) NHR@FAU 2022

Sampling-based runtime profile with pertf

Call executable with perf:

perf record -g ./a.out

Analyze the results with:

perf report

Advantages vs. gprof:

= Works on any binary without
recompile

= Also captures OS and runtime
symbols

Samples: 30K of event 'cycles:uppp', Event count (approx.): 20629160088
Overhead

6
3

=
1
1

.19%
.54%
.47%

0.67%

= = N = = N = N = = = =

.40%
.35%
.21%
.18%
.15%
.15%
.10%
.09%
.07%

Command

miniMD-ICC
miniMD-ICC
miniMD-ICC
miniMD-ICC
miniMD-ICC
mpiexec

miniMD-ICC
miniMD-ICC
miniMD-ICC
miniMD-ICC
miniMD-ICC
miniMD-ICC
miniMD-ICC

Shared Object

miniMD-ICC
miniMD-ICC
miniMD-ICC
[kernel]

miniMD-ICC
[kernel]

miniMD-ICC
miniMD-ICC
[kernel]

miniMD-ICC
miniMD-ICC
miniMD-ICC
miniMD-ICC

Symbol

[.] ForcelLJ: :compute
[.] Neighbor::build
[.] Integrate::run

[k] irg return

[.] Atom::pack comm
[k] sysret check

[.] create_ atoms

[.] Atom: :unpack comm
k] sysret check

Comm: :borders
__intel ssse3 rep memcpy
Atom: :sort
Neighbor: :binatoms

= L] Lo J = =
e . . .
[T R W W —

Performance Engineering Basics

(c) NHR@FAU 2022

10

Command line version of Intel Amplifier

Works out of the box for MPl/OpenMP parallel applications.

Example usage with MPI.

mpirun -np 2 amplxe-cl -collect hotspots -result-dir myresults -- a.out

= Compile with debugging symbols

= Can also resolve inlined C++ routines

= Many more collect modules available including
hardware performance monitoring metrics

Elapsed Time: 8.650s
CPU Time: 8.190s
Effective Time: 8.190s
Idle: 0.020s
Poor: 8.170s

Ok: Os
Ideal: Os
Over: 0Os

Spin Time: Os

Overhead Time: Os
Total Thread Count: 2
Paused Time: Os

Top Hotspots

Function Module CPU Time
ForceLJ: :compute_ fullneigh miniMD-ICC 4.940s
Neighbor: :build miniMD-ICC 2.820s
Integrate::finalIntegrate miniMD-ICC 0.100s
Integrate::initialIntegrate miniMD-ICC 0.060s
__intel ssse3_rep memcpy miniMD-ICC 0.040s
[Others] N/A 0.230s

Performance Engineering Basics

(c) NHR@FAU 2022

11

Application benchmarking preparation

= Discuss and prepare relevant benchmark test case(s)
= Short turnaround time
= Representative of real production runs

= For long term multi-site PE projects you may extract a proxy application

= Simplified version of app (or a part of it) that still captures the relevant
performance behavior

= Define an application-specific performance metric

= Should avoid “trivial” dependencies on problem parameters (see later)
= Common choice: Useful work performed per time unit

Performance Engineering Basics (c) NHR@FAU 2022

12

Application benchmarking components

Performance measurements must be accurate, deterministic and reproducible.

Components for application benchmarking:

System
configuration

Always run benchmarks on an exclusive system!

Performance Engineering Basics (c) NHR@FAU 2022

13

Timing within program code

For benchmarking, an accurate wall-clock timer (end-to-end stop watch) is required:

= clock gettime() POSIX compliant timing function

= MPI Wtime () and omp get wtime () Standardized programming-model-
specific timing routines for MPIl and OpenMP

#include <stdlib.h> Usage:
#include <time.h> double S, E;
S = getTimeStamp () ;
double getTimeStamp () /* measured code region */
{ E = getTimeStamp () ;
struct timespec ts; return E-S;

clock gettime (CLOCK_MONOTONIC, &ts);
return (double)ts.tv_sec + (double)ts.tv _nsec * 1l.e-9;

O https: // github. com/RRZE-HPC/TheBandwidthBenchmark/

Performance Engineering Basics (c) NHR@FAU 2022 14

https://github.com/RRZE-HPC/TheBandwidthBenchmark

System configuration and clock frequency

Cluster-on-die
Prefetcher settings
Transparent huge pages
Memory configuration

NUMA balancing

Turbo mode

Frequency control

core

Socket Socket

N

Uncore clock
QPI snoop mode

Tool for system state dump (requires Likwid tools):

\, https://github.com/RRZE-HPC/MachineState

Performance Engineering Basics

(c) NHR@FAU 2022

15

https://github.com/RRZE-HPC/MachineState

Benchmark planning

Two common variants:
Dataset size

Core count
4000[" S ST
Scale across 23000F N N
sockets \. |Scale across S 2000(- - :
N T T T T nodes I I] 1000
6 N = \ ol
Scale within.] o g e
memory domain] 2r 7 ; 24l
1o ==
U 3 sf — 3
2 11, | 5 | c=10" o o
I] TS NR 10°
15 ;lo 1|5 2Io I1 I2 :l‘a 411 . : .
* Measure with one process (to start with)
Choosing the right = Scan dataset size in fine steps
scaling baseline = Verify the data volumes with a HPM tool

Performance Engineering Basics (c) NHR@FAU 2022 17

Graphs: the good, the bad, and the ugly

2700

SPEC OMP2012 Performance

® AMD Piledriver 2p/32 cores

w Intel Sandy Bridge 2p/16 cores without hyperthreading

Intel 13.0
@1: Scaling on Meggie

Scaling of what?? PGI131

T T Ll
85% 90% 95% 100% 105% 110% 115%
SPECompG_base2012 relative periorm s measured by The Portland Group during the weeks of January 26 and Feburary 4, 2013. The number of OpenMP thieads

was set 0 match the numbes of on each system. SPEComp®is a registered trademark of the Standard Pesformance Evaluation Corporation (SPEC)

http://www.pgroup.com/images/charts/spec

100%

0%

PEOPLE HAVE WISED UP 10 THE “CAREFULLY
CHOSEN Y-AXIS RANGE" TRICK, S0 WE MISLEADING
GRAPH MAKERS HAVE HAD TO GET CREATIVE.

https://xkcd.com/2023/

omp2012 chart big.png

Performance Engineering Basics

(c) NHR@FAU 2022

18

http://www.pgroup.com/images/charts/spec_omp2012_chart_big.png
https://xkcd.com/2023/

Runtime or performance scaling?

= Ultimately, the user wants to know
“How long will my problem take to
solve?”

= Plotting runtime vs. resources
answers this question

= However,...
= Scaling behavior hard to visualize

= Hard to generalize to different
problem size

= Performance is normalized to a
defined unit of work

= Scaling behavior is easier to read on a
linear graph

3000

2500

Performance [Mflop/s]
& S
o o
o o

N
o
o
o

500

0 10 20 30 40 50 60 70
nodes

Performance Engineering Basics

(c) NHR@FAU 2022 20

Exposing the relevant effects

= Present data in a way that exposes the interesting correlations and
ignores “trivial” dependencies

= Example: runtime or performance vs. problem size?

. . I I [I |
= Runtime has a trivial dependence of
larger problem takes Ionge.r oonol] 200l
= Performance vs. problem size : —
shows clearly a fundamental change = =
with larger problems £ ‘é
c
€ 1000} 4 1001
)
o . . a
* This is highly problem specific!
100 50 10 20 0 10 20
Problem size Problem size

Performance Engineering Basics (c) NHR@FAU 2022 21

Best practices for Performance profiling

Focus on resource utilization and instruction decomposition!

Metrics to measure:

= Data volumes and bandwidths to
main memory (GB and GB/s)

= Data volumes and bandwidth to
different cache levels (GB and
GB/s)

= QOperation throughput (Flops/s)
= Qverall instruction throughput (CPI)
» |nstruction breakdown:

= FP instructions

= |oads and stores

= branch instructions : : :
Useful diagnostic metrics are:

= Clock frequency (GHz)
= Power (W)

= other instructions

= |nstruction breakdown to SIMD
width (scalar, SSE, AVX, AVX512
for X86). (only arithmetic instruction
on most architectures)

All above metrics can be acquired using performance groups:
MEM DP, MEM SP, BRANCH, DATA, L2, L3

Performance Engineering Basics (c) NHR@FAU 2022

22

The Performance Logbook

= Manual and knowledge collection how to build, configure and run application
= Document activities and results in a structured way
= Learn about best practice guidelines for performance engineering

= Serve as a well-defined and simple way to exchange and hand over performance
projects

The logbook consists of a single markdown document, helper scripts, and directories
for input, raw results, and media files.

0 https://github.com/RRZE-HPC/ThePerformanceLogbook

Performance Engineering Basics (c) NHR@FAU 2022 23

https://github.com/RRZE-HPC/ThePerformanceLogbook

