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Warmup survey

 For quizzes and surveys,

 Keep a browser tab open on https://menti.com

 To join the quizzes and surveys,

enter the number given in the menti.com screen share on the top of the screen

 Alternatively, click on the link in the Zoom chat

 Have fun ;-) 

Links is also in 

Moodle
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Hardware and programming models

Hardware Bottlenecks

Questions addressed in this tutorial

Remarks on Cost-Benefit Calculation

Introduction
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Hardware and programming models

 MPI + threading

 OpenMP

 Cilk(+)

 TBB (Threading Building Blocks)

 MPI + MPI shared memory

 MPI + accelerator

 OpenACC

 OpenMP accelerator support

 CUDA

 OpenCL, Kokkos, SYCL,…

 Pure MPI communication
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Options for running code on multicore clusters

 Which programming model

is fastest?

• MPI everywhere?

• Fully hybrid 

MPI & OpenMP?

• Something between?

(Mixed model)

?
• Often hybrid programming 

slower than pure MPI

– Examples, Reasons, 

…
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More Options with accelerators

Hierarchical hardware

 Many levels

Hierarchical parallel programming

 Many options for MPI+X: 

one MPI process per

 node

 CPU

 ccNUMA domain

 […]

 core

 hyper-thread
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Dual-CPU ccNUMA + accelerator node architecture 

Actual topology of a modern compute node

PCIe

accelerator

CPU 1

CPU 0

hyper-threadcoredie

smallest possible 

ccNUMA domain
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Hardware bottlenecks

 Multicore cluster

 Computation

 Memory bandwidth

 Intra-CPU communication (i.e., core-to-core)

 Intra-node communication (i.e., CPU-to-CPU)

 Inter-node communication

 Cluster with CPU+Accelerators

 Within the accelerator

 Computation

 Memory bandwidth

 Core-to-Core communication

 Within the CPU and between the CPUs

 See above

 Link between CPU and accelerator
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Example: Hardware bottlenecks in SpMV

 Sparse matrix-vector-multiply with stored matrix entries

Bottleneck: memory bandwidth of each CPU

 SpMV with calculated matrix entries

(many complex operations 

per entry)

Bottleneck: computational 

speed of each core

 SpMV with highly scattered 

matrix entries

Bottleneck: Inter-node 

communication 

= + •
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Questions addressed in this tutorial

 What is the performance impact of system topology?

 How do I map my programming model on the system to my advantage?

 How do I do the split into MPI+X?

 Where do my processes/threads run? How do I take control?

 Where is my data?

 How can I minimize communication overhead? 

 How does hybrid programming help with typical HPC problems?

 Can it reduce communication overhead?

 Can it reduce replicated data?

 How can I leverage multiple accelerators?

 What are typical challenges?
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Remarks on Cost-Benefit Calculation

Costs – for optimization effort

 e.g., additional OpenMP parallelization

 e.g., 3 person month x 5,000 € = -15,000 €  (full costs)

Benefit – from reduced CPU utilization 

 e.g., Example 1: 100,000 € hardware costs of the cluster

x  20% used by this application over whole lifetime of the cluster

x  7% performance win through the optimization

=   +1,400 €  total loss = 13,600 €

 e.g., Example 2: 10 Mio € system x  5% used  x  8% performance win

= +40,000 €  total win  = 25,000 €

Hybrid Programming – MPI+X  Introduction  Cost-Benefit Calculation

Question: Do you want to spend work hours without a final benefit?
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Video

• MPI + OpenMP on multi/many-core + Exercise

• MPI + MPI-3.0 shared memory + Exercise 

• Pure MPI communication + Exercise

• MPI + Accelerators

Programming models

Hybrid Programming – MPI+X  Programming models
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General considerations slide 15

How to compile, link, and run 20

Hands-on: Hello hybrid! 28

System topology, ccNUMA, and memory bandwidth 30

Memory placement on ccNUMA systems 42

Topology and affinity on multicore 51

Hands-on: Pinning 66

Case study: The Multi-Zone NAS Parallel Benchmarks 67

Hands-on: Masteronly hybrid Jacobi 74

Overlapping communication and computation 77

Communication overlap with OpenMP taskloops 84

Hands-on: Taskloop-based hybrid Jacobi 94

Main advantages, disadvantages, conclusions 95

Programming models

- MPI + OpenMP
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Programming models

- MPI + OpenMP

General considerations

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP How to compile, link, and run

> General considerations

How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: The Multi-Zone NAS Parallel Benchmarks
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Potential advantages of MPI+OpenMP

Simple level

 Leverage additional levels of parallelism
 Scaling to higher number of cores

 Adding OpenMP with incremental additional parallelization

 Enable flexible load balancing on OpenMP level
 Fewer MPI processes leave room for assigning workload more evenly

 MPI processes with higher workload could employ more threads

 Cheap OpenMP load balancing (tasking, dynamic/guided loops)

 Lower communication overhead (possibly) 
 Few “fat” MPI processes vs many “skinny” processes 

 Fewer messages and smaller amount of data communicated

 Lower memory requirements due to fewer MPI processes
 Reduced amount of application halos & replicated data

 Reduced size of MPI internal buffer space

Advanced level

 Explicit communication/computation overlap

16/239
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MPI + any threading model

Special MPI init for multi-threaded MPI processes is required:

• Possible values for thread_level_required (increasing order):
– MPI_THREAD_SINGLE Only one thread will execute

– MPI_THREAD_FUNNELED Only main1) thread will make MPI-calls

– MPI_THREAD_SERIALIZED Multiple threads may make MPI-calls, but only one at a time

– MPI_THREAD_MULTIPLE Multiple threads may call MPI, with no restrictions

• returned thread_level_provided may be less or more than thread_level_required

 if (thread_level_provided < thread_level_required) MPI_Abort(…);

1) Main thread = thread that called MPI_Init_thread.

Recommendation: Start MPI_Init_thread from OpenMP master thread  OpenMP master = MPI main thread

int MPI_Init_thread( int * argc, char ** argv[],

int thread_level_required,

int * thread_level_provided);

int MPI_Query_thread( int * thread_level_provided);

int MPI_Is_main_thread(int * flag);

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP General considerations

may imply higher 

latencies due to 

some internal locks

recommended directly 

after MPI_Init_thread
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Hybrid MPI+OpenMP masteronly style

Advantages

 Simplest possible hybrid model

 Thread-parallel execution and MPI 

communication strictly separate

 Minimally required MPI thread support level: 
MPI_THREAD_FUNNELED

Major Problems

 All other threads are sleeping

while master thread communicates!

 Only one thread per process communicating 

 possible underutilization of network

bandwidth

for (iterations) {

#pragma omp parallel 

numerical code

/*end omp parallel */

/* on master only */

MPI_Isend();

MPI_Irecv();

MPI_Waitall();

} /* end for loop */

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP General considerations

masteronly style:

MPI only outside of 

parallel regions
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Masteronly style within large parallel region

 Barrier before MPI required

 May be implicit

 Prevent race conditions on communication 

buffer data

 Between multi-threaded numerics

 and MPI access by master thread

 Enforce flush of variables

 Barrier after MPI required

 May be implicit

 Numerical loop(s) may need communicated 

data

#pragma omp parallel 

for(iterations) {

#pragma omp for 

for(i=0; ...)  {

// ... numerics

} // barrier here

#pragma omp single

{

MPI_Isend();

MPI_Irecv();

MPI_Waitall();

} // Barrier here

} /* end iter loop */
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Programming models

- MPI + OpenMP

How to compile, link, and run

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP How to compile, link, and run

General considerations

> How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: The Multi-Zone NAS Parallel Benchmarks
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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How to compile, link and run

 Use appropriate OpenMP compiler switch (-openmp, -fopenmp, 

-mp, -qsmp=openmp, …) and MPI compiler script (if available)

 Link with MPI library

 Usually wrapped in MPI compiler script

 If required, specify to link against thread-safe MPI library

 Often automatic when OpenMP or auto-parallelization is switched on

 Running the code

 Highly non-portable – consult system docs (if available…)

 Figure out how to start fewer MPI processes than cores per node

 Pinning (who is running where?) is extremely important  see later

/08, Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + OpenMP How to compile, link, and run 21/239
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Compiling from a single source

Make use of pre-defined symbols

#ifdef _OPENMP  # _OPENMP defined with -qopenmp

// all that is special for OpenMP

#endif

#ifdef USE_MPI  # USE_MPI defined with -DUSE_MPI

// all that is special for  MPI

#endif

#ifdef USE_MPI

MPI_Init(...);

MPI_Comm_rank(..., &rank);

MPI_Comm_size(..., &size);

#else           # recommended for non-MPI

rank = 0;

size = 1;

#endif

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP How to compile, link, and run 22/239
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Compiling from a single source

Handling compilers

 Intel MPI + Intel C

 Intel MPI + Intel Fortran

 OpenMPI + gcc

 OpenMPI + gfortran

mpiifort -fpp -DUSE_MPI -qopenmp ...

ifort -fpp -qopenmp ...

mpiicc -DUSE_MPI -qopenmp ...

icc -qopenmp ...

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP How to compile, link, and run

mpif90    -cpp -DUSE_MPI -fopenmp ...

gfortran -cpp -fopenmp ...

mpicc -DUSE_MPI -fopenmp ...

gcc -fopenmp ...
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Examples for compilation and execution

 Cray XC40 (2 NUMA domains w/ 12 cores each):

 ftn -h omp ...

 OMP_NUM_THREADS=12 aprun -n 4 -N 2 \

-d $OMP_NUM_THREADS ./a.out

 Intel Ice Lake (36-core 2-socket) cluster, Intel MPI/OpenMP

 mpiifort -qopenmp ...

 mpirun –ppn 2 –np 4 \

-env OMP_NUM_THREADS 36 

-env I_MPI_PIN_DOMAIN socket \

-env KMP_AFFINITY scatter ./a.out

 Intel Ice Lake (36-core 2-socket) cluster, Intel MPI/OpenMP + likwid-mpirun

 likwid-mpirun –np 4 –pin S0:0-35_S1:0-35 ./a.out

09/26/07, Author:

Gabriele Jost Hybrid Programming – MPI+X  Programming models  MPI + OpenMP How to compile, link, and run 24/239
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Learn about node topology

 A collection of tools is available

 numactl --hardware (numatools)

 lstopo --no-io (part of hwloc)

 cpuinfo –A (part of Intel MPI)

 likwid-topology (part of LIKWID tool suite http://tiny.cc/LIKWID)

$ likwid-topology -c -g

---------------------------------------------------------------------------------

CPU name: Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz

CPU type: Intel Xeon IvyBridge EN/EP/EX processor

CPU stepping: 4

*********************************************************************************

Hardware Thread Topology

*********************************************************************************

Sockets: 2

Cores per socket: 8

Threads per core: 2

[... Some output omitted ...]

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP How to compile, link, and run

VSC-3: 1 node  =  2 sockets (Intel Ivy Bridge) 

with 8 cores  +  2 HCAs
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Learning about node topology

(...cont...)

********************************************************************************

Graphical Topology

********************************************************************************

Socket 0:

+---------------------------------------------------------------------------------+

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| | 0 16  | | 1 17  | | 2 18  | | 3 19  | | 4 20  | | 5 21  | | 6 22  | | 7 23  | |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| |  32kB | |  32kB | |  32kB | |  32kB | |  32kB | |  32kB | |  32kB | |  32kB | |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |

| +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ +-------+ |

| +-----------------------------------------------------------------------------+ |

| |                                     20MB                                    | |

| +-----------------------------------------------------------------------------+ |

+---------------------------------------------------------------------------------+

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP How to compile, link, and run

Caveat: 

Numbering may differ for 

different setups of same CPU!
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Learning about node topology

(...cont...)

********************************************************************************

Graphical Topology

********************************************************************************

Socket 1:

+-----------------------------------------------------------------------------------------+

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  8 24  | |  9 25  | | 10 26  | | 11 27  | | 12 28  | | 13 29  | | 14 30  | | 15 31  | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |

| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |

| +-------------------------------------------------------------------------------------+ |

| |                                         20MB                                        | |

| +-------------------------------------------------------------------------------------+ |

+-----------------------------------------------------------------------------------------+

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP How to compile, link, and run 27/239
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Hello hybrid!

Programming models

- MPI + OpenMP

Hands-On #1 General considerations

How to compile, link, and run

>    Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: The Multi-Zone NAS Parallel Benchmarks
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

28/239



Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hands-On #1

he-hy - Hello Hybrid! - compiling, starting

1. FIRST THINGS FIRST - PART 1: find out about a (new) cluster - login 

node

2. FIRST THINGS FIRST - PART 2: find out about a (new) cluster - batch 

jobs

3. MPI+OpenMP: :TODO: how to compile and start an application how to do 

conditional compilation

4. MPI+OpenMP: :TODO: get to know the hardware - needed for pinning
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Programming models

- MPI + OpenMP

System topology, ccNUMA, 

and memory bandwidth

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP  Topology and performance

General considerations

How to compile, link, and run

Hands-on: Hello hybrid!

> System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: The Multi-Zone NAS Parallel Benchmarks
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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What is “topology”?

Where in the machine does core (or hardware thread) #n reside?

Core #6, HW thread 0

Core #11, HW thread 1

Why is this important?

 Resource sharing (cache, 

data paths)

 Communication efficiency 

(shared vs. separate caches, 

buffer locality)

 Memory access locality 

(ccNUMA!)

2014, Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + OpenMP  Topology and performance 31/239



Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Compute nodes – caches

Latency  typical  Bandwidth

1–2 ns L1 cache 200 GB/s

3–10 ns L2/L3 cache 50 GB/s

100 ns memory
20 GB/s

(1 core)

VSC-3: 1 node  =  2 sockets (Intel Ivy Bridge) with 8 cores  +  2 HCAs

VSC-3

2017 (?), Author:

Schenner Hybrid Programming – MPI+X  Programming models  MPI + OpenMP  Topology and performance 32/239
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Fat-tree Design VSC-3:
dual rail Intel QDR-80 = 3-level fat-tree (BF: 2:1 / 4:1)

Leaf

Spine

blocking: BF down- : up-linksnon-blocking: BF 1:1

Edge

introduces a latency:
packets that would otherwise follow separate paths would eventually have to wait

@VSC-3:

-1- edge:

12 nodes 

24 HCAs

192 cores / MPI processes

-2- leaf:  island @VSC-3:

288 nodes 

4608 cores / MPI processes

(BF 2:1)

VSC-3: below numbers only, schematic figure

-3- spine: -- -- -- -- -- full cluster @VSC-3:

(BF 4:1)

VSC-3: 1 node2017 (?), Author:

Schenner Hybrid Programming – MPI+X  Programming models  MPI + OpenMP  Topology and performance 33/239
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Ping-Pong Benchmark – Latency

Intra-node vs. inter-node on VSC-3
 nodes  =  2 sockets (Intel Ivy Bridge) with 8 cores  +  2 HCAs

 inter-node = IB fabric = dual rail Intel QDR-80 = 3-level fat-tree (BF: 2:1 / 4:1)

 Avoiding slow data paths is the key to most performance optimizations! 

Latency

[µs]

MPI_Send(…)

OpenMPI Intel MPI

intra-socket 0.3 µs 0.3 µs

inter-socket 0.6 µs 0.7 µs

IB -1- edge 1.2 µs 1.4 µs

IB -2- leaf 1.6 µs 1.8 µs

IB -3- spine 2.1 µs 2.3 µs

For comparison: 

typical latencies

L1 cache 1–2 ns

L2/L3 c. 3–10 ns

memory 100 ns

HPC

networks
1–10 µs

2017 (?), Author:

Schenner

P
in

g
-P
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n

g
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n

c
h

m
a

rk
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myID = get_process_ID()

if(myID.eq.0) then

targetID = 1

S = get_walltime()

call Send_message(buffer,N,targetID)

call Receive_message(buffer,N,targetID)

E = get_walltime()

GBYTES = 2*N/(E-S)/1.d9 ! Gbyte/s rate

TIME = (E-S)/2*1.d6     ! transfer time

else

targetID = 0

call Receive_message(buffer,N,targetID)

call Send_message(buffer,N,targetID)

endif
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Ping-Pong 1-on-1 Benchmark – Effective Bandwidth

intra-node vs.

inter-node on VSC-3
inter-node:

IB fabric

dual rail (2 HCAs)

Intel QDR-80

3-level fat-tree

BF: 2:1 / 4:1

QDR-80 (2 HCAs)

link:  80 Gbit/s

max   8 Gbytes/s

eff.  6.8 Gbytes/s

 1 HCA = ½ (2 HCAs)

CPUseveral
cores

node

1

node

2

2017 (?), Author:

Schenner Hybrid Programming – MPI+X  Programming models  MPI + OpenMP  Topology and performance

Not representative

of real applications 

 see next slide(s)
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Multiple communicating rings

Benchmark halo_irecv_send_multiplelinks_toggle.c

 Varying message size,

 number of communication cores per CPU, and

 four communication schemes (example with 5 communicating cores per CPU)

CPUseveral cores

node

1

node

2

Intra-CPU: core-to-core

A

CPU
several
cores

Intra-node: CPU-to-CPU

B

CPU
several
cores

Inter-node, only

with one CPU

C

CPU
several
cores

D

Inter-node and

all CPUs communicate

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP  Topology and performance

See HLRS online courses  
http://www.hlrs.de/training/self-study-materials

 Practical  MPI.tar.gz  

 subdirectory MPI/course/C/1sided/
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Measurement with

halo_irecv_send_multiplelinks_tog

gle.c on 4 nodes of Cray XC40 

hazelhen.hww.de, June 15, 2018, 

HLRS, by Rolf Rabenseifner 

(protocol 10)

Duplex accumulated ring bandwidth per node

The limit of accumulated 

intra-CPU and intra-node 

bandwidth is 8x larger than the 

limit of accumulated 

node-to-node bandwidth

A

B

C

D

What is important?

3 slices on next 

(unskipped) slide

8x

2 Haswell Intel Xeon E5-2680v3, 

each with 12 cores.

Cray XC40 Aries dragonfly network

back

See HLRS online courses  
http://www.hlrs.de/training/self-study-materials

 Practical  MPI.tar.gz  

 subdirectory MPI/course/C/1sided/
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Duplex ring bandwidth per core

If only one core per node 

communicates, then nearly 

same bandwidth – similar 

to ping-pong!

One must minimize the number of 

inter-node communication links!

A

B

C

D

2 Haswell Intel Xeon E5-2680v3, 

each with 12 cores.

Cray XC40 Aries dragonfly network

Measurement with

halo_irecv_send_multiplelinks_tog

gle.c on 4 nodes of Cray XC40 

hazelhen.hww.de, June 15, 2018, 

HLRS, by Rolf Rabenseifner 

(protocol 10)
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Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Influence of topology on low-level operations

Accumulated – scaling vs. asymptotic behavior

( )

Core-to-core:

Linear scaling for small 

to medium size mes-

sages due to caches

Core-to-core & CPU-to-CPU:

Long messages: 

Same asymptotic limit 

through memory bandwidth

Node-to-node:

One duplex link by 

one core already fully 

saturates the network

8x

Result: The limit of accumulated intra-CPU and 

intra-node bandwidth is 8x larger than the limit of 

accumulated node-to-node bandwidth

6x4x
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OpenMP barrier synchronization cost

Comparison of barrier synchronization cost with increasing

number of threads

 2x Haswell 14-core (CoD mode)

 Optimistic measurements

(repeated 1000s of times)

 No impact from previous

activity in cache

 Barrier sync time highly dependent

on system topology & OpenMP

runtime implementation

Intel 17.0.4 gcc 6.2.0
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Accumulated bandwidth saturation vs. # cores

10

100

1000

1 2 4 8

A
g
g
re

g
a
te

 b
a
n
d
w

id
th

[G
B

/s
]

# cores

L1

L2

L3

Memory

Scalable BW in L1, 

L2, L3 cache

Saturation effect in 

memory

, Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + OpenMP  Topology and performance

A(:) = B(:) + C(:) * D(:)

on each core

Sandy Bridge socket (3 GHz)
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Programming models

- MPI + OpenMP

Memory placement

on ccNUMA systems

General considerations

How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
>     Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: The Multi-Zone NAS Parallel Benchmarks
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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A short introduction to ccNUMA

 ccNUMA:

 whole memory is transparently accessible by all processors

 but physically distributed

 with varying bandwidth and latency

 and potential contention (shared memory paths)

 Memory placement occurs with OS page granularity (often 4 KiB)

/08, Author:
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How much bandwidth does non-local access cost?

 Example: AMD “Naples” 2-socket system (8 chips, 2 sockets, 48 cores): 
STREAM Triad bandwidth measurements [Gbyte/s]

09/2011, Author:

Georg Hager

S
o

c
k
e

t 
0

S
o

c
k
e

t 
1

0 1 2 3 4 5 6 7

0 32.4 21.4 21.8 21.9 10.6 10.6 10.7 10.8

1 21.5 32.4 21.9 21.9 10.6 10.5 10.7 10.6

2 21.8 21.9 32.4 21.5 10.6 10.6 10.8 10.7

3 21.9 21.9 21.5 32.4 10.6 10.6 10.6 10.7

4 10.6 10.7 10.6 10.6 32.4 21.4 21.9 21.9

5 10.6 10.6 10.6 10.6 21.4 32.4 21.9 21.9

6 10.6 10.7 10.6 10.6 21.9 21.9 32.3 21.4

7 10.7 10.6 10.6 10.6 21.9 21.9 21.4 32.5

CPU node

Memory node

Do you want to run 

your application

3 times slower?
(If your appl. is memory 

bandwidth bound)

Highest bandwidth 

between memory 

and cores of one 

NUMA domain
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Avoiding locality problems

 How can we make sure that memory ends up where it is close

to the CPU that uses it?

 See next slides (first-touch initialization)

 How can we make sure that it stays that way throughout program 

execution?

 See later in the tutorial (pinning)

 Taking control is the key strategy!

/08, Author:
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Solving Memory Locality Problems: First Touch

 "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the 

processor that first touches it!

 Consequences

 Process/thread-core affinity is decisive!

 With OpenMP, data initialization code becomes important 

even if it takes little time to execute (“parallel first touch”)

 Parallel first touch is automatic for pure MPI

 If thread team does not span across NUMA domains, memory mapping is not a 

problem

 Automatic page migration may help if memory is used long enough

/08, Author:
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Solving Memory Locality Problems: First Touch

 "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the processor 

that first touches it!

 Except if there is not enough local memory available

 Some OSs allow to influence placement in more direct ways

  libnuma (Linux)

 Caveat: “touch” means “write,” not “allocate” or “read”

 Example: 

/08, Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + OpenMP  Topology and performance

double *huge = (double*)malloc(N*sizeof(double));

// memory not mapped yet

for(i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0; // mapping takes place here!
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Most simple case: explicit initialization 

, Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + OpenMP  Topology and performance

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel 

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end do

!$OMP end parallel
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Handling ccNUMA in practice

 Solution A

 One (or more) MPI process(es) per ccNUMA domain

 Pro: optimal page placement (perfectly local memory access) for free

 Con: higher number (>1) of MPI processes on each node

 Solution B

 One MPI process per node or one MPI process spans multiple ccNUMA domains

 Pro: Smaller number of MPI processes compared to Solution A

 Cons:

 Explicitly parallel initialization needed to “bind” the data to each ccNUMA domain 

 otherwise loss of performance

 Dynamic/guided schedule or tasking  loss of performance

 Thread binding is mandatory for A and B!   – Never trust the defaults! 
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Conclusions from the observed topology effects

 Know your hardware characteristics:

 Hardware topology (use tools such as likwid-topology)

 Typical hardware bottlenecks

 These are independent of the programming model!

 Hardware bandwidths, latencies, peak performance numbers

 Know your software characteristics

 Typical numbers for communication latencies, bandwidths

 Typical OpenMP overheads

 Learn how to take control

 See next chapter on affinity control

 Leveraging topology effects is a part of code optimization!
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Programming models

- MPI + OpenMP

Topology and affinity on multicore

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Topology and affinity on multicore

General considerations

How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

> Topology and affinity on multicore
Hands-on: Pinning

Case study: The Multi-Zone NAS Parallel Benchmarks
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Thread/Process Affinity (“Pinning”)

 Highly OS-dependent system calls

 But available on all OSs

 Non-portable

 Support for user-defined pinning for OpenMP threads in all compilers

 Compiler specific

 Standardized in OpenMP (places)

 Generic Linux: taskset, numactl, likwid-pin 

 Affinity awareness in all MPI libraries

 Not defined by the MPI standard (as of 4.0)

 Necessarily non-portable feature of the startup mechanism (mpirun, …)

 Affinity awareness in batch scheduler

 Batch scheduler must work with MPI + OpenMP affinity

 Difficult, non-portable, every combination is different

/08, Author:
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Anarchy vs. affinity with OpenMP STREAM

, Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Topology and affinity on multicore

No pinning

“Compact” pinning 

(fill first CMG first)

There are several reasons for caring about affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

OpenMP-parallel

A(:)=A(:)+s*B(:)
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likwid-pin

 Binds threads to specific cores without touching code

 Directly supports pthreads, gcc OpenMP, Intel OpenMP

 Allows user to specify “skip mask” (i.e., supports many different compiler/MPI 

combinations)

 Replacement for taskset

 Uses logical (contiguous) core numbering when running inside a restricted set 

of cores

 Supports logical core numbering inside node, socket, core

 Usage examples:

 env OMP_NUM_THREADS=6 likwid-pin -c 0-2,4-6 ./myApp parameters 

 likwid-pin –c S0:0-2@S1:0-2 ./myApp

/10, Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Topology and affinity on multicore 54/239



Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Topology and affinity on multicore

OMP_PLACES and Thread Affinity (see OpenMP-4.0 page 7 lines 29-32, p. 241-243)

A place consists of one or more processors.

Pinning on the level of places.

Free migration of the threads on a place between the processors of that place.

 OMP_PLACES=threads

 Each place corresponds to the single processor of a single hardware thread (hyper-thread)

 OMP_PLACES=cores

 Each place corresponds to the processors (one or more hardware threads) of a single core

 OMP_PLACES=sockets

 Each place corresponds to the processors of a single socket (consisting of all hardware threads of one or more cores)

 OMP_PLACES=abstract_name(num_places)

 In general, the number of places may be explicitly defined

 Or with explicit numbering, e.g. 8 places, each consisting of 4 processors:

 setenv OMP_PLACES "{0,1,2,3},{4,5,6,7},{8,9,10,11}, … {28,29,30,31}"

 setenv OMP_PLACES "{0:4},{4:4},{8:4}, … {28:4}"

 setenv OMP_PLACES "{0:4}:8:4"

abstract_name

processor is the smallest 

unit to run a thread or task 

<lower-bound>:<number of entries>[:<stride>]

CAUTION:

The numbers highly depend on hardware 

and operating system, e.g.,

{0,1} = hyper-threads of 1st core of 1st socket, or

{0,1} = 1st hyper-thread of 1st core 

of 1st and 2nd socket, or …
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OMP_PROC_BIND variable / proc_bind() clause

Determines how places are used for pinning:

OMP_PROC_BIND Meaning

FALSE Affinity disabled

TRUE Affinity enabled, implementation defined

strategy

CLOSE Threads bind to consecutive places

SPREAD Threads are evenly scattered among 

places

MASTER Threads bind to the same place as the 

master thread that was running before the 

parallel region was entered

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Topology and affinity on multicore

Used for 

nested

OpenMP
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Some simple OMP_PLACES examples

 Intel Xeon w/ SMT, 2x36 cores, 1 thread per physical core, fill 1 socket
OMP_NUM_THREADS=36

OMP_PLACES=cores

OMP_PROC_BIND=close

 Intel Xeon Phi with 72 cores, 

32 cores to be used, 2 threads per physical core
OMP_NUM_THREADS=64 

OMP_PLACES=cores(32)

OMP_PROC_BIND=close    # spread will also do

 Intel Xeon, 2 sockets, 4 threads per socket (no binding within socket!)
OMP_NUM_THREADS=8

OMP_PLACES=sockets

OMP_PROC_BIND=close    # spread will also do

 Intel Xeon, 2 sockets, 4 threads per socket, binding to cores 
OMP_NUM_THREADS=8

OMP_PLACES=cores

OMP_PROC_BIND=spread

Always prefer abstract places 

instead of HW thread IDs! 
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OpenMP places and proc_bind (see OpenMP-4.0 pages 49f, 239, 241-243)

setenv OMP_PLACES "{0},{1},{2}, … {29},{30},{31}" or

setenv OMP_PLACES threads (example with P=32 places)

 setenv OMP_NUM_THREADS "8,2,2"

setenv OMP_PROC_BIND "spread,spread,close"

 Master thread encounters nested parallel regions:
#pragma omp parallel  uses: num_threads(8)  proc_bind(spread)

#pragma omp parallel  uses: num_threads(2)  proc_bind(spread)

#pragma omp parallel  uses: num_threads(2)   proc_bind(close)

spread: Sparse distribution of the 8 threads among the 32 places; partitioned place lists.

close: New threads as close as possible to the parent’s place; same place lists.

master: All new threads at the same place as the parent.

After first #pragma omp parallel:

8 threads in a team, each on a partitioned place list with 32/8=4 places

outside of first parallel region: master thread has a place list with all 32 places

Only one place is used

G, 
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Goals behind OMP_PLACES and proc_bind

Example: 4 sockets x 6 cores x 2 hyper-threads  =  48 processors

Vendor’s numbering: round robin over the sockets, over cores, and hyperthreads

0    4    8   12  16  20      1    5    9   13  17  21      2    6   10  14  18  22      3    7   11  15  19  23     

24  28  32  36  40  44     25  29  33  37  41  45     26  30  34  38  42  46     27  31  35  39  43  47

setenv OMP_PLACES threads (= {0},{24},{4},{28},{8},{32},{12},{36},{16},{40},{20},{44},{1},{25},  … ,     {23},{47} )

 OpenMP threads/tasks are pinned to hardware hyper-threads

setenv OMP_PLACES cores (=  {0,24},  {4,28},   {8,32},   {12,36},   {16,40},   {20,44},  {1,25},    … ,       {23,47}  )

 OpenMP threads/tasks are pinned to hardware cores 
and can migrate between hyper-threads of the core

setenv OMP_PLACES sockets (=      {0, 24,   4, 28,   8, 32,   12, 36,   16, 40,   20, 44},  {1,25,…}, {…} , {…,23,47}  )

 OpenMP threads/tasks are pinned to hardware sockets 
and can migrate between cores & hyper-threads of the socket

Examples should be independent of vendor’s numbering!
 Without nested parallel regions:

#pragma omp parallel  num_threads(4*6)  proc_bind(spread)    one thread per core

 With nested regions:
#pragma omp parallel  num_threads(4)  proc_bind(spread)   one thread per socket

#pragma omp parallel  num_threads(6)  proc_bind(spread)  one thread per core
#pragma omp parallel  num_threads(2)  proc_bind(close)    one thread per hyper-thread
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Pinning of MPI processes

 Highly system dependent!

 Intel MPI: env variable I_MPI_PIN_DOMAIN

 OpenMPI: choose between several mpirun options, e.g.,

-bind-to-core, -bind-to-socket, -bycore, -byslot …

 Cray’s aprun: pinning by default

 Platform-independent tools:  likwid-mpirun

(likwid-pin, numactl)
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Anarchy vs. affinity with a heat equation solver

Reasons for caring about affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

, Author:

Georg Hager

… …

With affinity, physical cores, 

filling left socket first:
mpirun -bind-to-core -byslot … 

2x 10-core Intel Ivy Bridge, OpenMPI

No affinity settings

 high variation
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Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Topology and affinity on multicore

Motivation

Introduction

Programming models

Tools

Conclusions

Pure MPI communication

MPI+MPI-3.0 shared memory

MPI+OpenMP

MPI+Accelerators

Topology (“mapping”) with MPI+OpenMP:
Lots of choices – solutions are highly system specific! 

One MPI process per node

One MPI process per socket

OpenMP threads pinned “round robin” 

across cores in node

Two MPI processes per socket

09/2010, Author:

Georg Hager

G, 
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likwid-mpirun: 1 MPI process per node

likwid-mpirun –np 2 -pin N:0-11  ./a.out

Intel MPI+compiler:
OMP_NUM_THREADS=12 mpirun –ppn 1 –np 2 –env KMP_AFFINITY scatter ./a.out

2014, Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Topology and affinity on multicore

Network

Node 

0

Node 

1
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likwid-mpirun: 1 MPI process per socket

likwid-mpirun –np 4 –pin S0:0-5_S1:0-5 ./a.out

Intel MPI+compiler: 
OMP_NUM_THREADS=6 mpirun –ppn 2 –np 4 \

–env I_MPI_PIN_DOMAIN socket –env KMP_AFFINITY scatter ./a.out

2014, Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Topology and affinity on multicore

Rank 0

Rank 2

Rank 1

Rank 3
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MPI/OpenMP affinity: Take-home messages

 Learn how to take control of hybrid execution!

 Almost all performance features depend on topology and thread placement! (especially if 

SMT/Hyperthreading is on)

 Always observe the topology dependence of

 Intranode MPI performance

 OpenMP overheads

 Saturation effects / scalability behavior with bandwidth-bound code

 Enforce proper thread/process to core binding, using appropriate tools (whatever 

you use, but use SOMETHING)

 Memory page placement on ccNUMA nodes

 Automatic optimal page placement for one (or more) MPI processes per ccNUMA domain 

(solution A)

 Explicitly parallel first-touch initialization only required for multi-domain MPI processes 

(solution B) 

/10, Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Topology and affinity on multicore 65/239
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Pinning

Programming models

- MPI + OpenMP

Hands-On #2 General considerations

How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
>    Hands-on: Pinning

Case study: The Multi-Zone NAS Parallel Benchmarks
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Programming models

- MPI + OpenMP

Case study: 

The Multi-Zone

NAS Parallel Benchmarks

Courtesy of Gabriele Jost
Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Case study: MZ NAS PBM

General considerations

How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

> Case study: The Multi-Zone NAS Parallel Benchmarks
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

67/239



Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Load Balancing with hybrid programming

 On same or different level of parallelism

 OpenMP enables
 cheap dynamic and guided load-balancing

 via a parallelization option (clause on omp for / do directive)

 without additional software effort

 without explicit data movement

 On MPI level

 Dynamic load balancing requires moving of parts of the data structure through the network

 Significant runtime overhead

 Complicated software   rarely implemented

 MPI & OpenMP

 Simple static load balancing on MPI level, medium-quality,

dynamic or guided on OpenMP level cheap implementation

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP General considerations

#pragma omp parallel for schedule(dynamic)

for (i=0; i<n; i++) {

/* poorly balanced iterations */ …

}
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The Multi-Zone NAS Parallel Benchmarks

2014 updated, Author:

Gabriele Jost

OpenMP

Call MPI 

MPI Processes

sequential

MPI/
OpenMP

OpenMP
directexchange

boundaries

sequentialsequentialTime step

OpenMPsequentialintra-zones

OpenMPdirect accessinter-zones

Nested 
OpenMP

Seq

Multi-zone versions of the NAS Parallel Benchmarks 
LU,SP, and BT

• Two hybrid sample implementations

• Load balance heuristics part of sample codes

• https://www.nas.nasa.gov/publications/npb.html

Courtesy of Gabriele Jost
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MPI/OpenMP BT-MZ structure

call omp_set_numthreads (weight)

do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call zsolve(u,rsd,…)

end if

end do

end do

...

call mpi_send/recv

subroutine zsolve(u, rsd,…)

...

!$OMP PARALLEL 

DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5             

u(m,i,j,k)=

dt*rsd(m,i,j,k-1)

end do

end do

end do

!$OMP END DO NOWAIT

end do

...

!$OMP END PARALLEL

08/02/06, Author:

Gabriele Jost

Courtesy of Gabriele Jost
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Benchmark Characteristics

 Aggregate sizes:

 Class D: 1632 x 1216 x 34 grid points

 Class E: 4224 x 3456 x 92 grid points

 BT-MZ: (Block tridiagonal simulated CFD application)

 Alternative Directions Implicit (ADI) method

 #Zones: 1024 (D), 4096 (E)

 Size of the zones varies widely:

 large/small about 20

 requires multi-level parallelism to achieve a good load-balance

 SP-MZ: (Scalar Pentadiagonal simulated CFD application)

 #Zones: 1024 (D), 4096 (E)

 Size of zones identical

 no load-balancing required

08/02/06, Author:

Gabriele Jost

Load-balanced on 

MPI level: Pure MPI 

should perform best

Pure MPI: Load-

balancing problems!

Good candidate for 

MPI+OpenMP

Expectations:

Courtesy of Gabriele Jost
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 indeed, 

BT-MZ profits

from hybrid

With thread pinning:

Needed if OpenMP 

spans multi-sockets.  

Courtesy of Gabriele Jost
Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Case study: MZ NAS PBM

NPB-MZ Class E Scalability on Lonestar
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MPI+OpenMP memory usage of NPB-MZ

09/26/07, Author:

Gabriele Jost

Using more OpenMP threads reduces the memory usage substantially, 

up to five times on Hopper Cray XT5  (eight-core nodes).

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger,  Alice Koniges, Nicholas J. Wright:

Analyzing the Effect of Different Programming Models Upon Performance and Memory Usage on Cray 

XT5 Platforms.

Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Always same 

number of 

cores

Slide, courtesy of Alice Koniges

NERSC, LBLN
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Masteronly hybrid Jacobi

Programming models

- MPI + OpenMP

Hands-On #3 General considerations

How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: The Multi-Zone NAS Parallel Benchmarks
>     Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Example: MPI+OpenMP-Hybrid Jacobi solver

 Source code: See http://tiny.cc/MPIX-VSC

 This is a Jacobi solver (2D stencil code) with domain decomposition and halo exchange

 The given code is MPI-only. You can build it with make (take a look at the Makefile) and run it with something like this (adapt to local 

requirements):

$ <mpirun-or-whatever> -np <numprocs> ./jacobi.exe < input

Task: parallelize it with OpenMP to get a hybrid MPI+OpenMP code, and run it effectively on the given hardware.

 Notes:

 The code is strongly memory bound at the problem size set in the input file

 Learn how to take control of affinity with MPI and especially with MPI+OpenMP

 Always run multiple times and observe performance variations

 If you know how, try to calculate the maximum possible performance and use it as a “light speed” baseline

G, 

Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Example / Exercise

http://tiny.cc/MPIX-VSC

http://tiny.cc/MPIX-LRZ alternative for
the exercises

VSC
LRZ
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Example cont’d

 Tasks (we assume Nc cores per CPU socket):

 Run the MPI-only code on one node with 1,…,Nc,…,2*Nc processes (1 full node) and observe the

achieved performance behavior

 Parallelize appropriate loops with OpenMP

 Run with OpenMP and 1 MPI process (“OpenMP-only”) on 1,…,Nc,…,2*Nc cores, 

compare with MPI-only run

 Run hybrid variants with different MPI vs. OpenMP ratios

 Things to observe

 Run-to-run performance variations

 Does the OpenMP/hybrid code perform as well as the MPI code? If it doesn’t, fix it!

INIT

halo exchange

update

subdomain

convergence 

or max iter?

N

Y

ENDsee also login-slides

G, 

Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Example / Exercise

http://tiny.cc/MPIX-VSC

http://tiny.cc/MPIX-LRZ alternative for
the exercises
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Programming models

- MPI + OpenMP

Overlapping

Communication and Computation

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Overlapping comm. & comp.

General considerations

How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: The Multi-Zone NAS Parallel Benchmarks
Hands-on: Masteronly hybrid Jacobi

> Overlapping communication and computation
Communication overlap with OpenMP taskloops

Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Sleeping threads with masteronly style

 Problem:

 Sleeping threads are wasting CPU time

 Solution:

 Overlapping of computation and 

communication

 Limited benefit:

 Best case: reduces communication 

overhead from 50% to 0% 

 speedup of 2x

 Usual case of 20% to 0%

 speedup of 1.25x

 Requires significant work  later

for (iteration ….)

{

#pragma omp parallel

numerical code

/* end parallel */

/* on master only */

MPI_Send(halos);

MPI_Recv(halos);

} /*end for loop*/

Node Interconnect

Master

thread

Socket 1

Node Node

Socket 2

Master

thread

Socket 1

Socket 2

Master

thread

Master

thread
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Nonblocking vs. threading for overlapped comm.

 Why not use nonblocking calls?

 Asynchronous progress not guaranteed

 Options (implementation dependent):

 Communication offload to NIC

 Additional internal progress thread (MPI_ASYNC… with MPICH)

 Intranode and internode communication may be handled very differently

 Using threading for communication overlap

 One or more threads/tasks handles communication, rest of team “do the work”

 How to organize the work sharing among all threads?

 Non-communicating threads

 Communicating threads after communication is over

 Not all of the work can usually be overlapped  see next slide
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Using threading/tasking for comm. overlap

MPI_Init

MPI processMPI process MPI process

MPI_Finalize

MPI 

comm.

MPI_Init

MPI processMPI process MPI process

MPI_Finalize

OpenMP 

threads
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Explicit overlapping of communication and computation

The basic principle appears simple:

#pragma omp parallel

{

// ... do other parallel work

if (thread_ID < 1) {

MPI_Send/Recv ...  // comm. halo data

} else {

// Work on data that is independent

// of halo data

}

} // end omp parallel

// Now work on data that needs the 

// halo data (all threads)

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Overlapping comm. & comp. 81/239
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Overlapping communication with computation

Three problems:

 Application problem: separate application into 

 code that can run before the halo data is received

 code that needs halo data

 May be hard to do 

 Thread-rank problem: distinguish
comm. / comp. via thread ID

 Work sharing and
load balancing is harder

 Options

 Fully manual work distribution 

 Nested parallelism

 Tasking & taskloops

 Partitioned comm (MPI-4.0)

 Optimal memory placement on ccNUMA may be difficult

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Overlapping comm. & comp.

if (my_thread_ID < 1) {

MPI_Send/Recv

} else {

my_thread_range=(high-low-1)/(num_threads-1)+1;

my_thread_low=low+(my_thread_ID-1)*my_thread_range;

my_thread_high=low+(my_thread_ID-1+1)

*my_thread_range;

my_thread_high=min(high, my_thread_high);

for (i=my_thread_low; i<my_thread_high; i++) {

...

}

}

e
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82/239



Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Example: sparse matrix-vector multiply (spMVM)

 spMVM on Intel Westmere cluster (6 cores/socket)

 “task mode” == explicit communication overlap

using dedicated thread

 “vector mode” == MASTERONLY 

 “naïve overlap” == non-blocking MPI

 Memory bandwidth is already saturated by 5 cores

G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector multiplication with 

explicit communication overlap on current multicore-based systems. Parallel Processing Letters 21(3), 339-358 

(2011). DOI: 10.1142/S0129626411000254

50% efficiency with 

respect to best 

single-node 

performance

2011, Author:

Georg Hager

G
fl
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p
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(a) vector mode

without overlap

(b) vector mode with

naive overlap

(c) task mode

best Cray

60

50

40

30

20

10

Without overlap:

Scaling until 

~8 nodes

With task mode 

overlap:

Scaling until 

~24 nodes

3 x better scaling

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Overlapping comm. & comp.

It’s not just the saved 

communication time; scaling 

may be much improved! 
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Programming models

- MPI + OpenMP

Communication overlap

with OpenMP taskloops

General considerations

How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: The Multi-Zone NAS Parallel Benchmarks
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
>     Communication overlap with OpenMP taskloops

Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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OpenMP taskloop Directive  – Syntax 

 Immediately following loop executed in several tasks

 Not a work-sharing directive!

 Should be executed only by one thread!

 Fortran:
!$OMP taskloop [ clause [ [ , ] clause ] ... ]

do_loop
[ !$OMP end taskloop [ nowait ] ] 

 If used, the end do directive must appear immediately after the end of the loop

 C/C++:
#pragma omp taskloop [ clause [ [ , ] clause ] ... ] new-line

for-loop

 The corresponding for-loop must have canonical shape  next slide

09/22/2014, Author:

Rolf Rabenseifner

A task can be run by any thread, across NUMA nodes

 perfect first touch impossible!

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Overlapping comm. & comp.

Loop iterations must be 

independent, i.e., they 

can be executed in 

parallel
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OpenMP taskloop Directive  – Details 

 clause can be one of the following:

 if([ taskloop: ] scalar-expr) [a task clause]

 shared(list)  [a task clause]

 private(list), firstprivate(list) [a do/for clause] [a task clause]

 lastprivate(list) [a do/for clause]

 default(shared | none | …) [a task clause]

 collapse( n ) [a do/for clause]

 grainsize(grain-size)

 num_tasks(num-tasks)

 untied, mergeable [a task clause]

 final( scalar-expr ), priority( priority-value ) [a task clause]

 nogroup

 reduction (operator:list) [a do/for clause]

 do/ for clauses that are not valid on a taskloop:

 schedule( type [ , chunk ] ), nowait

 linear(list [ : linear-step] ),  ordered [( n )]

10/27/2016, Author:

Rolf Rabenseifner

Since 

OpenMP 5.0!

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Overlapping comm. & comp.

Mutual 

exclusive
Mutually 

exclusive
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OpenMP single & taskloop Directives

#pragma omp parallel

{

#pragma omp single

{

#pragma omp taskloop

for (i=0; i<30; i++)

a[i] = b[i] + f * (i+1);

}

} /*omp end single*/

} /*omp end parallel*/

C / C++:C/C++

i=

0,4

i=

5,9

i=

10,14

i=

15,19

single

Tasks are queued and then 

serviced by team of threads

A lot more tasks 

than threads may 

be produced to 

achieve a good 

load balancing

a(i)=

b(i)+...

a(i)=

b(i)+...

a(i)=

b(i)+...

a(i)=

b(i)+...

i=

20,24

i=

25,29

a(i)=

b(i)+...

a(i)=

b(i)+...

10/27/2016, Author:

Rolf Rabenseifner Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Overlapping comm. & comp. 87/239
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OpenMP single & taskloop Directives

!$OMP PARALLEL

!$OMP SINGLE

!$OMP TASKLOOP

do i=1,30

a(i) = b(i) + f * i

end do

!$OMP END TASKLOOP

!$OMP END SINGLE

!$OMP END PARALLEL

Fortran:

i=

1,5

i=

6,10

i=

11,15

i=

16,20

Fortran

single

A lot more tasks 

than threads may 

be produced to 

achieve a good 

load balancing a(i)=

b(i)+...

a(i)=

b(i)+...

a(i)=

b(i)+...

a(i)=

b(i)+...

i=

21,25

i=

26,30

a(i)=

b(i)+...

a(i)=

b(i)+...

10/27/2016, Author:

Rolf Rabenseifner Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Overlapping comm. & comp.

Tasks are queued and then 

serviced by team of threads
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Comm. overlap with task & taskloop Directives  – C/C++

#pragma omp parallel

{

#pragma omp single

{

#pragma omp task

{ // MPI halo communication:

MPI_Send/Recv...

// numerical loop using halo data:

#pragma omp taskloop

for (i=0; i<100; i++)

a[i] = b[i] +b[i-1]+b[i+1]+b[i-2]…;

} /*omp end of halo task */

// numerical loop without halo data:

#pragma omp taskloop

for (i=100; i<10000; i++)

a[i] = b[i] +b[i-1]+b[i+1 ]+b[i-2]…;

...
} /*omp end single */

} /*omp end parallel*/

C/C++

MPI
Loop

portion

Loop

portion

Loop

portion

Sect.

1

Single 

T.

Number of 

tasks may 

be 

influenced 

with 

grainsize or 

num_tasks

clauses

halo

comm.

without

halo

without

halo

without

halo

Loop

with h.

Loop

with h.

Loop

with h.

Loop

with h.

Loop

portion

without

halo

Loop

with h.

Loop

with h.

10/27/2016, Author:
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Tasking example: dense matrix-vector multiply with

communication overlap

Data distribution across processes:

X= +

c =  c + A * r

0 1 2 3

? Author:
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Dense matrix-vector multiply with communication overlap via 

tasking

Computation/communication scheme:

X= +

X= +
Step2: MVM on

next subdiag blocks

Ring shift of

vector r

Step1: MVM on 

diagonal blocks

Author:
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Dense matrix-vector multiply with communication overlap via 

tasking

#pragma omp parallel

{

int tid = omp_get_thread_num();

int n_start=rank*my_size+min(rest,rank), cur_size=my_size;

// loop over RHS ring shifts

for(int rot=0; rot<ranks; rot++) {

#pragma omp single

{

if(rot!=ranks-1) {

#pragma omp task

{

MPI_Isend(buf[0], …, r_neighbor, …, &request[0]);

MPI_Irecv(buf[1], …, l_neighbor, …, &request[1]);

MPI_Waitall(2, request, status);

}

}

for(int row=0; row<my_size; row+=4) {

#pragma omp task

do_local_mvm_block(a, y, buf, row, n_start, cur_size, n);

}

}

#pragma omp single

tmpbuf = buf[1]; buf[1] = buf[0]; buf[0] = tmpbuf;

n_start += cur_size;

if(n_start>=size) n_start=0; // wrap around

cur_size = size_of_rank(l_neighbor,ranks,size);

}

}

Asynchronous

communication

(ring shift)

Current block of MVM

(chunked by 4 rows)

Author:
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Partitioned Point-to-Point Communication

 New in MPI-4.0:

Partitioned communication is “partitioned“ because it allows for multiple 

contributions of data to be made, potentially, from multiple actors (e.g., 

threads or tasks) in an MPI process to a single communication operation.

 A point-to-point operation (i.e., send or receive) 

 can be split into partitions,

 and each partition is filled and then “sent” with MPI_Pready by a thread;

 same for receiving

 Technically provided as a new form of persistent communication. 

01/26/2021, Author:
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Taskloop-based hybrid Jacobi

Programming models

- MPI + OpenMP

Hands-On #4 General considerations

How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: The Multi-Zone NAS Parallel Benchmarks
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

>     Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Programming models

- MPI + OpenMP

Main advantages, 

disadvantages, 

conclusions

General considerations

How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: The Multi-Zone NAS Parallel Benchmarks
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

Hands-on: Taskloop-based hybrid Jacobi

> Main advantages, disadvantages, conclusions
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MPI+OpenMP: Main advantages
 Increase parallelism

 Scaling to higher number of cores

 Adding OpenMP with incremental additional parallelization

 Lower memory requirements due to smaller number of MPI processes

 Reduced amount of application halos & replicated data

 Reduced size of MPI internal buffer space

 Very important on systems with many cores per node

 Lower communication overhead (possibly) 

 Few multithreaded MPI processes vs many single-threaded processes 

 Fewer number of calls and smaller amount of data communicated

 Topology problems from pure MPI are solved

(was application topology versus multilevel hardware topology)

 Provide for flexible load-balancing on coarse and fine levels

 Smaller #of MPI processes leave room for assigning workload more evenly

 MPI processes with higher workload could employ more threads

Additional advantages when overlapping communication and computation:
 No sleeping threads 

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Conclusions 96/239
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MPI+OpenMP: Main disadvantages & challenges 
 Non-Uniform Memory Access:

 Not all memory access is equal:  ccNUMA locality effects

 Penalties for access across NUMA domain boundaries

 First touch is needed for more than one NUMA domain per MPI process 

 Alternative solution: 

One MPI process on each NUMA domain (i.e., chip)

 Multicore / multisocket anisotropy effects

 Bandwidth bottlenecks, shared caches

 Intra-node MPI performance: Core ↔ core  vs.  socket ↔ socket

 OpenMP loop overhead

 Amdahl’s law on both, MPI and OpenMP level

 Complex thread and process pinning

Masteronly style (i.e., MPI outside of parallel regions)

 Sleeping threads

Additional disadvantages when overlapping communication and computation:

 High programming overhead

 OpenMP is only partially prepared for this programming style  taskloop directive

Hybrid Programming – MPI+X  Programming models  MPI + OpenMP Conclusions 97/239
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Questions addressed in this tutorial

 What is the performance impact of system topology?

 How do I map my programming model on the system to my advantage?

 How do I do the split into MPI+X?

 Where do my processes/threads run? How do I take control?

 Where is my data?

 How can I minimize communication overhead? 

 How does hybrid programming help with typical HPC problems?

 Can it reduce communication overhead?

 Can it reduce replicated data?

 How can I leverage multiple accelerators?

 What are typical challenges?

It’s massive

Problem 

dependent

Process/thread 

affinity
ccNUMA first-

touch placement
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General considerations slide 100

OpenACC 105

Advantages & main challenges 112

Parts 

Courtesy of Gabriele Jost

Programming models

- MPI + Accelerator
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Accelerator programming: Bottlenecks reloaded

Example: 2-socket Intel “Ice Lake” (2x36 cores) node 

with two NVIDIA A100 GPGPUs (PCIe 4)

 Speedups can only be attained if communication overheads

are under control

Basic estimates help

G
P

U
 

#
1

G
P

U
 

#
2

P
C

Ie

N
IC

,…
 

per GPGPU per CPU

DP peak 

performance
9.7 Tflop/s 2.3 Tflop/s 

eff. memory (HBM) 

bandwidth
1300 Gbyte/s 170 Gbyte/s

inter-device 

bandwidth (PCIe)
≈ 30 Gbyte/s

inter-device 

bandwidth (NVlink)
> 500 Gbyte/s

4x

8x

0.11 B/F 0.10 B/FMachine balance

…
…

Author:
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Accelerator + MPI: How does the data get from A to B?

Hybrid Programming – MPI+X  Programming models  MPI + Accelerator  General considerations 101/239
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Questions to ask

 Is the MPI implementation CUDA aware?

 Yes: Can use device pointers in MPI calls

 No: Explicit DtoH/HtoD buffer transfers required

 Copying to consecutive halo buffers may still be necessary

 Is NVLink available?

 Yes: Direct GPU-GPU MPI communication with MPI

 Supported by: P100, V100, A100, H100

 No: copies via host (even with NVIDIA GPUDirect)

 Unified Memory or explicit DtoH/HtoD transfers?

 UM: Transparent sharing of host and device memory

 Actual bandwidths and latencies?

 Highly system and implementation dependent!

Hybrid Programming – MPI+X  Programming models  MPI + Accelerator  General considerations 102/239
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Never forget: hardware is not enough

 SpMV on NVIDIA A100: 

 Different data formats and libraries

 2800 matrices (SuiteSparse Matrix 

Collection)

 Optimal matrix storage format is highly

matrix and system dependent!

H. Anzt, et al; 2020 IEEE/ACM Performance Modeling, Benchmarking 

and Simulation of High Performance Computer Systems (PMBS), 

DOI: 10.1109/PMBS51919.2020.00009.

𝑃𝑜𝑝𝑡 = 233
𝐺𝐹

𝑠
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Which model/combination is the best???

 the one that allows you to address the relevant hardware bottleneck(s)

Options for hybrid accelerator programming

multicore host

MPI

MPI+MPI3 shmem ext.

MPI+threading

(OpenMP, pthreads, TBB,…)

threading only

PGAS (CAF, UPC,…)

…

accelerator

CUDA

OpenCL

OpenACC

OpenMP 4.0++

special purpose

…

Author:
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Programming models

- MPI + Accelerator

OpenACC

Hybrid Programming – MPI+X  Programming models  MPI + Accelerator  OpenACC

General considerations

> OpenACC

Advantages & main challenges
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What is OpenACC?
 API that supports offloading of loops and regions of code (e.g. loops) from a 

host CPU to an attached accelerator in C, C++, and Fortran

 Managed by a nonprofit corporation  formed by a group of companies:

 CAPS Enterprise, Cray Inc., PGI and NVIDIA

 Set of compiler directives, runtime routines, and environment variables

 Simple programming model for using accelerators (focus on GPGPUs)

 Memory model:

 Host CPU + Device may have completely separate memory; Data movement between host and device 

performed by host via runtime calls; Memory on device may not support memory coherence between 

execution units or need to be supported by explicit barrier

 Execution model:

 Compute intensive code regions offloaded to the device, executed as kernels ; Host orchestrates data 

movement, initiates computation, waits for completion; Support for multiple levels of parallelism, 

including SIMD (gangs, workers, vector)

09/2011, Author:

Gabriele Jost Hybrid Programming – MPI+X  Programming models  MPI + Accelerator  OpenACC

Courtesy of Gabriele Jost
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A very simple OpenACC example (PGI 14.10): Vector Triad

void compute (double *restrict a , double *b,...) {

#pragma acc kernels

#pragma acc loop vector (1024)

for(int i=0; i<N ; ++i) {

a[i] = b[i] + c [i] * d[i];

}

}

int main ()

{

double a[N], b[N], c[N], d[N];

...

#pragma acc data \

copyin(b[0:N],c[0:N],d[0:N])

#pragma acc data copyout (a[0:N])

compute(a ,b , c ,d ,N);

...

}

pgcc −ta=nvidia , cc35 −Minfo −fast −c triad.c

compute:

9 , Generating present or copyout (a [ :N])

Generating present or copyin (b [ :N])

Generating present or copyin (c [ :N])

Generating present or copyin (d [ :N])

Generating Tesla code

10 , Loop is parallelizable

Accelerator kernel generated

10 , #pragma acc loop gang , vector (1024)...

data 

mgmt

execution

Hybrid Programming – MPI+X  Programming models  MPI + Accelerator  OpenACC 107/239
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Example: 2D Jacobi smoother
#pragma acc data copy(phi1[0:sizex*sizey],phi2[0:sizex*sizey])

{ 

for(n=0; n<iter; n++) {

#pragma acc kernels

#pragma acc loop independent private(ofs)

for(int i=1; i<sizex-1; ++i) {

ofs = i*sizey;

#pragma acc loop independent

for(int j=1; j<sizey-1; ++j) {

phi1[ofs+j] = oos * (phi2[ofs+j-1] + 

phi2[ofs+j+1] +

phi2[ofs+j-sizey] + 

phi2[ofs+j+sizey]);

}

}

}

swap(phi1,phi2);      

}

Hybrid Programming – MPI+X  Programming models  MPI + Accelerator  OpenACC 108/239
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Example: Sparse MVM (std. CSR format)

#pragma acc parallel present(val[0:numNonZeros], \

colInd[0:numNonZeros],      \

rowPtr[0:numRows+1],        \

x[0:numRows],               \

y[0:numRows])               \

loop

for (int rowID=0; rowID<numRows; ++rowID)    {        

double tmp = y[rowID];        

// loop over all elements in row        

for (int rowEntry=rowPtr[rowID]; 

rowEntry<rowPtr[rowID+1]; 

++rowEntry) {

tmp += val[rowEntry] * x[ colInd[rowEntry] ];        

}   

y[rowID] = tmp;    

}
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Example: Sparse MVM (SELL-C-σ format)

#pragma acc parallel present(val[0 : capacity],colInd[0 : capacity],\

chunkPtr[0 : numberOfChunks], chunkLength[0 : numberOfChunks],  \

x[0 : paddedRows],y[0 : paddedRows]) vector_length(chunkSize) loop    

// loop over all chunks    

for (int chunk=0; chunk < numberOfChunks; ++chunk) {        

int chunkOffset = chunkPtr[chunk];        

int rowOffset = chunk*chunkSize;        

#pragma acc loop vector        

for (int chunkRow=0; chunkRow<chunkSize; ++chunkRow) {

int globalRow = rowOffset + chunkRow;            

// fill tempory vector with values from y            

double tmp = y[globalRow];            

// loop over all row elements in chunk            

for (int rowEntry=0; 

rowEntry<chunkLength[chunk]; 

++rowEntry) {                 

tmp += val [chunkOffset + rowEntry*chunkSize + chunkRow]                      

* x[colInd[chunkOffset + rowEntry*chunkSize + chunkRow] ];            

}            

// write back result of y = alpha Ax + beta y            

y[globalRow] = tmp;        

}    

}

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. 

Bishop: A unified sparse matrix data format for efficient general

sparse matrix-vector multiplication on modern processors with

wide SIMD units. SIAM Journal on Scientific Computing 36(5), 

C401–C423 (2014). DOI: 10.1137/130930352
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Example: Sparse MVM CRS vs. SELL-128-8192 on Kepler K20

0

5

10

15

20

25

pwtk ML_Geer DLR1 kkt_power Hamrle3

GFlop/s

GPU plain CSR GPU SELL-C-sigma CPU plain CSR CPU SELL-4-8192

GPU absolute, matrix-independent light speed limit (memory BW)

Single-CPU (Xeon Ivy Bridge DDR3-1866) 

absolute light speed limit
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MPI+Accelerators: Main advantages

 Hybrid MPI/OpenMP and MPI/OpenACC can leverage accelerators and 
yield performance increase over pure MPI on multicore

 Compiler/pragma-based API provides relatively easy way to use 
coprocessors

 OpenACC targeted toward GPU-type coprocessors

 OpenMP 4.0/4.5 extensions provide flexibility to use a wide range of 
heterogeneous coprocessors (GPU, APU, heterogeneous many-core 
types)

Sep 2014, Author:

Georg Hager Hybrid Programming – MPI+X  Programming models  MPI + Accelerator  Conclusions 112/239
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MPI+Accelerators: Main challenges

 Considerable implementation effort for basic usage, 
depending on complexity of the application

 Efficient usage of pragmas requires good understanding of 
performance issues 
 Performance is not only about code; data structures can be 

decisive as well 

 Support for accelerator pragmas still restricted to certain 
environments
 NVIDIA GPUs have best support

Sep 2014, Author:

Georg Hager

Goto Tools chapter
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Questions addressed in this tutorial

 What is the performance impact of system topology?

 How do I map my programming model on the system to my advantage?

 How do I do the split into MPI+X?

 Where do my processes/threads run? How do I take control?

 Where is my data?

 How can I minimize communication overhead? 

 How does hybrid programming help with typical HPC problems?

 Can it reduce communication overhead?

 Can it reduce replicated data?

 How can I leverage multiple accelerators?

 What are typical challenges?

Data structures are decisive, 

inter-device communication 

support varies

114/239



Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

General considerations & uses cases slide 116

Re-cap: MPI_Comm_split & one-sided communication 120

How-to 128

Exercise: MPI_Bcast 143

Quiz 1 155

MPI memory models & synchronization 156

Shared memory problems 166

Advantages & disadvantages, conclusions 169

Quiz 2 174

Programming models

- MPI + MPI-3 shared memory
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Hybrid MPI + MPI-3 shared memory

What is it?

 Addon to pure message passing

 MPI processes can share memory segments within a node

Use cases/advantages

 A: Reducing replicated data  Reduced memory requirements

 B: Reducing intra-node message passing  Reduced intra-node communication time

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  General considerations

R R R

R = Shared memory

Using MPI 

shared memory methods  

Direct loads & stores,

no library calls

Shared-memory node

MPI process
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Hybrid MPI + MPI-3 shared memory

 Further advantages

 Using only one parallel programming model

 No OpenMP problems  (e.g., thread-safety isn’t an issue)

 Major Problems

 Communicator must be split into shared memory islands

 No increase in exploitable parallelism

 None of the “automatic” advantages of MPI+OpenMP

 Exploiting advantages requires programming effort

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  General considerations

See MPI+OpenMP

summary
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Use case A: Reducing memory requirements

[6A]
Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  General considerations

R R

R R

R R

R R

R R

R R

R = Replicated data

in each MPI process

Example:

Cluster of SMP nodes

without using MPI shared memory methods  

R R R

R = Shared memory

 replicated data only once

within each SMP node

Using MPI 

shared memory methods  

Direct loads & stores, no library calls

MPI-3.0 shared memory can be used 
to significantly reduce the memory needs for replicated data.
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Use case B: Reducing intra-node message passing

MPI on each core (not hybrid)

 Halos between all cores

 MPI uses internally shared memory and cluster communication protocols

MPI+OpenMP

 Multi-threaded MPI processes

 Halos communication only between MPI processes

MPI cluster communication + MPI shared memory communication

 Same as “MPI on each core”, but

 within the shared memory nodes, halo communication through

direct copying with C or Fortran statements

MPI cluster comm. + MPI shared memory access

 Similar to “MPI+OpenMP”, but

 shared memory programming through work-sharing between the MPI 

processes within each SMP node

2015 (?), Author:
Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  General considerations

MPI inter-node communication
MPI intra-node communication
Intra-node direct Fortran/C copy
Intra-node direct neighbor access

1 SMP node with 4 cores
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Programming models

- MPI + MPI-3.0 shared memory

Re-cap

•   MPI_Comm_split

•   One-sided communication

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Re-cap

General considerations & uses cases

> Re-cap: MPI_Comm_split & one-sided communication

How-to

Exercise: MPI_Bcast

Quiz 1

MPI memory models & synchronization

Shared memory problems

Advantages & disadvantages, conclusions

Quiz 2
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New sub-communicators with MPI_Comm_split

 New sub-communicators via MPI_Comm_split

 Each process must specify a color

 Processes with same color are put together

in new sub-communicators

same color value within each 

sub-communicator

& MPI_Comm_split_type
 shared memory

Each process gets only its new 

sub-communicator

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Re-cap  MPI_Comm_split

Old/existing communicator

New in 

MPI-3.0
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Example: MPI_Comm_split() Corrections from 2016

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Re-cap  MPI_Comm_split

Example: int my_rank, mycolor, key, my_newrank;

PI_Comm newcomm; 

AMPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

mycolor = my_rank/4;

key = 0;

MPI_Comm_split(MPI_COMM_WORLD, mycolor, key, &newcomm);

MPI_Comm_rank (newcomm, &my_newrank);

• C/C++: int MPI_Comm_split (MPI_Comm comm, int color, int key, 

MPI_Comm *newcomm)

• Fortran: MPI_COMM_SPLIT (comm, color, key, newcomm, ierror)

mpi_f08: TYPE(MPI_Comm) :: comm, newcomm

INTEGER :: color, key;

INTEGER, OPTIONAL :: ierror

mpi & mpif.h: INTEGER comm, color, key, newcomm, ierror

C/C++

Fortran

0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15 … MPI_COMM_WORLD

0     1     2     3     

newcomm
mycolor == 0

0     1     2     3     

newcomm
mycolor == 1

0     1     2     3     

newcomm
mycolor == 2

0     1     2     3     

newcomm
mycolor == 3

0     1     2     3     

newcomm
mycolor == 4

Always 4 process get same color  grouped in an own newcomm

key==0  ranking in newcomm is sorted as in old comm

key ≠ 0  ranking in newcomm is sorted according key values

Creation is collective in the old communicator.

Each process 

gets only its own

sub-communicator

All processes with 

same color are 

grouped into 

separate sub-

communicators
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Re-cap: One-sided Communication

 Communication parameters for both the sender and receiver

are specified by one process (origin) 

 User must impose correct ordering of memory accesses

Origin Process Target Process

put

get

The window is a memory 

portion accessible from the 

other processes

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Re-cap  One-sided communication

A process in the role of an origin process 

accesses the window through

Remote Memory Access (RMA) routines 

A process in the role of a target process 

exposes its window

to origin processes
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Typically, all processes are both, origin and target processes

put
get

Full protection of 

the memory of 

each MPI 

process against 

accesses from 

other MPI 

processes

Software

Data

One MPI process

Window

Window
Window

Window

With a collective 

MPI_Win_create(), 

each process 

provides a memory 

portion (= window) 

that is now accessible 

from outside

local 
snd_buf

local 
recv_buf

put
send recv

with                 …put get
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One-sided Operations

Three major sets of routines:

 Window creation or allocation

 Each process in a group of processes (defined by a communicator)

 defines a chunk of own memory  – named window,

 which can be afterwards accessed by all other processes of the group.

 Remote Memory Access (RMA, nonblocking) routines

 Access to remote windows: put, get, accumulate, …

 Synchronization

 The RMA routines are nonblocking and 

 must be surrounded by synchronization routines, which guarantee 

 that the RMA is locally and remotely finished

 and that all necessary cache operation are implicitly done

Shared memory:

direct loads and stores

instead of MPI_Put/Get

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Re-cap  One-sided communication 125/239
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Sequence of One-sided Operations

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Re-cap  One-sided communication

Window creation/allocation

Remote Memory Accesses

(RMA)

Synchronization

Window freeing/deallocation

Remote Memory Accesses

Remote Memory Accesses

Local load/store

Local load/store

RMA epoch

Local load/store epoch

RMA operations must be surrounded

by synchronization calls

Remote Memory Accesses

To start and finish 
exposure and access epochs

Local load/store epochs must be separated from RMA epochs 

by synchronization calls

It looks like that additionally local load/store epochs
are also surrounded by synchronizations

But correct is: only RMA epochs must be surrounded
by synchronization calls
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Synchronization Calls (1)

 Active target communication

 communication paradigm similar to message passing model

 target process participates only in the synchronization

 fence or post-start-complete-wait

 Passive target communication

 communication paradigm closer to shared memory model

 only the origin process is involved in the communication

 lock/unlock

origin1 origin2   target

lock
put/get
unlock lock

put/get
unlock

window

origin target

load/store
sync. sync.
put/get
sync. sync.

load/store

window
MPI_Win_fence is like a barrier

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Re-cap  One-sided communication 127/239



Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Programming models

- MPI + MPI-3.0 shared memory

How-to

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Re-cap

General considerations & uses cases

Re-cap: MPI_Comm_split & one-sided communication

> How-to

Exercise: MPI_Bcast

Quiz 1

MPI memory models & synchronization

Shared memory problems

Advantages & disadvantages, conclusions

Quiz 2
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MPI shared memory

 Split main communicator into shared memory islands (automatically)

 MPI_Comm_split_type

 Define a shared memory window on each island
 MPI_Win_allocate_shared

 Result (by default):  contiguous array, directly accessible by all processes of the island

 Accesses and synchronization
 This is normal memory: Language-based expressions and assignments  

 MPI_PUT/GET still allowed, but this is not the spirit!

 Normal MPI one-sided synchronization, e.g., MPI_WIN_FENCE

 Caution: 
 Memory may be already completely pinned to the physical memory of the process with rank 0, 

i.e., the first touch rule (as in OpenMP) does not apply!
(First touch rule: a memory page is pinned to the physical memory of the processor that first writes a byte into the page) 
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Splitting & shared memory allocation

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  How-to

MPI_Aint /*IN*/ local_window_count=10; double /*OUT*/  *base_ptr; 

MPI_Comm comm_all,  comm_sm; int my_rank_all,  my_rank_sm,  size_sm,  disp_unit; 

MPI_Comm_rank (comm_all, &my_rank_all);

MPI_Comm_split_type (comm_all, MPI_COMM_TYPE_SHARED, 0,
MPI_INFO_NULL,  &comm_sm);

MPI_Comm_rank (comm_sm, &my_rank_sm);  MPI_Comm_size (comm_sm, &size_sm);

disp_unit = sizeof(double);  /* shared memory should contain doubles */

MPI_Win_allocate_shared ((MPI_Aint) local_window_count*disp_unit,  disp_unit,
MPI_INFO_NULL,  comm_sm,  &base_ptr,  &win_sm);  

0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15  …      my_rank_all
0     4     8    12       1     5     9    13      2     6   10   14      3     7    11   15           my_rank_all

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

…

MPI process

Sub-communicator
comm_sm
for one SMP node

local_window_count
doubles

base_ptr

Contiguous shared memory window within each SMP node

Sequence in comm_sm

as in  comm_all

comm_all

This mapping is based on the ranking in comm_all.

M

M

Sequential 
ranking in 
comm_all

Round robin

collective call

collective call

Caution: If local_window_count is 0, some MPI libraries return 

a null pointer instead of pointing to next process’ base.
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Shared-memory allocation in Fortran uses C pointer!

USE mpi_f08

USE, INTRINSIC :: ISO_C_BINDING

INTEGER :: max_length,  disp_unit

INTEGER(KIND=MPI_ADDRESS_KIND) :: lb, size_of_real

REAL, POINTER, ASYNCHRONOUS :: buf(:)

TYPE(MPI_Win) :: win

INTEGER(KIND=MPI_ADDRESS_KIND) :: buf_size, target_disp

TYPE(C_PTR) :: cptr_buf

max_length = …

CALL MPI_Type_get_extent(MPI_REAL, lb, size_of_real) 

buf_size = max_length * size_of_real

disp_unit = size_of_real

CALL MPI_Win_allocate_shared(buf_size, disp_unit, MPI_INFO_NULL, comm_shm, cptr_buf, win)

CALL C_F_POINTER(cptr_buf, buf, (/max_length/) )

buf(0:) => buf ! With this code, one may change the lower bound to 0 (instead of default 1)

! The window elements are buf(0) .. buf(max_length-1)

float *buf;  MPI_Win win; int max_length; max_length = … /* = array size in elements */; 

MPI_Win_allocate_shared( (MPI_Aint)(max_length*sizeof(float)),  sizeof(float), MPI_INFO_NULL,  comm_shm,  &buf,  &win);

// the window elements are buf[0] .. buf[max_length-1]

Fortran

C

New in MPI-3.0 In all three Fortran support methods

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  How-to

Fortran for Scientific Computing – a course in FutureLearn,
a good Intro to Fortran / but without C_F_POINTER.
Trailer: https://www.youtube.com/watch?v=l6pEaUttWo8
By Geert Jan Bex et al – have fun with it 

Translates C pointer

to std Fortran pointer
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Within each shared-memory island: essentials

 The allocated shared memory is contiguous across process ranks,

 i.e., the first byte of rank i starts right after the last byte of rank i-1.

 Processes can calculate remote addresses’ offsets with local information

 Remote accesses through load/store operations,

 i.e., without MPI RMA operations (MPI_Get/Put, …) 

 Caution:
Although each process in comm_sm accesses the same physical memory,

the virtual start address of the whole array may be different in all processes!

 linked lists only with offsets in a shared array, 

but not with binary pointer addresses!

Following slides show only the shared memory accesses, i.e., communication between the SMP nodes is not presented.
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Splitting into smaller shared memory islands

 e.g., splitting into NUMA nodes or sockets

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  How-to

0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15     … comm_all

0     1     2     3     
comm_sm

0     1     2     3     
comm_sm

0     1     2     3     
comm_sm

0     1     2     3     
comm_sm

0     1     2     3     
comm_sm

MPI_Comm_split_type (comm_all, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &comm_sm_large); 

MPI_Comm_rank (comm_sm_large, &my_rank_sm_large); MPI_Comm_size (comm_sm_large, &size_sm_large);

MPI_Comm_split (comm_sm_large, /*color*/ my_rank_sm_large / size_sm,  0, &comm_sm);

MPI_Win_allocate_shared (…, comm_sm, …);

• Subsets of shared memory nodes, e.g., one comm_sm on each socket with 

size_sm cores  (requires also sequential ranks in comm_all for each socket!)

Corrections 

Corrections 

Corrections 

or  (size_sm_large /number_of_sockets)
Here
1 or 2

comm_sm_large,
e.g., one ccNUMA node
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Splitting into smaller shared memory islands

 Most MPI libraries have an non-standardized method

to split a communicator into NUMA nodes (e.g., sockets):

 see also Current support for split types in MPI implementations or MPI based libraries

 OpenMPI: choose split_type as OMPI_COMM_TYPE_NUMA

 HPE: MPI_Info_create (&info);   MPI_Info_set(info, "shmem_topo", "numa"); // or "socket"

MPI_Comm_split_type(comm_all, MPI_COMM_TYPE_SHARED, 0, info, &comm_sm);

 mpich:split_type=MPIX_COMM_TYPE_NEIGHBORHOOD, info_key= "SHMEM_INFO_KEY“ and 

value= "machine", "socket", "package", "numa", "core", "hwthread", "pu", "l1cache", ..., or "l5cache"

 Two additional standardized split types:
 MPI_COMM_TYPE_HW_GUIDED

 MPI_COMM_TYPE_HW_UNGUIDED

 See also Exercise 3.

Drawback: no standardized key values

New in MPI-4.0

Drawback: 

 two splits are needed

• 1st with MPI_COMM_TYPE_SHARED

• 2nd with MPI_COMM_TYPE_HW_UNGUIDED

 problematic if number of NUMA domains is not 

identical in all shared memory islands of 1st split

May not 

work with 

Intel-MPI

May be fixed in MPI-4.1
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MPI course  Chap.11-(1)  Shared Memory One-sided Communication

Such out of bound 
addressing is only available 

in C and Fortran..

Shared memory access example

MPI_Aint /*IN*/ local_window_count; double /*OUT*/  *base_ptr; 
MPI_Win_allocate_shared ((MPI_Aint) local_window_count*disp_unit,  disp_unit,  

MPI_INFO_NULL, comm_sm,  &base_ptr,  &win_sm); 

MPI_Win_fence (0, win_sm);  /*local store epoch can start*/

for (i=0; i<local_window_count; i++)  base_ptr[i] = … /* fill values into local portion */

MPI_Win_fence (0, win_sm);  /* local stores are finished, remote load epoch can start */

if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lf \n", base_ptr[-1] );

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %lf \n",
base_ptr[local_window_count] );

0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15  …      my_rank_all

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

…

MPI process
Sub-communicator
for one SMP node

base_ptr

Contiguous shared memory window within each SMP node local_window_count
doubles

Synchroni-

zation

Synchroni-

zation
Local stores

In Fortran, before and after the synchronization, on must add:  CALL MPI_F_SYNC_REG (buffer)
to guarantee that register copies of buffer are written back to memory, respectively read again from memory.

The buffer should be declared as ASYNCHRONOUS, see course Chapter 10, slide “Fortran Problems with 1-

Sided”.

Direct load access 
to remote window 

portion

MPI_Win_all

see High Performance Computing Center Stuttgart (HLRS)
 Self-Study Materials  MPI-Course material  end of 

Chapter 4 (https://www.hlrs.de/training/self-study-materials)

135/239

https://www.hlrs.de/training/self-study-materials


Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Establish comm_sm, comm_nodes, comm_all,

if SMPs are not contiguous within comm_orig

0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15  …      my_rank_all

0     1     2     3     
my_rank_sm

… Sub-communicator
for one SMP node:
comm_sm

MPI_Comm_split_type (comm_orig,  MPI_COMM_TYPE_SHARED,  0,  MPI_INFO_NULL,  &comm_sm);

MPI_Comm_size (comm_sm,  &size_sm);  MPI_Comm_rank (comm_sm,  &my_rank_sm);

MPI_Comm_split (comm_orig, my_rank_sm, 0, &comm_nodes); 

MPI_Comm_size (comm_nodes,  &size_nodes);

if (my_rank_sm==0) {

MPI_Comm_rank (comm_nodes,  &my_rank_nodes);

MPI_Exscan (&size_sm, &my_rank_all, 1, MPI_INT, MPI_SUM, comm_nodes); 

if (my_rank_nodes == 0)  my_rank_all = 0;

}

MPI_Comm_free (&comm_nodes);

MPI_Bcast (&my_rank_nodes, 1, MPI_INT, 0, comm_sm);

MPI_Comm_split (comm_orig, my_rank_sm, my_rank_nodes, &comm_nodes);

MPI_Bcast (&my_rank_all, 1, MPI_INT, 0, comm_sm); my_rank_all = my_rank_all + my_rank_sm;

MPI_Comm_split (comm_orig,  /*color*/ 0,  my_rank_all,  &comm_all);

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

Establish a 
communicator 
comm_sm with 

ranks my_rank_sm
on each SMP node

Result: comm_nodes combines all processes with a 
given my_rank_sm into a separate communicator.

Exscan does not 
return value on the 
first rank, therefore

comm_all

comm_nodes
combining all 
processes with same
my_rank_sm

On processes with my_rank_sm > 0, this comm_nodes is unused 
because node-numbering within these comm_nodes may be different.

Expanding the numbering from 
comm_nodes with my_rank_sm
== 0  to all new node-to-node 
communicators comm_nodes.

Calculating my_rank_all and 
establishing global communicator 
comm_all with sequential SMP 
subsets.

0                              1                             2                             3

my_rank_nodes

Input

my_rank_nodes is not identical to the rank in comm_nodes if node sizes are not identical
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Alternative: Non-contiguous shared memory

 Using info key "alloc_shared_noncontig“

 MPI library can put processes’ window portions

 into the local NUMA memory domain

 (internally, e.g., each window portion is one OS shared 

memory segment)

 on page boundaries,

 (internally, e.g., only one OS shared memory segment 

with some unused padding zones)

Pros: Faster local data accesses especially on 

ccNUMA nodes

Cons: Higher programming effort for neighbor 
accesses: MPI_WIN_SHARED_QUERY

Further reading:

Torsten Hoefler, James Dinan, Darius 

Buntinas, Pavan Balaji, Brian Barrett, 

Ron Brightwell, William Gropp, Vivek

Kale, Rajeev Thakur: 

MPI + MPI: a new hybrid approach to 

parallel programming with MPI plus 

shared memory.

http://link.springer.com/content/pdf/10.1

007%2Fs00607-013-0324-2.pdf

NUMA effects?
Significant impact of 

alloc_shared_noncontig

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  How-to
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Non-contiguous shared memory allocation

MPI_Aint /*IN*/ local_window_count; double /*OUT*/  *base_ptr; 

disp_unit = sizeof(double);  /* shared memory should contain doubles */

MPI_Info info_noncontig;  

MPI_Info_create (&info_noncontig);

MPI_Info_set (info_noncontig, "alloc_shared_noncontig", "true");

MPI_Win_allocate_shared ((MPI_Aint) local_window_count*disp_unit,  disp_unit,  info_noncontig,
comm_sm,  &base_ptr,  &win_sm ); 

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

…

MPI process

Sub-communicator
for one SMP node

local_window_count
doubles

base_ptr

Non-contiguous shared memory window within each SMP node
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Neighbor access through MPI_WIN_SHARED_QUERY

 Each process can retrieve each neighbor’s base_ptr

with calls to MPI_WIN_SHARED_QUERY

 Example: only pointers to the window memory

of the left & right neighbor

if (my_rank_sm > 0) MPI_Win_shared_query (win_sm, my_rank_sm - 1, 
&win_size_left,     &disp_unit_left,     &base_ptr_left);

if (my_rank_sm < size_sm-1) MPI_Win_shared_query (win_sm, my_rank_sm + 1, 
&win_size_right,  &disp_unit_right,   &base_ptr_right);

…

MPI_Win_fence (0, win_sm);  /* local stores are finished, remote load epoch can start */

if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lf \n", 
base_ptr_left[ win_size_left/disp_unit_left – 1 ] );

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %lf \n",
base_ptr_right[ 0 ] );

base_ptr_left base_ptr_right

Thanks to Steffen Weise (TU Freiberg) for
testing and correcting the example codes.

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  How-to

local call

If only one process allocates the 

whole window 

 to get the base_ptr, all processes 

call MPI_WIN_SHARED_QUERY

139/239



Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Whole shared memory allocation by rank 0 in comm_sm

if (my_rank_sm==0) win_size = local_window_count*disp_unit*size_sm else win_size = 0;

MPI_Win_allocate_shared (win_size,  disp_unit, MPI_INFO_NULL, comm_sm, &base_ptr, &win_sm);

MPI_Win_shared_query (win_sm, /*rank=*/ 0,  &win_size,  &disp_unit,  &first_base_ptr);  

0     1     2     3     

my_rank_sm

0     1     2     3     

my_rank_sm

0     1     2     3     

my_rank_sm

0     1     2     3     

my_rank_sm
…

Sub-communicator
comm_sm
for one SMP node

local_window_count
doubles

Contiguous shared memory window within each SMP node

New slide 

Undefined if 

win_size==0

win_size in bytes

first_base_ptr

first_base_ptr

win_size = local_window_count*disp_unit*size_sm;

MPI_Win_allocate_shared (win_size,  disp_unit, MPI_INFO_NULL, comm_sm, &base_ptr, &win_sm);

MPI_Win_shared_query (win_sm, /*rank=*/ 0,  &win_size,  &disp_unit,  &first_base_ptr);  

base_ptr

Describes the whole array

Describes only first portion

only for Python, we use this 
first_base_ptr to define the 
recv_buf array in Exercise 2

Python

Sep. 2021, Author:

Rabenseifner

MPI process

CAUTION: Aliasing may be forbidden in your programming language, 
i.e., within one process, do not access the same window element 
through two different pointers. Recommendation here: use   to access 
the own window portion, and use     to access remote elements.
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Other technical aspects with MPI_Win_allocate_shared

Caution: On some systems 

 the number of shared memory 

windows, and 

 the total size of shared memory 

windows

may be limited.

Some OS systems may provide options, 

 e.g., at job launch, or

 MPI process start,

to enlarge restricting defaults.

Thanks to Jeff Hammond and Jed Brown (ANL), Brian W Barrett 
(SANDIA), and Steffen Weise (TU Freiberg), for input and discussion.

If MPI shared memory support is based on 

POSIX shared memory:

 Shared memory windows are located in 

memory-mapped /dev/shm or /run/shm

 Default:  25% or 50% of the physical memory

 Root may change size with:
mount  -o  remount,size=6G  /dev/shm

 Maximum of ~2043 windows!

On some systems:  No limits.

On a system without virtual memory you have to 

reserve a chunk of address space when the node 

is booted (at job script launch). 

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  How-to

due to default limit of 

context IDs in mpich
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Questions addressed in this tutorial

 What is the performance impact of system topology?

 How do I map my programming model on the system to my advantage?

 How do I do the split into MPI+X?

 Where do my processes/threads run? How do I take control?

 Where is my data?

 How can I minimize communication overhead? 

 How does hybrid programming help with typical HPC problems?

 Can it reduce communication overhead?

 Can it reduce replicated data?

 How can I leverage multiple accelerators?

 What are typical challenges?

MPI-3 shared memory as a real alternative to OpenMP

shared memory, especially when OpenMP hard to be used

Where we 

are?
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Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Exercise: MPI_Bcast

Programming models

- MPI + MPI-3.0 shared memory
Exercise: 

MPI_Bcast into shared memory islands

Jun. 2020, Author:

Rabenseifner

http://tiny.cc/MPIX-VSC

http://tiny.cc/MPIX-LRZ alternative for
the exercises

R R R

R = Shared memory

 replicated data

only once within

each SMP node

Using MPI shared 

memory methods  

Direct loads & stores,

no library calls

R

Process 0 store some 

data into the shared 

memory of this node

Broadcast to all other nodes

(by only one process per node) Finally, each process can 

read the shared data.
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Exercise: MPI_Bcast into shared memory

 Now illustrated as in the previous slides

 Each                represents such a replicated memory     within an island

 Application: We’ll store numbers 1, 2, … into the green array by process 0

 And then bcast it to all other shared memory islands

 At the end, each process calculates the sum of all numbers within its shared memory

0 1     2     3        4     5     6     7       8     9   10   11     12   13   14   15 …   rank_world

0 1     2     3     
rank_shm

0     1     2     3     
rank_shm

0     1     2     3     
rank_shm

0     1     2     3     
rank_shm

…

MPI process

Shared memory 
sub-communicator

Contiguous shared 
memory window 
within each SMP node

MPI_COMM_WORLD

comm_head + rank_head

0                             1                             2                              3

MPI_Bcast within comm_head

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Exercise: MPI_Bcast

R

Jun. 2020, Author:

Rabenseifner
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Exercise steps:

(1-2) The allocation of the shared memory within each node

(1) Given: arrSize, MPI_COMM_WORLD  rank_world

(2a) MPI_Comm_split_type(key=0)  comm_shm  MPI_Comm_rank() rank_shm

(2b) if (rank_shm == 0)  then individualShmSize = arrSize else individualShmSize = 0

(2c) MPI_Win_allocate_shared (comm_shm win & shm_base_ptr (but only if rank_shm== 0))

(2d) MPI_Win_shared_query ( win & rank 0  arr, i.e., the base pointer on all processes);

(2e) if (rank_shm == 0)  then color=0 else color=MPI_UNDEFINED

(2f) MPI_Comm_split(MPI_COMM_WORLD, key=0, color  comm_head )  rank_head

and in all processes with color==MPI_UNDEFINED  MPI_COMM_NULL

0 1     2     3        4     5     6     7       8     9   10   11     12   13   14   15 …   rank_world (1)

0 1     2     3     
rank_shm

0     1     2     3     
rank_shm

0     1     2     3     
rank_shm

0     1     2     3     
rank_shm (2a)

…

MPI process

Sub-communicator
comm_shm (2a) 
for one SMP node

arrSize (1) of
long/INTEGER*8 elements

shm_buf_ptr (2b+c)

Contiguous shared memory window within each SMP node

MPI_COMM_WORLD (1)

arr (2d)

comm_head + rank_head (2e+f) 

0                             1                             2                              3

rank_world==0
&& key==0 


rank_head==0
and 
rank_shm==0

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Exercise: MPI_Bcast

1st exercise 
step

(~5 lines of code
+2 lines printing)

2nd exercise 
step

(~11 lines of code
+2 lines printing)

3rd exercise 
step

(~12 lines of code
+2 lines printing)
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Exercise steps:

(3-6) The usage of the shared memory

Time step loop with index it and only 1 iteration

(3-4) Store epoch: we store the replicated data in all shared memories

(don’t forget MPI_Win_fence() within all comm_shm/win before starting the store epoch for arr)

(3) Process with rank_world==0 stores numbers into ist green arr

(4) All processes in comm_head MPI_Bcast() the data from rank_head==0 to all others

(5) Local load epoch: each process reads the data and locally calculates the sum

(don’t forget MPI_Win_fence() within all comm_shm / win before starting the local load epoch)

(6) Print the results

End of time step loop

(7) Finish the local load epoch MPI_Win_fence()  //  free the window MPI_Win_free()

0 1     2     3        4     5     6     7       8     9   10   11     12   13   14   15 …   rank_world (1)

0 1     2     3     
rank_shm

0     1     2     3     
rank_shm

0     1     2     3     
rank_shm

0     1     2     3     
rank_shm (2a)

…

MPI process

Sub-communicator
comm_shm (2a) 
for one SMP node

arrSize (1) of
long/INTEGER*8 elements

Contiguous shared memory window within each SMP node

MPI_COMM_WORLD (1)

arr (2d)

comm_head + rank_head (2e+f) 

0                             1                             2                              3

(3)

1 2 3 4 5  … 1 2 3 4 5  … 1 2 3 4 5  … 1 2 3 4 5  …

(4)

See login-slidesHybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Exercise: MPI_Bcast

4th exercise 
step

(~5 lines of code
+1 lines printing)

5th exercise 
step

(~1 lines of code)

1-slide
Sol.
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Exercise: MPI_Bcast into shared
Preparation

 Directories in your personal account:

 HY- /data-rep/C-data-rep:

 data-rep_base.c

 data-rep_exercise.c

 data-rep_base_       _2x16.sh / _       .sh (using 2 and 4 nodes)

 data-rep_exercise_       _2x16.sh (using only 2 nodes during the exercise)

 data-rep_solution_       _2x16.sh / _       .sh (again with 2 and 4 nodes)

 data-rep_exercise_orig.c (only for: diff  data-rep_exercise_orig.c data-rep_exercise.c )

 (already together with all solution files)

 HY- /data-rep/F-data-rep:

 data-rep_base_30.f90

 data-rep_exercise_30.f90

 data-rep_......._......._.......sh (ditto., see above)

 data-rep_exercise_orig_30.f90 (only for: diff  data-rep_exercise_orig_30.f90  data-rep_exercise_30.f90 )

 (already together with all solution files)

 data-rep_base.c / _30.f90 is the original MPI program

 data-rep_exercise.c / _30.f90 is the basis for this shared memory exercise

Jan. 2019, Author:

Rabenseifner

01/17/2019, Author:

Reichl

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Exercise: MPI_Bcast

Fortran

C VSC
LRZ

VSC
LRZ

VSC
LRZ

VSC
LRZ

4x48
4x28

4x48
4x28

VSC
LRZ mpi_f08 module is used  substitute, e.g., 

!_____________ :: comm_shm by
TYPE(MPI_Comm) :: comm_shm
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(Preparation, 10 Minutes)

Exercise: MPI_Bcast into shared memory

 data-rep_base.c / _30.f90 is the original MPI program:

 It copies data from the process rank 0 in MPI_COMM_WORLD to all processes.

 On all processes it uses the data: in this example, just the sum is calculated.

 Compile it and run it: 
 module  load  intel  intel-mpi

 mpiicc -o data-rep_base data-rep_base.c

 mpiifort -o data-rep_base data-rep_base_30.f90

 sbatch data-rep_base_       _2x16.sh (will use 2 nodes with only 16 processes [on 2 CPUs x 8 cores]

per node  and 4 nodes with all 2x24 = 48 cores per node)

 sq (show queue)

 sinfo |  grep idle (if you do not have a reservation)

 Output will be written to: slurm-*.out

 Output from only 2 nodes (each with 16 MPI processes):

it: 0, rank ( world: 31/32 ):      sum(i=0...i=99999999) = 4999999950000000

it: 0, rank ( world: 1/32 ):        sum(i=0...i=99999999) = 4999999950000000

it: 0, rank ( world: 0/32 ):        sum(i=0...i=99999999) = 4999999950000000

01/17/2019, Author:

Reichl

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Exercise: MPI_Bcast

• 1st time step

• output from 3 processes 

per communicator:

• ranks 0, 1 & last rank

Jun. 2020, Author:

Rabenseifner

Parts of the software, courtesy

of Irene Reichl (VSC, TU Wien)

b
a
s
e Do NOT edit

VSC
LRZ

148/239



Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Exercise: MPI_Bcast into shared memory
 data-rep_exercise.c / _30.f90 is the skeleton for all steps of this exercise

 Step 2a: 

 Declare variables comm_shm, size_shm, rank_shm (2 lines of code)

 Split MPI_COMM_WORLD into shared memory island communicators comm_shm (use key == 0) (1 line of code)

 Query size_shm, rank_shm (2 lines of code)

 After this splitting: print and stop (3 lines of code, copy print statement from end of your source file)

/*TEST*/ // To minimize the output, we print only from 3 process per SMP node

/*TEST*/ if ( rank_shm == 0 || rank_shm == 1 || rank_shm == size_shm - 1 )

printf("\t\t rank ( world: %i, shm: %i)\n", rank_world, rank_shm);

/*TEST*/ if(rank_world==0) printf("ALL finalize and return !!!.\n"); MPI_Finalize(); return 0;

 Expected output from 2 islands, each with 16 processes:

rank ( world: 0/32, shm: 0/16)

ALL finalize and return !!!.

rank ( world: 16/32, shm: 0/16)

rank ( world: 1/32, shm: 1/16)

rank ( world: 17/32, shm: 1/16)

rank ( world: 15/32, shm: 15/16)

rank ( world: 31/32, shm: 15/16)

 After ~10 Minutes: 
 compare with solution: data-rep_sol_2a.c / _30.f90

 In case of problems you may also look at the solution slide:  

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Exercise: MPI_Bcast

Output from

• 1st island

• 2nd island

Jun. 2020, Author:

Rabenseifner

01/17/2019, Author:

Reichl

S
o

l.

Please edit and change it from step to step!

diff  data-rep_exercise.c data-rep_sol_2a.c

diff data-rep_exercise_30.f90  data-rep_sol_2a_30.f90
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Exercise: MPI_Bcast into shared memory

 Steps 2b-d: 

 Declare needed variables (5 LOC)

 (2b) if (rank_shm == 0)  then individualShmSize = arrSize else individualShmSize = 0        (4 LOC)

 (2c) MPI_Win_allocate_shared (comm_shm win & shm_base_ptr (but only if rank_shm== 0)) (1 LOC)

 (2d) MPI_Win_shared_query ( win & rank 0  arr, i.e., the base pointer on all processes);   (1 LOC)

 After this splitting: print and stop (3 lines of code)

 Expected output from 2 islands, each with 16 processes:

rank ( world: 0/32, shm: 0/16) arrSize 100000000 arrSize_ 800000000  shm_buf_ptr = 0x2b1738903000, arr_ptr =0x2b1738903000

ALL finalize and return !!!.

rank ( world: 16/32, shm: 0/16) arrSize 100000000 arrSize_ 800000000  shm_buf_ptr = 0x2b2489dfb000, arr_ptr =0x2b2489dfb000

rank ( world: 1/32, shm: 1/16) arrSize 100000000 arrSize_ 800000000  shm_buf_ptr = (nil), arr_ptr = 0x2aef69d3a000

rank ( world: 31/32, shm: 15/16) arrSize 100000000 arrSize_ 800000000  shm_buf_ptr = (nil), arr_ptr = 0x2b4dcb01e000

rank ( world: 15/32, shm: 15/16) arrSize 100000000 arrSize_ 800000000  shm_buf_ptr = (nil), arr_ptr = 0x2b56e7916000

rank ( world: 17/32, shm: 1/16) arrSize 100000000 arrSize_ 800000000  shm_buf_ptr = (nil), arr_ptr = 0x2b42516bb000

 After ~20 Minutes: 

 compare with solution: data-rep_sol_2d.c / _30.f90

 In case of problems you may also look

at the solution slide:  

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Exercise: MPI_Bcast

Output from

• 1st island

• 2nd island

Each process within an 

island has different virtual 

addresses for the same

shared memory array

Jun. 2020, Author:

Rabenseifner

S
o

l.

Processes with individualShmSize = 0, 

do not get a buffer pointer from 

MPI_Win_allocate_shared
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Exercise: MPI_Bcast into shared memory
 Steps 2e-f: 

 Declare needed variables (3 LOC)

 (2e) if (rank_shm == 0)  then color=0 else color=MPI_UNDEFINED (2 LOC)

 (2f) MPI_Comm_split(MPI_COMM_WORLD, key=0, color  comm_head )  rank_head (8 LOC)

and in all processes with color==MPI_UNDEFINED  MPI_COMM_NULL

 After this splitting: print and stop (3 LOC)

 Expected output from 2 islands, each with 16 processes:

rank ( world: 1/32, shm: 1/16, head: -1/-1) arrSize 100000000 arrSize_ 800000000  shm_buf_ptr = (nil), arr_ptr = 0x2abc98db8000

rank ( world: 0/32, shm: 0/16, head: 0/2) arrSize 100000000 arrSize_ 800000000  shm_buf_ptr = 0x2ab…, arr_ptr = 0x2ab4acc56000

ALL finalize and return !!!.

rank ( world: 16/32, shm: 0/16, head: 1/2) arrSize 100000000 arrSize_ 800000000  shm_buf_ptr = 0x2ad…, arr_ptr = 0x2adbc5fe6000

rank ( world: 15/32, shm: 15/16, head: -1/-1) arrSize 100000000 arrSize_ 800000000  shm_buf_ptr = (nil), arr_ptr = 0x2af4c52e5000

rank ( world: 17/32, shm: 1/16, head: -1/-1) arrSize 100000000 arrSize_ 800000000  shm_buf_ptr = (nil), arr_ptr = 0x2b702ad9b000

rank ( world: 31/32, shm: 15/16, head: -1/-1) arrSize 100000000 arrSize_ 800000000  shm_buf_ptr = (nil), arr_ptr = 0x2b6e54bdf000 

 After ~10 Minutes:
 compare with solution: data-rep_sol_2f.c / _30.f90

 In case of problems you may also look at the solution slide:  

 Whole exercise steps 2a-f: 40 Minutes
 Online course: please come back to the main room

 Advanced exercise on a copy of your data-rep_exercise.c / _30.f90: Split your shared memory islands into NUMA domains 

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Exercise: MPI_Bcast
Jun. 2020, Author:

Rabenseifner

S
o

l.

Finished earlier?

 Go to advanced exercise on next slide
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Advanced Exe: Breaking the world into NUMA islands

 Steps 2a-f: We split MPI_COMM_WORLD into ccNNUMA islands, each with 2 CPUs

 Step 2a-f-NUMA: 

 Copy your result or data-rep_sol_2f.c / _30.f90 into data-rep_exercise_NUMA.c / _30.f90 

 For this advanced exercise, switch from Intel-MPI to OpenMPI

 module  purge

 module  load openmpi

 mpicc -o  data-rep_exercise_openmpi data-rep_exercise_NUMA.c

 mpifort -o  data-rep_exercise_openmpi data-rep_exercise_NUMA_30.f90

 sbatch data-rep_exercise_ _2x16_OpenMPI.sh  (or only 1x16  splitting into the 2 CPUs)

 Split MPI_COMM_WORLD into NUMA islands  you expect the double amount of comm_shm

 Use the non-standardized method for OpenMPI

 Expected result: 4 shared memory islands, each consisting of the MPI processes running on a CPU

it: 0, rank ( world: 0/32, shm: 0/8, head: 0/4 ):       sum(i=0...i=99999999) = 4999999950000000
it: 0, rank ( world: 1/32, shm: 1/8, head: -1/-1 ):     sum(i=0...i=99999999) = 4999999950000000
it: 0, rank ( world: 7/32, shm: 7/8, head: -1/-1 ):     sum(i=0...i=99999999) = 4999999950000000
it: 0, rank ( world: 8/32, shm: 0/8, head: 1/4 ):       sum(i=0...i=99999999) = 4999999950000000
it: 0, rank ( world: 9/32, shm: 1/8, head: -1/-1 ):     sum(i=0...i=99999999) = 4999999950000000
it: 0, rank ( world: 15/32, shm: 7/8, head: -1/-1 ):    sum(i=0...i=99999999) = 4999999950000000
it: 0, rank ( world: 24/32, shm: 0/8, head: 3/4 ):      sum(i=0...i=99999999) = 4999999950000000
it: 0, rank ( world: 16/32, shm: 0/8, head: 2/4 ):      sum(i=0...i=99999999) = 4999999950000000
it: 0, rank ( world: 25/32, shm: 1/8, head: -1/-1 ):    sum(i=0...i=99999999) = 4999999950000000
it: 0, rank ( world: 31/32, shm: 7/8, head: -1/-1 ):    sum(i=0...i=99999999) = 4999999950000000
it: 0, rank ( world: 17/32, shm: 1/8, head: -1/-1 ):    sum(i=0...i=99999999) = 4999999950000000
it: 0, rank ( world: 23/32, shm: 7/8, head: -1/-1 ):    sum(i=0...i=99999999) = 4999999950000000
…

 Compare with solution: data-rep_sol_2f_NUMA_OpenMPI.c / _30.f90

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Exercise: MPI_Bcast
Jun. 2020, Author:

Rabenseifner

4 different comm_shm communicators,

each with 8 processes, 

first, second and last one generating such 3 lines

You may also play with different options in the batch script!

E.g., without  --rank-by  core, the first CPU will have the 

world ranks 0,2,4,6,8,10,12,14 (bold=printed).

Add MPI_Bcast(&rank_head, 0, MPI_INT, 0, comm_shm) 

to show which processes belong to same comm_shm.
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Exercise: MPI_Bcast into shared memory

 Steps 3-6 (6 lines of code)

(3-4) Store epoch: we store the replicated data in all shared memories

(don’t forget MPI_Win_fence() within all comm_shm/win before starting the store epoch for arr)

(3) Process with rank_world==0 stores numbers into its green arr

(4) All processes in comm_head MPI_Bcast() the data from rank_head==0 to all others

(5) Local load epoch: each process reads the data and locally calculates the sum

(don’t forget MPI_Win_fence() within all comm_shm / win before starting the local load epoch)

(6) Print the results

 Expected output from 2 islands:

it: 0, rank ( world: 0/32, shm: 0/16, head: 0/2 ):       sum(i=0...i=99999999) = 4999999950000000

it: 0, rank ( world: 16/32, shm: 0/16, head: 1/2 ):     sum(i=0...i=99999999) = 4999999950000000

it: 0, rank ( world: 1/32, shm: 1/16, head: -1/-1 ):     sum(i=0...i=99999999) = 4999999950000000

it: 0, rank ( world: 17/32, shm: 1/16, head: -1/-1 ):   sum(i=0...i=99999999) = 4999999950000000

it: 0, rank ( world: 31/32, shm: 15/16, head: -1/-1 ): sum(i=0...i=99999999) = 4999999950000000

it: 0, rank ( world: 15/32, shm: 15/16, head: -1/-1 ): sum(i=0...i=99999999) = 4999999950000000

 After ~10 Minutes: 

 compare with solution:  data-rep_sol_3-6.c / _30.f90

 In case of problems you may also look at the solution slide:

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Exercise: MPI_Bcast

Same data in 

the shared 

memory arrays 

of both SMP 

nodes

Jun. 2020, Author:

Rabenseifner
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Exercise: MPI_Bcast into shared memory

 Step 7 (6 lines of code)

(7) Finish the local load epoch MPI_Win_fence()  //  free the window MPI_Win_free()

 Expected output from 2 islands (same as after Step 6, but now without premature stop):

it: 0, rank ( world: 0/32, shm: 0/16, head: 0/2 ):       sum(i=0...i=99999999) = 4999999950000000

it: 0, rank ( world: 16/32, shm: 0/16, head: 1/2 ):     sum(i=0...i=99999999) = 4999999950000000

it: 0, rank ( world: 1/32, shm: 1/16, head: -1/-1 ):     sum(i=0...i=99999999) = 4999999950000000

it: 0, rank ( world: 17/32, shm: 1/16, head: -1/-1 ):   sum(i=0...i=99999999) = 4999999950000000

it: 0, rank ( world: 31/32, shm: 15/16, head: -1/-1 ): sum(i=0...i=99999999) = 4999999950000000

it: 0, rank ( world: 15/32, shm: 15/16, head: -1/-1 ): sum(i=0...i=99999999) = 4999999950000000
…

 After ~5 Minutes, in the solution directory: 

 compare with solution:  data-rep_sol_7.c / _30.f90

 In case of problems you may also look at the solution slide:

 And add-on: data-rep_solution.c / _30.f90 with additional analysis and output:

The number of shared memory islands is: 2 islands

The size of each shared memory islands is: 48 processes

 Whole exercise steps 3-6 & 7: approx. 20 Minutes

 Q & A & Discussion 

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Exercise: MPI_Bcast
Jun. 2020, Author:

Rabenseifner

01/17/2019, Author:

Reichl
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Quiz on Shared Memory

A. Before you call MPI_Win_allocate_shared, what should you do?

____________________

B. If your communicator within your shared memory island consists of 12 MPI processes,

and each process wants to get an own window with 10 doubles (each 8 bytes),

a. which window size must you specify in MPI_Win_allocate_shared?
_________________________

b. And how long is the totally allocated shared memory?
_________________________

c. The returned base_ptr, will it be identical on all 12 processes?

_________________________

d. If all 12 processes want to have a pointer that points to the beginning of the totally allocated shared memory, which MPI 

procedure should you use and with which major argument?

_________________________

e. If you do this, do these 12 pointers have identical values, i.e., are identical addresses?

_________________________

C. Which is the major method to store data from one process into the shared memory window portion of another process?

____________________

S
o
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Programming models

- MPI + MPI-3.0 shared memory

MPI Memory Models & Synchronization

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Re-cap

General considerations & uses cases

Re-cap: MPI_Comm_split & one-sided communication

How-to

Exercise: MPI_Bcast

Quiz 1

> MPI memory models & synchronization

Shared memory problems

Advantages & disadvantages, conclusions

Quiz 2
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How to achieve even lower latencies

Outlook

 Use of MPI shared memory without (slow) MPI one-sided synchronization 

methods (e.g., win_fence)

 To do this, use memory variables for synchronization together with 

memory fences (C++11 or MPI based)

Alternative: 

 Fast MPI point-to-point sync together with memory fences

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Memory models & synchronization

A key feature for 
strong scaling?
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Two memory models

 Query for new attribute to allow applications to tune for 

cache-coherent architectures

 Attribute MPI_WIN_MODEL with values 

 MPI_WIN_SEPARATE model

 MPI_WIN_UNIFIED model on cache-coherent systems

 Shared memory windows always

use the MPI_WIN_UNIFIED model 

 Public and private copies are eventually

synchronized without additional RMA synchronization calls
(MPI-3.1/MPI-4.0, Section 11/12.4, page 435/592 lines 43-46/42-45)

 For synchronization without delay: MPI_WIN_SYNC()
(MPI-3.1/-4.0 Section 11/12.7: ”Advice to users. In the unified memory model…” 

in U5 on page 456/613f, and Section 11/12.8, Example 11/12.21 on pages 468f/626f)

 or any other RMA synchronization:
“A consistent view can be created in the unified memory model (see Section 11.4) by utilizing the window synchronization 

functions (see Section 11.5) or explicitly completing outstanding store accesses (e.g., by calling MPI_WIN_FLUSH).”

(MPI-3.1/-4.0, MPI_Win_allocate_shared, page 408/560,  lines 43-47/22-26)

Corrections 

edit 

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Memory models & synchronization

Figures: 

Courtesy of Torsten Hoefler

getput,acc

Process

private/public copy

loadstore

getput,acc

Process

public copy

loadstore

private copy

synchronization
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“eventually synchronized“  – the problem

 The problem with shared memory programming using libraries is:

X is a variable in a shared window initialized with 0.

Process

Rank 0

X = 1

MPI_Send(empty msg to rank 1)

Process

Rank 1

MPI_Recv(from rank 0)

printf … X

June 2015, Author:

Rolf Rabenseifner Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Memory models & synchronization

Or with any other

process-to-process 

synchronization, e.g., 

using shared memory 

stores and loads for 

synchronization purpose

X can be still 0, 

because the “1” will eventually be visible to the other process, 

i.e., the “1” will be visible but maybe too late   
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“eventually synchronized“  – the Solution

 A pair of local memory fences is needed:

X is a variable in a shared window initialized with 0.

Process

Rank 0

X = 1

MPI_Send(empty msg to rank 1)

Process

Rank 1

MPI_Recv(from rank 0)

printf … X

local memory fence

local memory fence

June 2015, Author:

Rolf Rabenseifner Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Memory models & synchronization

Now, it is guaranteed that 

the “1” in X is visible in this process

  
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Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Memory models & synchronization

“eventually synchronized“  – Last Question

How to make the                            ?

 C++11 atomic_thread_fence(order)

 Advantage: one can choose appropriate 

order = memory_order_release, or …_acquire

to achieve minimal latencies

 MPI_Win_sync

 Advantage: works also for Fortran

 Disadvantage: may be slower than C11 atomic_thread_fence with appropriate order

 Using RMA synchronization with integrated local memory fence

instead of MPI_Send  MPI_Recv

 Advantage: 

May prevent double fences

 Disadvantage: 

The synchronization itself may be

slower 

X is a variable in a shared memory 

window initialized with 0
X = 1

MPI_Send(empty msg) MPI_Recv

printf … X

local memory fence

local memory fence

local memory fence
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X is a variable in a shared memory window initialized with 0X = 1

MPI_Win_fence MPI_Win_fence

printf … X

Includes needed 
memory fence

Includes needed
memory fence

5 sync methods,

see next slide
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Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Memory models & synchronization

General MPI shared memory synchronization rules

and A, B, C are shared variables

and having …

A=val_1

Sync-from

load(B)

Sync-from

C=val_3

Sync-from

Sync-to

load(A)

Sync-to

B=val_2

Sync-to

C=val_4

load(C)

then it is guaranteed that …

… the load(A) in P1 loads val_1

(this is the write-read-rule)

… the load(B) in P0 is not affected by the store of val_2 in P1 

(read-write-rule) 

… that the load(C) in P1 loads val_4

(write-write-rule)

Defining Proc 0

Sync-from

Proc 1

Sync-to

being MPI_Win_post1)

or MPI_Win_complete1)

or MPI_Win_fence1)

or MPI_Win_sync

Any-process-sync2)

or MPI_Win_unlock1)

and the lock on process 0 was granted first

MPI_Win_start1)

MPI_Win_wait1)

MPI_Win_fence1)

Any-process-sync2)

MPI_Win_sync

MPI_Win_lock1)

3.1, shorter talks + more exe.

1)  Must be paired according to the general one-sided 

synchronization rules. 

2)  "Any-process-sync" may be done with methods from 

MPI 

(e.g. with sendrecv as in MPI-3.1/MPI-4.0 Example 

11/12.21, but also with some synchronization through 

MPI shared memory loads and stores, e.g. with C++11 

atomic loads and stores).

See next slide

(based on MPI-3.1/4.0, MPI_Win_allocate_shared, page 408/560, lines 43-47/22-26: “A consistent view …”)
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Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memor

“Any-process-sync” & MPI_Win_sync on shared memory

Process A Process B

MPI_WIN_LOCK_ALL( MPI_WIN_LOCK_ALL(

MPI_MODE_NOCHECK,win) MPI_MODE_NOCHECK,win) 

DO ... DO ...

X=...

MPI_F_SYNC_REG(X) 1)

MPI_Win_sync(win)

MPI_Send

MPI_Recv

MPI_Win_sync(win)

MPI_F_SYNC_REG(X) 1)

local_tmp = X

MPI_F_SYNC_REG(X) 1)

MPI_Win_sync(win)

MPI_Send

MPI_Recv print local_tmp
MPI_Win_sync(win)

MPI_F_SYNC_REG(X) 1) 1) Fortran only.

END DO END DO

MPI_WIN_UNLOCK_ALL(win)MPI_WIN_UNLOCK_ALL(win)

Data exchange in this direction, therefore 

MPI_Win_sync is needed in both processes:

Write-read-rule

Corrections 2016

X is read out

At begin of next 

iteration:

Next write of X

Message telling 

that X is filled

Message telling 

that X is read out 

and can be refilled

X is part of a shared memory window 

and should be the same memory 

location in both processes.

For MPI_WIN_SYNC, a passive target epoch 

is established with MPI_WIN_LOCK_ALL.

2nd pair of MPI_Win_sync is needed to 

guarantee the read-write-rule

A new value is written in X

X

x

MPI_WIN_SYNC acts only locally as a 

processor-memory-fence.

Is missing in MPI-3.1/MPI-4.0, pages 468f/626f, 

Example 11/12.21 (i,.e., page 469/627, line 31/14).

Expected to be fixed in MPI-4.1.
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Halo communication benchmarking 

 Goal: 

 Learn about the communication latency and bandwidth on your system

 Method:

 cp MPI/course/C/1sided/halo*   .

 On a shared or distributed memory, run and compare:

 halo_irecv_send.c

 halo_isend_recv.c

 halo_neighbor_alltoall.c

 halo_1sided_put.c

 halo_1sided_put_alloc_mem.c 

 halo_1sided_put_win_alloc.c

 And run and compare on a shared memory only:

 halo_1sided_store_win_alloc_shared.c

 halo_1sided_store_win_alloc_shared_query.c (with alloc_shared_noncontig)

 halo_1sided_store_win_alloc_shared_pscw.c

 halo_1sided_store_win_alloc_shared_othersync.c

 halo_1sided_store_win_alloc_shared_signal.c

Separation: 

Different communication methods

Different memory allocation methods

Different communication methods

see also login-slides

Example 1

Example 5

Example 2

Example 3

Example 4

June 2015, Author:

Rolf Rabenseifner Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Memory models & synchronization

• Make a diff from one version to the next 

version of the source code

• Compare latency and bandwidth

See HLRS online courses  http://www.hlrs.de/training/self-study-materials

 Practical  MPI.tar.gz   subdirectory MPI/course/C/1sided/
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MPI communication inside of SMP nodes:

Benchmark results on a Cray XE6  – 1-dim ring communication on 1 node with 32 cores

High latency 
MPI_Win_fence

Low latency pt-to-pt
synchronization

19 µs

30 µs

 2.9 µs

 1.7 µs

 2.8 µs

 2.9 µs Latency

On Cray XE6 Hermit at HLRS with aprun –n 32 –d 1 –ss, best values out of 6 repetitions, modules PrgEnv-cray/4.1.40 and cray-mpich2/6.2.1

Conclusion: Best latency and bandwidth 

with shared memory store together with 

point-to-point synchronization

Further opportunities by 

purely synchronizing 

with C++11 methods

Medium bandwidth point-to-
point and neighbor alltoall

Low bandwidth with MPI_Put

Example 1

Example 2

Example 3

Example 4

Example 4

Example 1

Example 2

Example 3

Example 1

High bandwidth direct
shared memory store

Example 4

High bandwidth direct
shared memory store
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Programming models

- MPI + MPI-3.0 shared memory

Shared memory problems

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Re-cap

General considerations & uses cases

Re-cap: MPI_Comm_split & one-sided communication

How-to

Exercise: MPI_Bcast

Quiz 1

MPI memory models & synchronization

> Shared memory problems

Advantages & disadvantages, conclusions

Quiz 2

166/239



Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Shared memory problems (1/2)

 Race conditions

 as with OpenMP or any other shared memory programming models

 Data-Race: Two processes access the same shared variable and

at least one process modifies the variable and

the accesses are concurrent, i.e. unsynchronized,

i.e., it is not defined which access is first

 The outcome of a program depends on the detailed timing of the accesses

 This is often caused by unintended access to the same variable,

or missing memory fences

Separation: 

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Shared memory problems 167/239
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Shared memory problems (2/2)

 Cache-line false-sharing

 As with OpenMP or any other shared memory programming models

 The cache-line is the smallest entity usually accessible in memory

Separation: 

• Several processes are accessing shared data 

through the same cache-line.

• This cache-line has to be moved between 

these processes (cache coherence protocol).

• This is very time-consuming.

a 00000 000 00

CPU CPU

Process a Process b

cache-line

memory

a[0]++

00001000

1

a[1]++

1000

1100

1100
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Programming models

- MPI + MPI-3.0 shared memory

Advantages & disadvantages, conclusions

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Re-cap

General considerations & uses cases

Re-cap: MPI_Comm_split & one-sided communication

How-to

Exercise: MPI_Bcast

Quiz 1

MPI memory models & synchronization

Shared memory problems

> Advantages & disadvantages, conclusions

Quiz 2
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Questions addressed in this tutorial

 What is the performance impact of system topology?

 How do I map my programming model on the system to my advantage?

 How do I do the split into MPI+X?

 Where do my processes/threads run? How do I take control?

 Where is my data?

 How can I minimize communication overhead? 

 How does hybrid programming help with typical HPC problems?

 Can it reduce communication overhead?

 Can it reduce replicated data?

 How can I leverage multiple accelerators?

 What are typical challenges?

MPI-3 shared memory as a real alternative to OpenMP

shared memory, especially when OpenMP hard to be used

Where we 

are?

Fastest accesses between MPI 

processes on a shared memory  
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MPI+MPI-3.0 shared mem: Main advantages

 A new method for reducing memory consumption for replicated data

 To allow only one replication per shared-memory island

 Interesting method for direct access to neighbor data (without halos!)

 A new method for communicating between MPI processes within each 

shared-memory node

 On some platforms significantly better bandwidth than with send/recv

 Library calls need not be “thread safe” because we do not have threads

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Conclusions 171/239
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MPI+MPI-3.0 shared mem: Main challenges 

 Synchronization is defined, but still under discussion:

 The meaning of the assertions for shared memory

is still undefined as of MPI 4.0

 Similar problems as with all shared memory

(e.g., pthreads, OpenMP,…)

 Race conditions, false sharing, memory fences

 Does not reduce the number of MPI processes

Hybrid Programming – MPI+X  Programming models  MPI + MPI-3.0 shared memory  Conclusions 172/239
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MPI+MPI-3.0 shared mem: Conclusions

 Add-on feature for pure MPI communication

 Opportunity for reducing communication within shared-memory nodes

 Opportunity for reducing memory consumption (halos & replicated data)
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Quiz on Shared Memory Model & Synchronization

A. Which MPI memory model applies to MPI shared memory?

MPI_WIN_SEPARATE   or   MPI_WIN_UNIFIED  ?

B. “Public and private copies are . . . . ? . . . . synchronized 

without additional RMA calls.”

C. Which process-to-process synchronization methods can be used that, e.g., a store to a shared memory variable gets visible 

to another process (within the processes of the shared memory window)?

 _________________

 _________________

 _________________

D. That such a store gets visible in another process after the synchronization is named here as “write-read-rule”. 

Which other rules are implied by such synchronizations and what do they mean?

 _________________

 _________________

E. How can you define a race-condition and 

which problems arise from cache-line false-sharing?

 _________________

 _________________

S
o

l.

Figure: Courtesy

of Torsten Hoefler
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The topology problem 177

The topology problem: How-to / Virtual Toplogies 182
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Programming models

- pure MPI
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Pure MPI communication

Advantages

 MPI library need not to support multiple threads (may have performance advantages)

Major problems

 Does application topology fit on hardware topology?

 Want minimal communication between MPI processes AND between cluster nodes 

 Does the MPI library employ shared memory protocols internally?

 Is the network prepared for massive numbers of messages?

 MPI communication inside of shared memory nodes also costs time

 Generally “a lot of” communicating processes per node

 Memory consumption may be a problem (halos, replicated data, internal MPI buffers)
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Programming models

- pure MPI

The Topology Problem

Hybrid Programming – MPI+X  Programming models  pure MPI  Topology problem

General considerations

> The topology problem

The topology problem: How-to / Virtual Toplogies

Rank renumbering for optimization

The Topology Problem: Unstructured Grids

Quiz

Scalability

Advantages & disadvantages, conclusions
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 Example:
 2-dim 6000 x 8080 data mesh points

 To be parallelized on 48 cores

 Minimal communication 
 Subdomains as quadratic as possible

 minimal circumference

 minimal halo communication

 virtual 2-dim process grid: 6 x 8

with 1000 x 1010 mesh points/core

 Hardware example: 48 cores:
 4 compute nodes

 each node with 2 CPUs

 each CPU with 6 cores

 How to locate the MPI processes 

on the hardware?
 Using sequential ranks in MPI_COMM_WORLD

 Optimized placement

  See next slides and example code 

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

Non-optimal communications:

26 node-to-node (outer)

20 CPU-to-CPU  (middle)

36 core-to-core   (inner)

Optimized placement:

Only 14 node-to-node

Only 12 CPU-to-CPU

56 core-to-core

Process coordinate, direction 1
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Hybrid Programming – MPI+X  Programming models  pure MPI  Topology problem
Ring benchmark result
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Virtual 

location of an 

MPI process 

within an 

SMP node

All MPI 

processes

of an SMP

node

Second and minor 

optimization goal:

Whole intra-node 

communication must be 

minimized!

Hierarchical Cartesian Domain Decomposition

Example:

24 SMP nodes 

X 

32 cores/node

Per node:

maximal

8+8+8+8+16+16*)=

48 or 64*)

connections

to neighbor 

nodes
*) with cyclic communication 

Without 

topology-

optimization:

96 connections

to other nodes 2 or 1.6*) times more 

inter-node communication

Primary and main 

optimization goal:

Whole communication 

from each node to all of 

its neighbors must be 

minimized!
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Levels of communication & data access

 Three levels:
 Between the SMP nodes

 Between the sockets inside of shared-memory node

 Between the cores of a socket

 On all levels, the communication should be minimized:

 With 3-dimensional sub-domains:

 They should be as cubic as possible = minimal surface = minimal communication

 “as cubic as possible” may be qualified

due to different communication bandwidth in each direction

caused by sending (fast) non-strided or (slow) strided data

Outer surface corresponds to the 

data communicated to the 

neighbor nodes in all 6 directions 

Inner surfaces correspond to the data communicated 

or accessed between the cores inside of a node

Node Interconnect

Socket 1

Quad-core

CPU

Shared-memory node SMP node

Socket 2

Quad-core

CPU

Socket 1

Quad-core

CPU

Socket 2

Quad-core

CPU

Major 

optimization goal

Least important
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Levels of communication & data access

 Major goal: minimize inter-node communication 

Minimize sum of all outer subdomain surfaces

Whole node subdomain shape as cubic as possible

 Secondary goal: minimize intra-node communication

Minimize sum of all inner subdomain surfaces

Inner subdomain shape as cubic as possible

Hybrid Programming – MPI+X  Programming models  pure MPI  Topology problem

Next slides: 

MPI facilities to map topology to ranks in a communicator 

 Virtual Topologies 
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Programming models

- pure MPI

How to  MPI Virtual Topologies

Acknowledgement:
Virtual topology course slides are 

based on the MPI-1 course of EPCC.Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

General considerations

The topology problem

> The topology problem: How-to / Virtual Toplogies

Rank renumbering for optimization

The Topology Problem: Unstructured Grids

Quiz

Scalability

Advantages & disadvantages, conclusions
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Domain decomposition example
 Global data array A(1:3000,       1:4000,      1:500)

 on 3        x       4       x       5    = 60 processes

 process coordinates 0..2,             0..3,          0..4

 example:

on process ic0=2,           ic1=0,       ic2=3 (rank=43)

decomposition, e.g., A(2001:3000,  1:1000,  301:400)

 process coordinates: handled with virtual Cartesian topologies

 array decomposition: handled by the application program directly

MPI course  Chap.9-(1)  Virtual topologies
*) Figure: similar to x,y-diagrams, first index is horizontal 

(i.e., not vertical as in a math matrix)

1st data array coordinate *)

2
n
d

d
a
ta

 a
rr

a
y
 c

o
o
rd

in
a
te

1st process coordinate *)

2
n

d
p

ro
c

e
s

s
 c

o
o

rd
in

a
te

Application data mesh Virtual process grid

with domain 

decomposition
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Virtual Topologies

 Convenient process naming.

 Naming scheme to fit the communication pattern.

 Simplifies writing of code.

 Can allow MPI to optimize communications  see course Chapter 9-(3)

MPI course  Chap.9-(1)  Virtual topologies 184/239
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How to use a Virtual Topology

 Creating a topology produces a new communicator.

 MPI provides mapping functions:

 to compute process ranks, based on the topology naming scheme,

 and vice versa.

 Example:  

2-dimensional cylinder

0

(0,0)

3

(1,0)

6

(2,0)

9

(3,0)

1

(0,1)

4

(1,1)

7

(2,1)

10

(3,1)

2

(0,2)

5

(1,2)

8

(2,2)

11

(3,2)

Ranks

Cartesian 
process 
coordinates

1st process coordinate *)

2
n
d

p
ro

c
e
s
s
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o
o
rd

in
a
te

*) Figure: similar to x,y-diagrams, first index is horizontal 
(i.e., not vertical as in a math matrix)
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Topology Types

 Cartesian Topologies

 each process is connected to its neighbor in a virtual grid,

 boundaries can be cyclic, or not,

 processes are identified by Cartesian coordinates,

 of course, communication between any two processes is still allowed.

 Graph Topologies

 general graphs,

 two interfaces:

 MPI_GRAPH_CREATE  (since MPI-1)

 MPI_DIST_GRAPH_CREATE_ADJACENT &

MPI_DIST_GRAPH_CREATE  (new scalable interface since MPI-2.2)

 not covered here.
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Creating a Cartesian Virtual Topology

comm_old =   MPI_COMM_WORLD

ndims =   2

dims = ( 4, 3 )

periods = ( 1, 0 )    (in C)

periods = ( .true., .false. )    (in Fortran)

reorder =   see next slide

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

int MPI_Cart_create(MPI_Comm comm_old, int ndims,

int *dims, int *periods, int reorder, 

MPI_Comm *comm_cart)

MPI_CART_CREATE(comm_old, ndims, dims, periods,

reorder, comm_cart, ierror) 

mpi_f08: TYPE(MPI_Comm) :: comm_old, comm_cart

INTEGER :: ndims, dims(*)

LOGICAL :: periods(*), reorder

INTEGER, OPTIONAL :: ierror

C/C++

Fortran

0

(0,0)

3

(1,0)

6

(2,0)

9

(3,0)

1

(0,1)

4

(1,1)

7

(2,1)

10

(3,1)

2

(0,2)

5

(1,2)

8

(2,2)

11

(3,2)

e.g., size==12 factorized
with MPI_Dims_create(),
see later the slide „Typical usage of 

MPI_Cart_create & MPI_Dims_create”
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8
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(3,2)

7 6 5 4

11 10 9 8

3 2 1 0

Reordering

 Ranks and Cartesian process coordinates in comm_cart

 Ranks in comm_old and comm_cart may differ if reorder == non-zero or .TRUE.

 This reordering can allow MPI to optimize communications.

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

e.g., 1
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Typical use of MPI_Cart_create & MPI_Dims_create

#define ndims 3

int i, nnodes, world_myrank, cart_myrank, dims[ndims], periods[ndims], my_coords[ndims];  MPI_Comm

comm_cart;

MPI_Init(NULL,NULL);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &world_myrank);

for (i=0; i<ndims; i++) { dims[i]=0; periods[i]=…; }  

MPI_Dims_create(numprocs, ndims, dims); // computes factorization of numprocs

MPI_Cart_create(MPI_COMM_WORLD, ndims, dims, periods,1, &comm_cart);

MPI_Comm_rank(comm_cart, &cart_myrank);

MPI_Cart_coords(comm_cart, cart_myrank, ndims, my_coords, ierror)

From now on: all communication should be based on comm_cart & cart_myrank & my_coords

int MPI_Dims_create(int nnodes, int ndims, int *dims)

MPI_DIMS_CREATE(nnodes, ndims, dims, ierror)

mpi_f08: INTEGER :: nnodes, ndims, dims(*)

INTEGER, OPTIONAL :: ierror

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

With reorder

C/C++

Fortran
Array dims must be 

initialized with zeros

(other possibilities, 

see MPI standard)

back
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Cartesian Mapping Functions

7

(2,1)

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

Mapping 
ranks to 
virtual process grid coordinates

int MPI_Cart_coords(MPI_Comm comm_cart, int rank, 

int maxdims, int *coords)

MPI_CART_COORDS(comm_cart, rank, maxdims, coords, ierror)

mpi_f08: TYPE(MPI_Comm) :: comm_cart

INTEGER :: rank, maxdims, coords(*)

INTEGER, OPTIONAL :: ierror

C/C++

Fortran
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Cartesian Mapping Functions

7

(2,1)

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

Mapping process grid coordinates to ranks

int MPI_Cart_rank(MPI_Comm comm_cart, int *coords, int *rank)

MPI_CART_RANK(comm_cart, coords, rank, ierror)

mpi_f08: TYPE(MPI_Comm) :: comm_cart

INTEGER :: coords(*), rank

INTEGER, OPTIONAL :: ierror

C/C++

Fortran

191/239



Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

A process’ own coordinates

 Each process gets its own coordinates with  (example in              )

call MPI_Comm_rank(comm_cart, my_rank, ierror) 

call MPI_Cart_coords(comm_cart, my_rank, maxdims, my_coords, ierror)

Fortran

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies
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MPI_Cart_coords
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Ranks of neighboring processes

 Returns MPI_PROC_NULL if there is no neighbor.

 MPI_PROC_NULL can be used as source or destination rank in each 

communication   Then, this communication will be a no-operation!

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

int MPI_Cart_shift(MPI_Comm comm_cart, int direction, int disp,

int *rank_source, int *rank_dest)

MPI_CART_SHIFT(comm_cart, direction, disp, 

rank_source, rank_dest, ierror)

mpi_f08: TYPE(MPI_Comm) :: comm_cart

INTEGER :: direction, disp, rank_source, rank_dest

INTEGER, OPTIONAL :: ierror

C/C++

Fortran
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direction = 0

d
ir
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o

n
 =

 1

MPI_Cart_shift – example

call MPI_Cart_shift(comm_cart, direction, disp, rank_source, rank_dest, ierror)

example on 0 +1 4 10

process rank= 7 or 1 +1 6 8

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

my_rank in comm_cart is 

invisible input argument 

to MPI_Cart_shift
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Cartesian Partitioning

 Cut a virtual process grid up into slices.

 A new communicator is produced for each slice.

 Each slice can then perform its own collective communications.

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

int MPI_Cart_sub(MPI_Comm comm_cart, int *remain_dims,

MPI_Comm *comm_slice)

MPI_CART_SUB(comm_cart, remain_dims, comm_slice, ierror)

mpi_f08: TYPE(MPI_Comm) :: comm_cart

LOGICAL :: remain_dims(*)

TYPE(MPI_Comm) :: comm_slice

INTEGER, OPTIONAL :: ierror

C/C++

Fortran
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example with 

remain_dims = ( true, false)
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MPI_Cart_sub – Example

CALL MPI_Cart_sub( comm_cart, remain_dims, comm_slice, ierror)
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Ranks and Cartesian process coordinates in comm_slice
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speech bubble(
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( true, false) Each process gets only
its own sub-communicator
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Sparse Collective Operations on Process Topologies

 Sparse neighbor communication

within MPI process topologies (Cartesian and (distributed) graph):

 MPI_(I)NEIGHBOR_ALLTOALL (V,W)

 MPI_(I)NEIGHBOR_ALLGATHER (V)

 If the topology is the full graph, then neighbor routine is identical to full collective 

communication routine

 Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint

 Allows for optimized communication scheduling and scalable resource binding

 Cartesian topology:

 Sequence of buffer segments is communicated with: 

 direction=0 source, direction=0 dest, direction=1 source, direction=1 dest, …

 Defined only for disp=1  (direction, source, dest and disp are defined as in MPI_CART_SHIFT)

 If a source or dest rank is MPI_PROC_NULL then the buffer location is still there but the 

content is not touched.

= perfect scalable !?

New in MPI-3.0
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Periodic MPI_NEIGHBOR_ALLTOALL in direction d with 4 processes
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recvbuf
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+400 -200

coord == 0 coord == 1 coord == 2 coord == 3

-200 +200
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+200 -400

-400 +400

+300 -100

… grey array entries are used only if periods[d] == non-zero in C  or  .TRUE. in Fortran

rank_source my_rank rank_dest

This figure represents 

one direction d.

Of course, it is valid 

for any direction
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As if …

After MPI_NEIGHBOR_ALLTOALL on a Cartesian communicator returned, the content of the 
recvbuf is as if the following code is executed:

MPI_Cartdim_get(comm, &ndims); 

for( /*direction*/ d = 0; d < ndims; d++) {

MPI_Cart_shift(comm, /*direction*/ d, /*disp*/ 1, &rank_source, &rank_dest);

MPI_Sendrecv(sendbuf[d*2+0], sendcount, sendtype, rank_source, /*sendtag*/ d*2,

recvbuf[d*2+1], recvcount, recvtype, rank_dest,   /*recvtag*/ d*2,

comm, &status); /* 1st communication in direction of displacment -1 */

MPI_Sendrecv(sendbuf[d*2+1], sendcount, sendtype, rank_dest,   /*sendtag*/ d*2+1,

recvbuf[d*2+0], recvcount, recvtype, rank_source, /*recvtag*/ d*2+1,

comm, &status); /* 2nd communication in direction of displacment +1 */

}

The tags are chosen to guarantee that both communications (i.e., in negative and positive direction) 

cannot be mixed up, even if the MPI_SENDRECV is substituted by nonblocking communication and 

the MPI_ISEND and MPI_IRECV calls are started in any sequence.

send_buf

recv_buf

-100 +100

+400 -200

-200 +200

+100 -300

-300 +300

+200 -400

-400 +400

+300 -100

rank_source my_rank rank_dest

MPI_
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Wrong implementations of periodic 

MPI_NEIGHBOR_ALLTOALL with only 2 and 1 processes
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Wrong results with openmpi/4.0.1-gnu-8.3.0 and cray-mpich/7.7.6 with 2 and 1 processes:

recvbuf

Results 

required 

by MPI

WRONG

Results 

required 

by MPI

WRONG
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Communication pattern of MPI_NEIGHBOR_ALLGATHER 

sendbuf

recvbuf

100

300 200

200

100 300

300

200 100

100

100 100

… grey array entries are used only if periods[d] == non-zero in C   or  .TRUE. In Fortran

The recv_buf

represents one 

direction d.

Of course, this 

figure is valid for 

any direction

The green recv_buf

elements are

recvbuf[2*d+0] 

and____

recvbuf[2*d+1] 

The send_buf is only 

one element, 

which is sent to the 

neighbor processes 

in all directions
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Programming models

- pure MPI

Rank renumbering for optimization

Hybrid Programming – MPI+X  Programming models  pure MPI  Topology problem – wrap up

General considerations

The topology problem

The topology problem: How-to / Virtual Toplogies

> Rank renumbering for optimization

The Topology Problem: Unstructured Grids

Quiz

Scalability

Advantages & disadvantages, conclusions
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Rank renumbering for optimization

 When is it not needed?

 Hybrid MPI+OpenMP with 1, 2, or 3 MPI processes per shared-memory node

 When is it not helpful?

 Dynamic load balancing that changes the process-to-process communication 

pattern  (typically only with graph topologies)

 When do we need it?

 Communication win with >= 4 MPI processes per shared-memory node
 Example with 6 or 8 processes per shared-memory node:

 Sequential ranking  6x1x1 or 8x1x1 topology   26 or 34 inter-node neighbors in MPI_COMM_WORLD

 Renumbered           3x2x1 or 2x2x2 topology   22 or 24 inter-node neighbors   15% or 29% win via Cartesian topo.

 How can we implement it?

 MPI virtual topologies
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Rank renumbering for optimization – problems 

1. All MPI libraries provide the necessary interfaces   ,

but without renumbering in some MPI-libraries   

2. The existing MPI-4.0 interfaces are not optimal:

 Application topology awareness:

application-specific data mesh sizes or direction-dependent communication 

requirements are not accounted for  next slide

 Hardware topology awareness:

the factorization of the number of processes into several dimensions cannot 

leverage hardware topology information  next slide

3. The application must be prepared for rank renumbering

 Ideally, data distribution happens after renumbering (see slide                        )

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

Typical use of 
MPI_Cart_create
& MPI_Dims_create
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The existing MPI-4.0 interfaces are not optimal: examples

 Application topology awareness
 2-D example with 12 MPI processes and data mesh size 1800x580

 MPI_Dims_create  4x3 •   data mesh aware   6x2 processes

 Hardware topology awareness
 2-D example with 25 nodes x 24 cores and data mesh size 3000x3000

 MPI_Dims_create  25 x 24 •   Hardware aware   30 x 20 = (5 nodes x 6 cores)  X (5 nodes x 4 cores) 

580
290

300
1800

580
194

450
1800

600

600

Accumulated

communication

per node

O(4x600) = O(2400) 

Accumulated

communication

per node

O(10x120+12x125) 

= O(2700) 

120

125

Boundary of a subdomain = 2(300+290) = 1180 Boundary of a subdomain = 2(450+194) = 1288 

Slide from 2019
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Goals of MPI_Dims_create + MPI_Cart_create

 Given: comm_old (e.g., MPI_COMM_WORLD),  ndims (e.g., 3 dimensions)

 Provide 

 a factorization of #processes (of comm_old) into the dimensions dims[𝒊]𝑖=1..ndims

 a Cartesian communicator comm_cart

 an optimized reordering of the ranks in comm_old into the ranks of comm_cart

to minimize the Cartesian communication time, e.g., of 

□ MPI_Neighbor_alltoall

□ Equivalent communication pattern implemented with

 MPI_Sendrecv

 Nonblocking MPI point-to-point communication
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The limits of MPI_Dims_create + MPI_Cart_create

 Not application topology aware

 MPI_Dims_create can only map evenly balanced Cartesian topologies

 Factorization of 48,000 processes into 20 x 40 x 60 processes

(e.g. for a mesh with 200 x 400 x 600 mesh points)

 no chance with current interface

 Only partially hardware topology aware

 MPI_Dims_create without comm arg.  not hardware aware

 An application mesh with 3000x3000 mesh points 

on 25 nodes x 24 cores (=600 MPI processes)

□ Answer from MPI_Dims_create: 

 25 x 24 MPI processes

 Mapped by most libraries to 25 x 1 nodes 

with 120 x 3000 mesh points per node 

 too much node-to-node communication

Major problems:

•No weights, 

no info

•Two separated 

interfaces for

two common 

tasks:

Factorization of 

#processes

Mapping of the 

processes to the 

hardware
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Goals of Cartesian MPI_Dims+Cart_create

 Remark: On a hierarchical hardware, 

 optimized factorization and reordering typically means 

minimal node-to-node communication, 

 which typically means that the communicating surfaces 

of the data on each node is as quadratic as possible 
(or the subdomain as cubic as possible)

 The current API, i.e., 

 due to the missing weights

 and the non-hardware aware MPI_Dims_create,

does not allow such an optimized factorization & reordering in many cases. 
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The new interface   – proposed for MPI-4.1

 MPI_Dims_create_weighted ( 

/*IN*/ int nnodes,

/*IN*/ int ndims,

/*IN*/ int dim_weights[ndims],

/*IN*/ int periods[ndims], /* for future use in combination with info */

/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */

/*INOUT*/ int dims[ndims]);

 Arguments have same meaning as in MPI_Dims_create

 Goal (in absence of an info argument): 

 dims[i]•dim_weights[i] should be as close as possible, 

 i.e., the ∑i=0..(ndims-1) dims[i]•dim_weights[i] as small as possible

(advice to implementors)

A new courtesy 

function:

Weighted 

factorization

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

input for application-

topology-awareness
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The new interface – proposed for MPI-4.1, continued

 MPI_Cart_create_weighted (
/*IN*/ MPI_Comm comm_old, 

/*IN*/ int ndims, 

/*IN*/ int dim_weights[ndims], /*or MPI_UNWEIGHTED*/

/*IN*/ int periods[ndims], 

/*IN*/ MPI_Info info, /* for future use, currently MPI_INFO_NULL */

/*INOUT*/ int dims[ndims], 

/*OUT*/ MPI_Comm *comm_cart );

 Arguments: see existing MPI_Dims_create & MPI_Cart_create / dim_weights[ndims]  next slide

 Goals: ▪ Choose an ndims-dimensional factorization of #processes of comm_old ( dims) 

▪ and an appropriate reordering of the ranks ( comm_cart), 

such that the execution time of a communication step along the virtual process grid is minimal 

(e.g., with MPI_NEIGHBOR_ALLTOALL, MPI_SENDRECV, or nonblockuing MPI_ISEND/IRECV) 

The new 

hardware- & 

application-

topology-

aware 

interface 
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and application-topology-

awareness
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How to specify the dim_weights?

 Given: comm_old (e.g., MPI_COMM_WORLD),  ndims (e.g., 3 dimensions) 

 This means, the domain decomposition has not yet taken place!

 Goals for dim_weights and the API at all:

 Easy to understand

 Easy to calculate

 Relevant for typical Cartesian communication patterns (MPI_Neighbor_alltoall or similar)

 Rules fit to usual design criteria of MPI

 E.g., reusing MPI_UNWEIGHTED  integer array

 Can be enhanced by vendors for their platforms  additional info argument for further specification

 To provide also the less optimal two stage interface (in addition to the combined routine)  
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The dim_weights[𝑖], example with 3 dimensions

The arguments dim_weights[𝒊] 𝑖 =0::(ndims-1), abbreviated with 𝒘𝒊,

should be specified as the accumulated message size (in bytes) 

communicated in one communication step through each cutting plane 

orthogonal to dimension 𝑑𝑖 and in each of the two directions.

𝑤1 𝑤1 𝑤1

𝑤1

𝑑0𝑑2
(=

𝑤1𝑑1

ς𝑖 𝑑𝑖
)

𝑑1(=4)

𝑑
2
(=

3
)

Cutting plane orthogonal to dimension 1

periods[0]

=false
periods[1]=false

p
e
rio

d
s
[2

]=
tru

e

1

2

0

Three dimensions,

i.e., ndims=3

Abbreviations: 

𝑑𝑖 = dims[𝑖]
𝑤𝑖 = dim_weights[𝑖]
with

𝑖 = 0..(ndims-1)
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The dim_weights[𝑖], example with 3 dimensions, continued

Example for the calculation of the accumulated communication size 𝒘𝒊,𝒊=𝟎..𝟐 in each dimension. 

Given:

 𝑔𝑖 – The data mesh sizes 𝑔𝑖,𝑖=0..2 express the three dimensions 

of the total application data mesh. 

 ℎ𝑖 – The value ℎ𝑖 represents the halo width in a given direction 

when the 2-dimensional side of a subdomain is communicated

to the neighbor process in that direction.

Output from MPI_Cart/Dims_create_weighted: The dimensions 𝒅𝒊,𝒊=𝟎..𝟐

Distributed 

into the 

sub-

domains on 

each MPI

process
𝑔0

𝑔0
𝑑0

𝑑0

𝑔1
𝑔1
𝑑1

𝑑1

𝑔2
𝑔2
𝑑2

𝑑2

ℎ0

ℎ2

ℎ1

𝑤1 = 𝑔0ℎ1𝑔2 = ℎ1
ς𝑖 𝑔𝑖
𝑔1

Accumulated communication size through

cutting plane orthogonal to dimension 110

dimensions

2

Abbreviations: 𝑔𝑖 = data mesh size in dimension 𝑖, 𝑖=0..(ndims-1), 𝑤𝑖 = dim_weights[𝑖],
ℎ𝑖 = halo width in dimension 𝑖, 𝑑𝑖 = dims[𝑖]

Global data mesh

Important:

• The definition of the 

dim_weights

(= 𝑤𝑖 in this figure)

is independent of the 

total number of 

processes and its 

factorization into the 

dimensions

(= 𝑑𝑖 in this figure)

• Result was

𝑤𝑖= ℎ𝑖
ς𝑗 𝑔𝑗

𝑔𝑖
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The new interfaces – a real implementation

Substitute for / enhancement to existing MPI-1

 MPI_Dims_create (size_of_comm_old, ndims, dims[ndims] );

 MPI_Cart_create (comm_old, ndims, dims[ndims], periods, reorder, *comm_cart);

New: (in MPI/tasks/C/Ch9/MPIX/)

 MPIX_Cart_weighted_create (

/*IN*/ MPI_Comm comm_old, 

/*IN*/ int ndims, 

/*IN*/ double dim_weights[ndims], /*or MPIX_WEIGHTS_EQUAL*/

/*IN*/ int periods[ndims], 

/*IN*/ MPI_Info info,         /* for future use, currently MPI_INFO_NULL */

/*INOUT*/ int dims[ndims], 

/*OUT*/ MPI_Comm *comm_cart );

 MPIX_Dims_weighted_create ( int nnodes, int ndims, double dim_weights[ndims],

/*OUT*/ int dims[ndims] );

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies
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Further Interfaces

 We proposed the algorithm in

 Christoph Niethammer and Rolf Rabenseifner. 2018. 

Topology aware Cartesian grid mapping with MPI. EuroMPI 2018. 

 https://eurompi2018.bsc.es/  Program Poster Session  Abstract+Poster

 https://fs.hlrs.de/projects/par/mpi/EuroMPI2018-Cartesian/ All info + slides + software

 http://www.hlrs.de/training/self-study-materials

 Practical  MPI31.tar.gz  MPI/tasks/C/eurompi18/

 More details, see this talk+slides „Hybrid Programming in HPC – MPI+X”

 Full paper:

 Christoph Niethammer, Rolf Rabenseifner:

An MPI interface for application and hardware aware cartesian topology optimization. EuroMPI 2019.

Proceedings 26th European MPI Users' Group Meeting, Sep. 2019, article No. 6, p. 1-8, https://doi.org/10.1145/3343211.3343217

 MPIX_Dims_weighted_create() is based on the ideas in:
 Jesper Larsson Träff and Felix Donatus Lübbe. 2015. Specification Guideline Violations by MPI Dims Create. 

In Proceedings of the 22nd European MPI Users’ Group Meeting (EuroMPI ’15). ACM, New York, NY, USA, Article 19, 2 pages.

 Another approach using the existing MPI_Cart_create() interface:
 W. D. Gropp, Using Node [and Socket] Information to Implement MPI Cartesian Topologies, Parallel Computing, 2019. And Proceedings of

the 25th European MPI User' Group Meeting, EuroMPI'18, ACM, New York, NY, USA, 2018, pp. 18:1-18:9. doi:10.1145/3236367.3236377.

Slides: http://wgropp.cs.illinois.edu/bib/talks/tdata/2018/nodecart-final.pdf

MPIX routines, courtesy of

Christoph Niethammer, HLRSHybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

Here, you get the new 

optimized interface 
+ implementation + docu.
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Remarks

 The portable MPIX routines internally use 

MPI_Comm_split_type(…, MPI_COMM_TYPE_SHARED, …)

to split comm_old into ccNUMA nodes,

 plus (may be) additionally splitting into NUMA domains.

 With using hyperthreads, it may be helpful 

to apply sequential ranking to the hyperthreads, 

 i.e., in MPI_COMM_WORLD, ranks 0+1 should be 

 the first two hyperthreads

 of the first core 

 of the first CPU 

 of the first ccNUMA node

 Especially with weights 𝒘𝒊 based on 
𝐺

𝑔𝑖
, it is important

 that the data of the mesh points is not read in based on (old) ranks in MPI_COMM_WORLD,

 because the domain decomposition must be done based on comm_cart and its dimensions and (new) 

ranks 
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Questions addressed in this tutorial

 What is the performance impact of system topology?

 How do I map my programming model on the system to my advantage?

 How do I do the split into MPI+X?

 Where do my processes/threads run? How do I take control?

 Where is my data?

 How can I minimize communication overhead? 

 How does hybrid programming help with typical HPC problems?

 Can it reduce communication overhead?

 Can it reduce replicated data?

 How can I leverage multiple accelerators?

 What are typical challenges?

Through rank reordering

rank reordering may still help

if ≥ 4 MPI processes per SMP node 

Where we 

are?

Communication time

Memory access time
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Typical use of MPIX_Cart_weighted_create
#define ndims 3

int i, nnodes, world_myrank, cart_myrank, dims[ndims], periods[ndims], my_coords[ndims];

int global_array_dim[ndims], halo_width[ndims], local_array_dim[ndims], local_array_size=1;

double dim_weights[ndims], global_array_size=1.0;

MPI_Comm comm_cart;

MPI_Init(NULL,NULL);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &world_myrank);

for (i=0; i<ndims; i++) {

dims[i]=0; periods[i]=…;

global_array_dim[i]=…; halo_width[i]=…;

global_array_size = global_array_size * (double)(global_array_dim[i]);

}

for (i=0; i<ndims; i++) { 

dim_weights[i] = (double)(halo_width[i]) * global_array_size / (double)(global_array_dim[i]);

}  

MPIX_Cart_weighted_create(MPI_COMM_WORLD, ndims, dim_weights, dims, periods, MPI_INFO_NULL, dims, &comm_cart);

MPI_Comm_rank(comm_cart, &cart_myrank);

MPI_Cart_coords(comm_cart, cart_myrank, ndims, my_coords, ierror)

for (i=0; i<ndims; i++) { 

local_array_dim[i] = global_array_dim[i] / dims[i];

local_array_size = local_array_size * local_array_dim[i];

}  

local_data_array = malloc(sizeof(…) * local_array_size);

Hybrid Programming – MPI+X  Programming models  pure MPI  How-to: Virtual MPI topologies

From now on: 
all communication should be based on 
comm_cart & cart_myrank & my_coords
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Virtual Cartesian MPI topologies – summary

 Relevant for modern clusters comprising multicore nodes

 Optimizes only the communication

 The new (and weighted) optimizing routines are easy to use

for Cartesian problems

 Be aware that the MPI_Cart_..._create routines

renumber the communicator

Hybrid Programming – MPI+X  Programming models  pure MPI  Topology problem – wrap up

If communication is irrelevant (in €) 

 don’t care about reordering

(observe cost/benefit)

of course with reorder=true
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Programming models

- pure MPI

The Topology Problem: Unstructured Grids

Hybrid Programming – MPI+X  Programming models  pure MPI  Topology problem – wrap up

General considerations

The topology problem

The topology problem: How-to / Virtual Toplogies

Rank renumbering for optimization

> The Topology Problem: Unstructured Grids

Quiz

Scalability

Advantages & disadvantages, conclusions
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Virtual MPI Topologies – unstructured grids

 See paper from Torsten Höfler and references in Bill Gropp’s paper:
 T. Hoefler and M. Snir. 2011. Generic Topology Mapping Strategies for Large-scale Parallel Architectures. In 

Proceedings of the 2011 ACM International Conference on Supercomputing (ICS’11). ACM, 75–85.  

 Bill Gropp. 2018. Using Node Information to Implement MPI Cartesian Topologies. In Proceedings of the 25nd European 

MPI Users’ Group Meeting (EuroMPI ’18), September 23–26, 2018, Barcelona, Spain. ACM, New York, NY, USA, 9 

pages. 

 Many MPI libraries still do not optimize the graph topologies ...

 an (not too complicated) alternative is shown on next slides

 Additional application problem: 

your application may read data in before creating the virtual graph topology

 The re-numbering of the processes may require that you 

▫ send such data to the new process (with the old rank), or

▫ need to re-read such data from file system
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Hierarchical DD for unstructured grids

 Single-level DD (finest level)

 Analysis of the communication pattern in a first run 

(with only a few iterations)

 Optimized rank mapping to the hardware before production run

 E.g., with CrayPAT + CrayApprentice (not verified by us authors)

 Multi-level DD:

 Top-down: Several levels of (Par)Metis

 unbalanced communication

 Bottom-up: Low level DD 

+  higher level recombination

 based on DD of the grid of subdomains
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Unstructured Grid / Data Mesh

 Mesh partitioning with special load balancing libraries

 Metis (George Karypis, University of Minnesota)

 ParMetis (internally parallel version of Metis)

 http://glaros.dtc.umn.edu/gkhome/views/metis/metis.html

 Scotch & PT-Scotch  (Francois Pellegrini, LaBRI, France)

 https://www.labri.fr/perso/pelegrin/scotch/

 Goals:

 Same work load in each sub-domain

 Minimizing the maximal number of 

neighbor-connections between sub-domains

 Minimizing the total number of

neighbor sub-domains of each sub-domain
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Hybrid Programming – MPI+X  Programming models  pure MPI  Topology problem – wrap up

The weighted communication graph of the 

virtual process grid can be used as input for 

MPI_Dist_graph_create(_adjacent) 

Result of (Par)Metis or 

(PT-)Scotch:

Sort out all mesh points 

into sub-domains

Each sub-domain 

is stored on one 

MPI process
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Unstructured Grid / Data Mesh

 Multi-level Domain Decomposition through Recombination 
1. Core-level DD: partitioning of (large) application’s data grid

2. Numa-domain-level DD: recombining of core-domains

3. SMP node level DD: recombining of socket-domains

4. Numbering from core to socket to node 
as done in MPI_COMM_WORLD (e.g., sequentially)

3     4     5

0     1     2 

10   11

8     9

6     7

17

15   16

12   13   14

21   22   23

18   19   20 

26   27   28   29

24   25 

MPI course  Chap.9-(3)  Virtual topologies  Optimized reordering

• Problem: Recombination must 

not calculate patches that are 

smaller or larger than the average

• In this example the load-balancer 

must combine always 

 6 cores, and

 4 numa-domains

(i.e., sockets or dies)

• Advantage:

Communication is balanced!

Graph of all 

sub-domains 

(core-sized) 

e.g., with Metis / Scotch

Grouped into 
sub-graphs for 

each socket 
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Quiz on Virtual topologies

A. Which types of MPI topologies for virtual process grids exist?

B. And for which use cases?

1. _______________________

For_______________________

2. _______________________

For_______________________

C. Where are limits for using virtual topologies, i.e., which use cases do not really fit?

_______________________

S
o
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Programming models

- pure MPI

Scalability

Hybrid Programming – MPI+X  Programming models  pure MPI  Scalability

General considerations

The topology problem

The topology problem: How-to / Virtual Toplogies

Rank renumbering for optimization

The Topology Problem: Unstructured Grids

Quiz

> Scalability

Advantages & disadvantages, conclusions
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To overcome MPI scaling problems

 MPI has a few scaling problems with more than 10,000 MPI processes

 MPI_Alltoall* is not scalable with longer messages

 Irregular Collectives: MPI_....v, e.g. MPI_Gatherv

 Scaling applications should not use MPI_....v routines

 MPI Graph topology (MPI_Graph_create)

 Use scalable interface MPI_Dist_graph_create_adjacent

 Creation of many disjoint sub-communicators

 Creation possible in a single call to MPI_Comm_split or MPI_Comm_create

 MPI internal memory consumption for, e.g.,

 Internal data structures for large communicators

 Internal communication buffers

 … see also P. Balaji, et al.: MPI on a Million Processors. 
P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk, R. Thakur, and J. L. Traff: MPI on Millions of Cores.

Parallel Processing Letters, 21(01):45-60, 2011. Originally, Proceedings EuroPVM/MPI 2009.

 Hybrid programming reduces all these problems (due to a smaller number of processes)

Hybrid Programming – MPI+X  Programming models  pure MPI  Scalability

Protocol switches 

are implementation 

dependent

Current implementations consider this
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Programming models

- pure MPI

Advantages & disadvantages, conclusions

Hybrid Programming – MPI+X  Programming models  pure MPI  Conclusions

General considerations

The topology problem

The topology problem: How-to / Virtual Toplogies

Rank renumbering for optimization

The Topology Problem: Unstructured Grids

Quiz

Scalability

> Advantages & disadvantages, conclusions
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Pure MPI communication: Main advantages

 Simplest programming model

 Library calls need not to be thread-safe 

 The hardware is typically prepared for many MPI processes per SMP node

 Only minor problems if pinning is not applied

 No first-touch problems as with OpenMP (in hybrid MPI+OpenMP) 
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Pure MPI communication: Main disadvantages

 Unnecessary communication

 Too much memory consumption for

 halo data for communication between MPI processes 

on same SMP node

 other replicated data on same SMP node

 MPI buffers due to the higher number of MPI processes

 Additional programming costs for minimizing node-to-node communication,

 i.e., for optimizing the communication topology,

 e.g., implementing the multi-level domain-decomposition

 No efficient use of hardware-threads (hyper-threads)
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Pure MPI communication: Conclusions

 Still a good programming model for small and medium size applications.

 Major problem may be memory consumption
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Conclusions
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Major advantages of hybrid MPI+OpenMP

In principle, none of the programming models perfectly fits to

clusters of SMP nodes

Major advantages of MPI+OpenMP:

 Only one level of sub-domain “surface-optimization”: 

 SMP nodes, or

 Sockets or NUMA domains

 Second level of parallelization 

 Application may scale to more cores

 Smaller number of MPI processes implies:

 Reduced size of MPI internal buffer space

 Reduced space for replicated user-data

Most important arguments 

on many-core systems
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Major advantages of hybrid MPI+OpenMP, continued

 Reduced communication overhead

 No intra-node communication

 Longer messages between nodes and fewer parallel links may imply better 

bandwidth

 “Cheap” load-balancing methods on OpenMP level

 Application developer can split the load-balancing issues between course-

grained MPI and fine-grained OpenMP
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Disadvantages of MPI+OpenMP

 Using OpenMP

 may prohibit compiler optimization

 may cause significant loss of computational performance

 Thread fork / join overhead

 On ccNUMA SMP nodes:

 Loss of performance due to missing memory page locality or missing first touch strategy

 E.g., with the MASTERONLY scheme:

 One thread produces data

 Master thread sends the data with MPI

 data may be internally communicated from one NUMA domain to the other one

 Amdahl’s law for each level of parallelism

 Using MPI-parallel application libraries?   Are they prepared for hybrid? 

 Using thread-local application libraries?   Are they thread-safe? 
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MPI+OpenMP versus MPI+MPI-3.0 shared memory

MPI+3.0 shared memory

 Pro: Thread-safety is not needed for libraries.

 Con: No work-sharing support as with OpenMP directives.

 Pro: Replicated data can be reduced to one copy per node:

May be helpful to save memory, if pure MPI scales in time, but not in memory

 Substituting intra-node communication by shared memory loads or stores has only limited 

benefit (and only on some systems),

especially if the communication time is dominated by inter-node communication

 Con: No reduction of MPI ranks 

 no reduction of MPI internal buffer space

 Con: Virtual addresses of a shared memory window may be different in each MPI process

 no binary pointers

 i.e., linked lists must be stored with offsets rather than pointers
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Lessons for pure MPI and ccNUMA-aware hybrid MPI+OpenMP

 MPI processes on an SMP node should form a cube

and not a long chain

 Reduces inter-node communication volume

 For structured or Cartesian grids:

 Adequate renumbering of MPI ranks and process coordinates

 For unstructured grids:

 Two levels of domain decomposition

 First fine-grained on the core-level

 Recombining cores to SMP-nodes
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Conclusions 

 Future hardware will be more complicated
 Heterogeneous  GPU, FPGA, … 

 Node-level ccNUMA is here to stay, but will only be one of your problems

 ….

 High-end programming  more complex  many pitfalls

 Medium number of cores  more simple (#cores / SMP-node still grows)

 MPI + OpenMP workhorse on large systems
 Major pros: reduced memory needs and second level of parallelism

 MPI + MPI shared memory  only for special cases and medium #processes

 Pure MPI communication  still viable if it does the job

 OpenMP only  on large ccNUMA nodes (almost gone in HPC)

Thank you for your interest

Q & A
Please fill out the feedback sheet – Thank you
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Abstract

MPI+X  – Introduction to Hybrid Programming in HPC 
Tutorial (Content levels: 0:00h [=0%] Beginners, 1:30h [=10%] Intermediate, 13:30h [=90%] Advanced)

Authors: Claudia Blaas-Schenner, VSC Research Center, TU Wien, Vienna, Austria

Georg Hager, Erlangen Regional Computing Center (RRZE), University of Erlangen, Germany 

Rolf Rabenseifner, High Performance Computing Center (HLRS), University of Stuttgart, Germany

Abstract: Most HPC systems are clusters of shared memory nodes. To use such systems efficiently both memory consumption and communication time has

to be optimized. Therefore, hybrid programming may combine the distributed memory parallelization on the node interconnect (e.g., with MPI) with the shared

memory parallelization inside of each node (e.g., with OpenMP or MPI-3.0 shared memory). This course analyzes the strengths and weaknesses of several

parallel programming models on clusters of SMP nodes. Multi-socket-multi-core systems in highly parallel environments are given special consideration. MPI-

3.0 has introduced a new shared memory programming interface, which can be combined with inter-node MPI communication. It can be used for direct

neighbor accesses similar to OpenMP or for direct halo copies, and enables new hybrid programming models. These models are compared with various hybrid

MPI+OpenMP approaches and pure MPI. Numerous case studies and micro-benchmarks demonstrate the performance-related aspects of hybrid

programming.

Hands-on sessions are included on all days. Tools for hybrid programming such as thread/process placement support and performance analysis are presented

in a "how-to" section. This course provides scientific training in Computational Science and, in addition, the scientific exchange of the participants among

themselves.

URL: 2022-HY-VSC-Dec https://vsc.ac.at/training/2022/HY-VSC-Dec 2022-HY-LRZ http://www.hlrs.de/training/2022/HY-LRZ 

2022-HY-VSC http://vsc.ac.at/training/2022/HY-VSC

2021-HY-VSC http://vsc.ac.at/training/2021/HY-VSC

2020-HY-VSC http://vsc.ac.at/training/2020/HY-VSC 2020-HY-S http://www.hlrs.de/training/2020/HY-S 

2019-HY-G https://www.lrz.de/services/compute/courses/archive/2019/2019-01-28_hhyp1w18/

ISC 2017 https://www.isc-hpc.com/agenda2017/sessiondetails23ac.html?t=session&o=510
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Solutions of MPI shared memory exercise:  datarep

 Solution files:

 data-rep_sol_2a.c

 data-rep_sol_2d.c

 data-rep_sol_2f.c

 data-rep_sol_3-6.c

 data-rep_sol_7.c

 data-rep_solution.c

 Quiz solution

Hybrid Programming – MPI+X  Appendix  Solutions  datarep
Jun. 2020, Author:

Rabenseifner
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Solutions of MPI shared memory exercise:  datarep

arr = (arrType *) malloc(arrSize * sizeof(arrType));

MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, /*key=*/ 0, 

MPI_INFO_NULL, &comm_shm);

MPI_Comm_size(comm_shm, &size_shm); 

MPI_Comm_rank(comm_shm, &rank_shm); 

if ( rank_shm == 0 ) { individualShmSize = arrSize ; }

else                 { individualShmSize = 0 ; }  

MPI_Win_allocate_shared( 

(MPI_Aint)(individualShmSize) * (MPI_Aint)(sizeof(arrType)),

sizeof(arrType), MPI_INFO_NULL, comm_shm, &shm_buf_ptr, &win );

MPI_Win_shared_query( win, 0, &arrSize_, &disp_unit, &arr );

color=MPI_UNDEFINED ;  if (rank_shm==0) { color = 0; }

MPI_Comm_split(MPI_COMM_WORLD, color, /*key=*/ 0, &comm_head);

if( comm_head != MPI_COMM_NULL ) 

{MPI_Comm_size(comm_head, &size_head);MPI_Comm_rank(comm_head, &rank_head);}

MPI_Win_fence(/*workaround: no assertions:*/ 0, win); 

if(rank_world==0) for( i=0; i<arrSize; i++) arr[i]=i+it;

if( comm_head != MPI_COMM_NULL ) {

MPI_Bcast(arr, arrSize, arrDataType, 0, comm_head);
}

MPI_Win_fence(/*workaround:no assertions:*/0,win); 

sum=0; for( i=0; i<arrSize; i++) sum+= arr[i];

C

MPI/tasks/C/Ch11/data-rep/data-rep_solution.c

process is head of one of 

the shared memory islands

Starting write epoch

Filling arr by process 0

Only the heads of the shared memory islands fill arr by …

… broadcasting to all heads

Starting read epoch by all proc’s

Reading arr by all processes

grey = original code

instead of MPI_COMM_WORLD

MPI course  Chap.11-(1)  Shared Memory One-sided Communication  Exercise 5 (advanced)

The following slides show a step-by-step solving of this exercise

b
a
c
k

(a 1-slide-solution-summary)
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Solutions of MPI shared memory exercise:  datarep

data-rep_base.c

#include <stdlib.h>

#include <stdio.h>

#include <mpi.h>

typedef long arrType ;

#define arrDataType MPI_LONG /* !!!!!   C A U T I O N :   MPI_Type must fit to arrType !!!!! */

static const int arrSize=16*1.6E7 ;

int main (int argc, char *argv[])

{

int it ;

int rank_world, size_world;

arrType *arr ;

int i;

long long sum ;

/* ===> 1 <=== */

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank_world);

MPI_Comm_size(MPI_COMM_WORLD, &size_world);

/* ===> 2 <=== */

arr = (arrType *) malloc(arrSize * sizeof(arrType));

if(arr == NULL)

{   printf("arr NOT allocated, not enough memory\n");

MPI_Abort(MPI_COMM_WORLD, 0);

}

...

Hybrid Programming – MPI+X  Appendix  Solutions  datarep

In each process, allocating an array for the replicated

TODO: Allocating only once per shared memory node!

This will be done in 3 steps: 2a, 2b-d, 2e-f

Jun. 2020, Author:

Rabenseifner
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Solutions of MPI shared memory exercise:  datarep
data-rep_base.c (continued)
...

/* ===> 3 <=== */

for( it = 0; it < 3; it++)

{

/* only rank_world=0 initializes the array arr */

if( rank_world == 0 )

{

for( i = 0; i < arrSize; i++)

{ arr[i] = i + it ; }

}
/* ===> 4 <=== */

MPI_Bcast( arr, arrSize, arrDataType, 0, MPI_COMM_WORLD );

/* Now, all arrays are filled with the same content. */

/* ===> 5 <=== */

sum = 0;

for( i = 0; i < arrSize; i++)

{

sum+= arr [ i ] ;

}

/* ===> 6 <=== */

/*TEST*/ // To minimize the output, we print only from 3 process per SMP node

/*TEST*/ if ( rank_world == 0 || rank_world == 1 || rank_world == size_world - 1 )

printf ("it: %i, rank ( world: %i/%i ):\tsum(i=%i...i=%i) = %lld \n",

it, rank_world, size_world, it, arrSize-1+it, sum );

}

/* ===> 7 <=== */

free(arr);

MPI_Finalize();

}

Hybrid Programming – MPI+X  Appendix  Solutions  datarep

T
im

e
 s

te
p

lo
o

p

Filling the array by one process.

Will be unchanged.

Calculating some numerical result in 

each process. Same result on each 

process that it is easy to verify.

Will be unchanged.

And printing it out

Will be unchanged.Freeing the allocated array.

TODO: We must free the window instead.

Broadcasting it to all other processes.

TODO: Only one process per SMP node should broadcast!

Steps (3)-(6)

are done 

together 

Last step!

Jun. 2020, Author:

Rabenseifner
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c
k

During the exercise, 

you should reduce it to 1 time-step
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Solutions of MPI shared memory exercise:  datarep

data-rep_sol_2a.c
…

MPI_Comm comm_shm;

int size_shm, rank_shm;

…

/* ===> 2 <=== */

/* Create --> shared memory islands and --> shared memory window inside */

/*           -->    comm_shm and      -->    win                 */

MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, /*key=*/ 0, MPI_INFO_NULL, &comm_shm);

MPI_Comm_size(comm_shm, &size_shm);

MPI_Comm_rank(comm_shm, &rank_shm);

/*TEST*/ // To minimize the output, we print only from 3 process per SMP node

/*TEST*/ if ( rank_shm == 0 || rank_shm == 1 || rank_shm == size_shm - 1 )

printf("\t\trank ( world: %i/%i, shm: %i/%i)\n", rank_world, size_world, rank_shm, size_shm);

/*TEST*/ if(rank_world==0) printf("ALL finalize and return !!!.\n"); MPI_Finalize(); return 0;

/*  TO DO:

*  substitute the following malloc

*/

…
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Solutions of MPI shared memory exercise:  datarep
data-rep_sol_2d.c
…

MPI_Win win;

int individualShmSize ;

arrType *shm_buf_ptr;

/* output MPI_Win_shared_query */

MPI_Aint arrSize_ ;

int disp_unit ;

…

/* ===> 2 <=== */

…

/* instead of:  arr = (arrType *) malloc(arrSize * sizeof(arrType)); */

if ( rank_shm == 0 )

{ individualShmSize = arrSize ; }

else

{ individualShmSize = 0 ; }

MPI_Win_allocate_shared( (MPI_Aint)(individualShmSize) * (MPI_Aint)(sizeof(arrType)),  

sizeof(arrType), MPI_INFO_NULL, comm_shm, &shm_buf_ptr, &win );

/* shm_buf_ptr is not used because it is only available in process rank_shm==0 */

MPI_Win_shared_query( win, 0, &arrSize_, &disp_unit, &arr );

/*TEST*/ // To minimize the output, we print only from 3 process per SMP node

/*TEST*/ if ( rank_shm == 0 || rank_shm == 1 || rank_shm == size_shm - 1 )

printf("\t\trank ( world: %i/%i, shm: %i/%i) arrSize %i arrSize_ %i shm_buf_ptr=%p arr_ptr=%p \n",

rank_world, size_world, rank_shm, size_shm, arrSize, (int) (arrSize_), shm_buf_ptr, arr );

/*TEST*/ if(rank_world==0) printf("ALL finalize and return !!!.\n"); MPI_Finalize(); return 0;

/* TO DO: Create communicator comm_head with MPI_Comm_split -->  including all the rank_shm == 0 processes.

…

Hybrid Programming – MPI+X  Appendix  Solutions  datarep
Jun. 2020, Author:

Rabenseifner

data-rep_sol_2d_30.f90
…

!  INTEGER*8, DIMENSION(:), ALLOCATABLE :: 

arr

INTEGER*8, DIMENSION(:), POINTER :: arr

…

/* ===> 1 <=== */

…                    similar to C
/* ===> 2 <=== */

…

 See next slide

Fortran

C
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Solutions of MPI shared memory exercise:  datarep
data-rep_sol_2d_f90.c

!  INTEGER*8, DIMENSION(:), ALLOCATABLE :: arr

INTEGER*8, DIMENSION(:), POINTER :: arr

/* ===> 1 <=== */

TYPE(MPI_Win) :: win

INTEGER :: individualShmSize

TYPE(C_PTR) :: arr_ptr, shm_buf_ptr

INTEGER(KIND=MPI_ADDRESS_KIND) :: arrDataTypeSize, lb, ShmByteSize

! /* output MPI_Win_shared_query */

INTEGER(kind=MPI_ADDRESS_KIND) :: arrSize_

INTEGER :: disp_unit

/* ===> 2 <=== */

! instead of:  ALLOCATE(arr(1:arrSize))

IF ( rank_shm == 0 ) THEN

individualShmSize = arrSize

ELSE

individualShmSize = 0

ENDIF

CALL MPI_Type_get_extent(arrDataType, lb, arrDataTypeSize)

ShmByteSize = individualShmSize * arrDataTypeSize

disp_unit = arrDataTypeSize

CALL MPI_Win_allocate_shared( ShmByteSize, disp_unit, MPI_INFO_NULL, comm_shm, shm_buf_ptr, win )

!  /* shm_buf_ptr is not used because it is only available in process rank_shm==0 */

CALL MPI_Win_shared_query( win, 0, arrSize_, disp_unit, arr_ptr )

CALL C_F_POINTER(arr_ptr, arr, (/arrSize/) )

! TEST: To minimize the output, we print only from 3 process per SMP node

IF ( (rank_shm == 0) .OR. (rank_shm == 1) .OR. (rank_shm == size_shm - 1) ) THEN

WRITE(*,*) 'rank( world=',rank_world,' shm=',rank_shm,')',' arrSize=',arrSize,' arrSize_=',arrSize_

ENDIF

IF (rank_world == 0) WRITE(*,*) 'ALL finalize and return!!!'; CALL MPI_Finalize(); STOP

…
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Solutions of MPI shared memory exercise:  datarep

data-rep_sol_2f.c

…

int color ;

MPI_Comm comm_head;

int size_head, rank_head;

…

/* ===> 2 <=== */

…

/* Create communicator including all the rank_shm = 0               */

/* with the MPI_Comm_split: in color 0 all the rank_shm = 0 ,

* all other ranks are color = 1                                        */

color=MPI_UNDEFINED ;

if (rank_shm==0) color = 0 ;

MPI_Comm_split(MPI_COMM_WORLD, color, /*key=*/ 0, &comm_head);

rank_head = -1; // only used in the print statements to differentiate unused rank==-1 from used rank==0

if( comm_head != MPI_COMM_NULL ) // if( color == 0 ) // rank is element of comm_head, i.e., it is head of one of 

the islands in comm_shm

{

MPI_Comm_size(comm_head, &size_head);

MPI_Comm_rank(comm_head, &rank_head);

}

/*TEST*/ // To minimize the output, we print only from 3 process per SMP node

/*TEST*/ if ( rank_shm == 0 || rank_shm == 1 || rank_shm == size_shm - 1 )

printf("\t\trank ( world: %i/%i, shm: %i/%i, head: %i/%i) arrSize %i arrSize_ %i shm_buf_ptr = %p, arr_ptr = %p \n",

rank_world,size_world,rank_shm,size_shm,rank_head,size_head, arrSize, (int)(arrSize_), shm_buf_ptr, arr);

/*TEST*/ if(rank_world==0) printf("ALL finalize and return !!!.\n"); MPI_Finalize(); return 0;…
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Solutions of MPI shared memory exercise:  datarep

data-rep_sol_3-6.c (on this slide steps 3-4)

…

/* ===> 3 <=== */

for( it = 0; it < 3; it++)

{

/* only rank_world=0 initializes the array arr */

/* all rank_shm=0 start the write epoch: writing arr to their shm */

MPI_Win_fence(/*workaround: no assertions:*/ 0, win);

if( rank_world == 0 ) /* from those rank_shm=0 processes, only rank_world==0 fills arr */

{

for( i = 0; i < arrSize; i++)

{ arr[i] = i + it ; }

}

/* ===> 4 <=== */

/* Instead of all processes in MPI_COMM_WORLD, now only the heads of the

* shared memory islands communicate (using comm_head).

* Since we used key=0 in both MPI_Comm_split(...), process rank_world = 0

* - is also rank 0 in comm_head

* - and rank 0 in comm_shm in the color it belongs to.                              */

if( comm_head != MPI_COMM_NULL ) // if( color == 0 )

{

MPI_Bcast(arr, arrSize, arrDataType, 0, comm_head);

/* with this Bcast, all other rank_shm=0 processes write the data into their arr */

}

…
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Solutions of MPI shared memory exercise:  datarep

data-rep_sol_3-6.c (on this slide steps 5-6)

…

/* ===> 5 <=== */

MPI_Win_fence(/*workaround: no assertions:*/ 0, win);

// after the fence all processes start a read epoch

/* Now, all other ranks in the comm_sm shared memory islands are allowed to access their shared memory array. */

/* And all ranks rank_sm access the shared mem in order to compute sum  */

sum = 0;

for( i = 0; i < arrSize; i++)

{

//sum+= *( shm_buf_ptr - rank_shm * shmSize + i ) ;

sum+= arr [ i ] ;

}

/* ===> 6 <=== */

/*TEST*/ // To minimize the output, we print only from 3 process per SMP node

/*TEST*/ if ( rank_shm == 0 || rank_shm == 1 || rank_shm == size_shm - 1 )

printf ("it: %i, rank ( world: %i/%i, shm: %i/%i, head: %i/%i ):\tsum(i=%d...i=%d) = %lld \n",

it,rank_world,size_world,rank_shm,size_shm,rank_head,size_head,it,arrSize-1+it,sum);

}

/*TEST*/ if(rank_world==0) printf("ALL finalize and return !!!.\n"); MPI_Finalize(); return 0;

…
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Solutions of MPI shared memory exercise:  datarep
data-rep_sol_7.c
…

/* ===> 7 <=== */

MPI_Win_fence(/*workaround: no assertions:*/ 0, win);
// free destroys the shm. fence to guarantee that read epoch has been finished

MPI_Win_free(&win);
…

data-rep_solution.c
…

/* ===> 2 <=== */
…

// ADD ON: calculates the minimum and maximum size of size_shm

int mm[2], minmax[2]; mm[0] = -size_shm ; mm[1] = size_shm ;

if( comm_head != MPI_COMM_NULL )

{

MPI_Reduce( mm, minmax, 2, MPI_INT, MPI_MAX, 0, comm_head) ;

}

if( rank_world == 0 )

{

printf("\n\tThe number of shared memory islands is: %i islands \n", size_head ) ;

if ( minmax[0] + minmax[1] == 0 )

printf("\tThe size of all shared memory islands is: %i processes\n", -minmax[0] ) ;

else

printf("\tThe size of the shared memory islands is between min = %i and max = %i processes \n",

-minmax[0], minmax[1]);

}

// End of ADD ON. Note that the following algorithm does not require same sizes of the shared memory islands

/* ===> 3 <=== */

…
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Quiz on Shared Memory
A. Before you call MPI_Win_allocate_shared, what should you do?

MPI_Comm_split_type(comm_old, MPI_COMM_TYPE_SHARED, …, &comm_sm)
will guarantee that comm_sm contains only processes of the same shared memory island.

B. If your communicator within your shared memory island consists of 12 MPI processes,

and each process wants to get an own window with 10 doubles (each 8 bytes),

a. which window size must you specify in MPI_Win_allocate_shared?

10 * 8 = 80 bytes

b. And how long is the totally allocated shared memory?

80 * 12 = 960 bytes

c. The returned base_ptr, will it be identical on all 12 processes?

No, within each process, the base_ptr points to its own portion of the totally allocated shared mem.

d. If all 12 processes want to have a pointer that points to the beginning of the totally allocated shared memory, which MPI 

procedure should you use and with which major argument?

MPI_Win_shared_query with rank = 0 

e. If you do this, do these 12 pointers have identical values, i.e., are identical addresses?

No, they point to the same physical address, but each MPI process may use different virtual addresses for this. 

C. Which is the major method to store data from one process into the shared memory window portion of another process?

Normal assignments (with C/C++ or Fortran) to the correct location, i.e., no calls to MPI_Put/Get.
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Quiz on Shared Memory Model & Synchronization

A. Which MPI memory model applies to MPI shared memory?

MPI_WIN_SEPARATE   or   MPI_WIN_UNIFIED   ?

B. “Public and private copies are . . . . ? . . . . synchronized 

without additional RMA calls.”

C. Which process-to-process synchronization methods can be used that, e.g., a store to a shared memory variable gets visible 

to another process (within the processes of the shared memory window)?

 Any MPI one-sided synchronization (e.g., MPI_Win_fence, …_post/start, …, …_lock/unlock) 

 Any (MPI) synchronization together with a pair of MPI_Win_sync

 Any (MPI) synchronization together with a pair of C++11 atomic_thread_fence(order)

D. That such a store gets visible in another process after the synchronization is named here as “write-read-rule”.

Which other rules are implied by such synchronizations and what do they mean?

 Read-write-rule: a load (=read) in one process before the synchronization cannot be affected by a store (=write) in another process 

after the synchronization.

 Write-write-rule: a store (=write) in one process before the synchronization cannot overwrite a store (=write) in another process after 

the synchronization.

E. How can you define a race-condition and which problems arise from cache-line false-sharing?

 Two processes access the same shared variable and at least one process modifies the variable

and the accesses are concurrent.

 Significant performance problems if two or more processes 

often access different portions of the same cache-line.

Figure: Courtesy

of Torsten Hoefler
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Quiz on Virtual topologies

A. Which types of MPI topologies for virtual process grids exist?

B. And for which use cases?

1. Cartesian topologies

 For Cartesian data meshes with identical compute time per mesh element

 For any Cartesian process grid with identical compute time per process and numerical epoch,

and its communication mainly on the virtual Cartesian grid between the processes 

2. Distributed graph topologies and graph topologies

 For applications with unstructured grids

C. Where are limits for using virtual topologies, i.e., which use cases do not really fit?

 Applications with mesh refinements, dynamic load balancing and diffusion of mesh 

elements to other processes

 all cases with changing virtual process grids over time;

 Communication pattern not known in advance.
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