
Performance Engineering

Basic skills and knowledge

(c) NHR@FAU 2022 2Performance Engineering Basics

Optimizing code: The big Picture

Implementation

Instruction code

Algorithm

core

L1

L2

L3

SIMD
FMA

Memory

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

Memory

1 Reduce algorithmic work

2 Minimize processor work

3 Distribute work and data for optimal
utilization of parallel resources

5 Use most effective
execution units on chip

4 Avoid slow data paths

6 Avoid bottlenecks

(c) NHR@FAU 2022 7Performance Engineering Basics

Performance Engineering process

Algorithm/Code
Analysis

Application
Benchmarking

HPM performance
profile

Traces/HW metricsPerformance Model

 Identify performance issues
 Develop performance expectation

Optimize
implementation

Change runtime
configuration

Iteratively

Runtime profile

For every hotspot

Optional

(c) NHR@FAU 2022 8Performance Engineering Basics

Runtime profiling with gprof

Instrumentation based with gprof
Compile with –pg switch:
icc -pg -O3 -c myfile1.c

Execute the application. During execution a file gmon.out is generated.
Analyze the results with:
gprof ./a.out | less

The output contains three parts: A flat profile, the call graph, and an alphabetical
index of routines.

The flat profile is what you are usually interested in.

(c) NHR@FAU 2022 9Performance Engineering Basics

Runtime profile with gprof: Flat profile

Output is sorted according to total time spent in routine.

Time spent in
routine itself

How often was
it called

How much time
was spent per call

(c) NHR@FAU 2022 10Performance Engineering Basics

Sampling-based runtime profile with perf

Call executable with perf:
perf record –g ./a.out

Analyze the results with:
perf report

Advantages vs. gprof:
 Works on any binary without

recompile
 Also captures OS and runtime

symbols

(c) NHR@FAU 2022 11Performance Engineering Basics

Command line version of Intel Amplifier

Works out of the box for MPI/OpenMP parallel applications.

Example usage with MPI:
mpirun -np 2 amplxe-cl -collect hotspots -result-dir myresults -- a.out

 Compile with debugging symbols
 Can also resolve inlined C++ routines
 Many more collect modules available including

hardware performance monitoring metrics

(c) NHR@FAU 2022 12Performance Engineering Basics

Application benchmarking preparation
 Discuss and prepare relevant benchmark test case(s)

 Short turnaround time
 Representative of real production runs

 For long term multi-site PE projects you may extract a proxy application
 Simplified version of app (or a part of it) that still captures the relevant

performance behavior

 Define an application-specific performance metric
 Should avoid “trivial” dependencies on problem parameters (see later)
 Common choice: Useful work performed per time unit

(c) NHR@FAU 2022 13Performance Engineering Basics

Application benchmarking components
Performance measurements must be accurate, deterministic and reproducible.

Components for application benchmarking:

Always run benchmarks on an exclusive system!

System
configuration

DocumentationTiming Affinity control

(c) NHR@FAU 2022 14Performance Engineering Basics

Timing within program code
For benchmarking, an accurate wall-clock timer (end-to-end stop watch) is required:
 clock_gettime() POSIX compliant timing function
 MPI_Wtime() and omp_get_wtime() Standardized programming-model-

specific timing routines for MPI and OpenMP

#include <stdlib.h>
#include <time.h>

double getTimeStamp()
{

struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9;

}

Usage:
double S, E;
S = getTimeStamp();
/* measured code region */
E = getTimeStamp();
return E-S;

https://github.com/RRZE-HPC/TheBandwidthBenchmark/

https://github.com/RRZE-HPC/TheBandwidthBenchmark

(c) NHR@FAU 2022 15Performance Engineering Basics

System configuration and clock frequency

Socket

Memory Memory

Socket

Turbo mode
Frequency control

core

Cluster-on-die
Prefetcher settings
Transparent huge pages
Memory configuration
NUMA balancing

Uncore clock
QPI snoop mode

Tool for system state dump (requires Likwid tools):
https://github.com/RRZE-HPC/MachineState

https://github.com/RRZE-HPC/MachineState

(c) NHR@FAU 2022 17Performance Engineering Basics

Benchmark planning

Two common variants:
Core/node/device count Dataset size

 Measure with one process (to start with)
 Scan dataset size in fine steps
 Verify the data volumes with a HPM tool

Scaling baseline:
one core

Scale within
memory domain

Scale across
sockets Scale across

nodes

NR

Choosing the right
scaling baseline

(c) NHR@FAU 2022 25Performance Engineering Basics

The Performance Logbook

 Manual and knowledge collection how to build, configure and run application

 Document activities and results in a structured way

 Learn about best practice guidelines for performance engineering

 Serve as a well-defined and simple way to exchange and hand over performance
projects

The logbook consists of a single markdown document, helper scripts, and directories
for input, raw results, and media files.

https://github.com/RRZE-HPC/ThePerformanceLogbook

https://github.com/RRZE-HPC/ThePerformanceLogbook

	Performance Engineering
	Optimizing code: The big Picture
	Performance Engineering process
	Runtime profiling with gprof
	Runtime profile with gprof: Flat profile
	Sampling-based runtime profile with perf
	Command line version of Intel Amplifier
	Application benchmarking preparation
	Application benchmarking components
	Timing within program code
	System configuration and clock frequency
	Benchmark planning
	The Performance Logbook

