
Introduction to OpenMP
Part 2
Markus Wittmann

based on work by
R. Bader (LRZ), G. Hager (RRZE), V. Weinberg (LRZ),
and R. v. d. Pas, E. Stotzer, C. Terboven: Using OpenMP – The Next Step. MIT Press, 2017, ISBN 978-0-262-53478-9

Outline

▪ thread affinity

▪ memory locality and programming

for ccNUMA systems

▪ single instruction multiple data

(SIMD) programming

▪ shared-memory parallelization

with tasking

▪ accelerator programming via

offloading

▪ 9:00 – 10:30 10:40 – 12:00

▪ 13:00 – 14:30 14:40 – 16:00

Thread Affinity

2024-03-12 4Introduction to OpenMP Part 2

Thread Affinity

▪ controls to which places threads are assigned

▪ a.k.a. thread binding, thread pinning

0 1 16 17 18 19 34 35 36 37 52 53 54 55 70 71

L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

L3 L3 L3 L3

memory memory memory memory

▪ Why does it matter?

▪ use shared/separate resources

▪ avoid thread migration

cores

cache

levels

2024-03-12 5Introduction to OpenMP Part 2

Places – Where Threads Can Be Executed

▪ env. var.

▪ values can be an abstract name

▪ selected only a certain amount:
abstract-name(count)

▪ hardware ids of cores, format examples
▪ <id>[,<id>[,…]]

▪ {<ids>}

▪ {<ids>},{<ids>},…

▪ {<ids>}[:<len>[:<stride>]]

OMP_PLACES

OMP_PLACES="0,2,4,6,8"

OMP_PLACES="{0,1},{2,3}"

OMP_PLACES="{0}:5:2"

abstract name description

threads HW threads, a.k.a. SMT-threads, virtual cores

cores physical CPU cores

ll_caches cores sharing a last level cache

numa_domains cores belonging to the same NUMA domain

sockets cores belonging to a socket

what is supported depends

on the OpenMP version

OMP_PLACES="cores"

OMP_PLACES="cores(4)"

OMP_PLACES="sockets"

OMP_PLACES="sockets(2)"
v5.1

2024-03-12 6Introduction to OpenMP Part 2

Control Affinity Policy

▪ env. var. for setting affinity policy

▪ proc_bind clause in parallel construct

▪ values: close, spread,

master (deprecated),
primary

OMP_NUM_THREADS=4

OMP_PLACES=cores

spread

close

OMP_PROC_BIND

value description

false disable affinity, proc_bind clause (parallel construct) is ignored

true enable affinity, strategy is implementation defined

close bind threads to adjacent places

→typically used low latency

spread distribute threads equally over available places

→ typically used for high bandwidth or separate resources

primary bind all threads to the place of the initial thread

OMP_PROC_BIND=

2024-03-12 7Introduction to OpenMP Part 2

Show where threads are bound to

▪ env. var.

▪ print where threads are bound to

OMP_DISPLAY_AFFINITY=true

$ OMP_NUM_THREADS=6 OMP_PLACES=cores \

OMP_PROC_BIND=true OMP_DISPLAY_AFFINITY=true ./a.out

level 1 thread 0x7f07a55e77c0 affinity 0-1

level 1 thread 0x7f07a51ff640 affinity 2-3

level 1 thread 0x7f07a49fe640 affinity 4-5

level 1 thread 0x7f07a41fd640 affinity 6-7

level 1 thread 0x7f07a39fc640 affinity 8-9

level 1 thread 0x7f07a31fb640 affinity 10-11

SMT enabled, i.e. one

physical core houses
two virtual cores

2024-03-12 8Introduction to OpenMP Part 2

Examine Topology

▪ lscpu

▪ CPU architecture/features, caches, NUMA LDs

▪ lstopo (hwloc)

▪ CPUs, caches, NUMA LDs, GPUs, network interfaces, ….

▪ numactl

▪ show NUMA LDs: numactl –H

▪ also allows for controlling affinity, see later

▪ nvidia-smi

▪ NUMA LDs, associated CPUs and GPUs

▪ nvidia-smi topo –m

▪ likwid-topology

▪ CPUs, caches, NUMA LDs many more….

2024-03-12 9Introduction to OpenMP Part 2

Topology of Alex A40 Node
used lstopo, not showing GPUs, IB devices, SSDs, …

Memory Locality and Programming for ccNUMA Systems

2024-03-12 11Introduction to OpenMP Part 2

ccNUMA

▪ ccNUMA – cache-coherent non-uniform memory access

▪ memory is distributed over locality domains in granularity of pages

▪ bandwidth & latency differ from core to locality domains

▪ each core is assigned to a locality domain

▪ typically the closest

▪ highest bandwidth, lowest latency

0 1 16 17 18 19 34 35 36 37 52 53 54 55 70 71

L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

L3 L3 L3 L3

memory memory memory memory

NUMA LDs

2024-03-12 12Introduction to OpenMP Part 2

First Touch Policy

▪ default policy: first touch

▪ typically memory is allocated in two stages

1. memory is only reserved* but not yet associated with pages in RAM

2. writing to not yet associated pages triggers allocation

▪ a memory page is placed into the locality domain the core touching it

belongs to

double * d = malloc(n * sizeof(double));

for (int i = 0; i < n; ++i)

d[i] = i;

allocate(d(n))

do i = 1, n

d(i) = i

end do

memory only

"reserved"

real allocation

and placement
happens here

* depending on the overcommit system settings more memory than available can be reserved

2024-03-12 13Introduction to OpenMP Part 2

First Touch Policy

▪ core that "touches" memory first, places it into its locality domain

double * d = malloc(n * sizeof(double));

for (int i = 0; i < n; ++i)

d[i] = i;

#pragma omp parallel for \

schedule(static)

for (int i = 0: i < n; ++i)

/* work on d[i] */

allocate(d(n)

do i = 1, n

d(i) = i

end do

!$omp parallel do &

!$omp schedule(static)

do i = 1, n

! work on d(i)

end do

!$omp end parallel doarray d will not

be distributed

serial initialization

causes only one
core to place

memory

2024-03-12 14Introduction to OpenMP Part 2

First Touch Policy

▪ place data how it is later accessed

double * d = malloc(n * sizeof(double));

#pragma omp parallel for \

schedule(static)

for (int i = 0; i < n; ++i)

d[i] = i;

#pragma omp parallel for \

schedule(static)

for (int i = 0: i < n; ++i)

/* work on d[i] */

allocate(d(n))

!$omp parallel do &

!$omp schedule(static)

do i = 1, n

d(i) = i

end do

!$omp end parallel do

!$omp parallel do &

!$omp schedule(static)

do i = 1, n

! work on d(i)

end do

!$omp end parallel do

each thread places
that part of d it will

later access

2024-03-12 15Introduction to OpenMP Part 2

Controlling Placement with numactl

▪ with numactl other policies than first touch can be selected

▪ use only a subset of NUMA LDs:

▪ -m <nodes>, --membind=<nodes>

▪ numactl -m <nodes> … <command> <args…>

▪ round-robin placement of memory pages over NUMA LD subset:
▪ -i <nodes>, --interleave=<nodes>

▪ numactl -i <nodes> … <command> <args…>

▪ <nodes>:

▪ comma separated list of single NUMA nodes or ranges thereof,

▪ all, ! (for negation)

▪ devices, files → see man page

▪ check selected settings:
▪ numactl … numactl --show

2024-03-12 16Introduction to OpenMP Part 2

NUMA balancing

▪ automatically migrates pages between NUMA nodes

▪ reduces remote NUMA traffic

▪ incurs some overhead

▪ cat /proc/sys/kernel/numa_balancing

▪ 0 # disabled

▪ 1 # enabled

▪ tunable variables under /proc/sys/kernel/numa_balancing_*

on alex:

$ grep .* /proc/sys/kernel/numa_balancing*

/proc/sys/kernel/numa_balancing:1

/proc/sys/kernel/numa_balancing_scan_delay_ms:1000

/proc/sys/kernel/numa_balancing_scan_period_max_ms:60000

/proc/sys/kernel/numa_balancing_scan_period_min_ms:1000

/proc/sys/kernel/numa_balancing_scan_size_mb:256

2024-03-12 17Introduction to OpenMP Part 2

NUMA balancing

void axpy(long n_el, double a,

register double * x,

register double * y)

{

#pragma omp parallel for simd

for (long i = 0; i < n_el; ++i)

y[i] = a * x[i] + y[i];

}

...

for (int i = 0; i < n_repetitons; ++i) {

double time = omp_get_wtime();

axpy(n_el, a, x, y);

double duration = omp_get_wtime() - time;

/* report time and bandwidth */

}

▪ multiple runs of axpy with 20 GB workingset

▪ using two NUMA LDs on Alex

▪ data serially initialized

▪ initially data is placed in one NUMA domain

▪ over time migrated

do not do this, just
use a BLAS library

Single Instruction Multiple Data (SIMD) programming

SIMD

▪ SIMD: single instruction multiple data

▪ registers hold multiple elements

▪ one instruction performs the

operation on each element

▪ also special instructions for

▪ fused-multiply-accumulate (FMA)

▪ gather/scatter

▪ masked operations

▪ …

doublescalar

SSE

AVX

AVX-512

A64FX

a[i+2] a[i+3]a[i] a[i+1]

b[i+2] b[i+3]b[i] b[i+1]

a[i+2] a[i+3]a[i] a[i+1]

+ + + +

= = = =

a[i]

b[i]

a[i]

+

=

scalar vectorized

re
g

is
te

rs

also float, int32, int16, …

16 byte

32 byte

64 byte

8 byte

xmm

ymm

zmm

2024-03-12 20Introduction to OpenMP Part 2

Vectorizing Loops

▪ concurrent execution of loop iterations

through SIMD instructions (vectorization)

▪ loop is executed in SIMD chunks

▪ each chunk consists of multiple SIMD lanes

▪ only local to the current task

▪ single thread optimization

▪ requirements

▪ no dependencies among loop iterations

▪ see safelen if there are

▪ no pointer aliasing

a[i+2] a[i+3]a[i] a[i+1]

b[i+2] b[i+3]b[i] b[i+1]

a[i+2] a[i+3]a[i] a[i+1]

+ + + +

= = = =

a[i]

b[i]

a[i]

+

=

#pragma omp simd [clauses]

for (int i = 0; i < n; ++i)

a[i] += b[i];

loop iterations

scalar vectorized

re
g

is
te

rs

≥v4.0

!$omp simd [clauses]

do = 1, n

a(i) = a(i) + b(i)

end do

!$omp end simd

2024-03-12 21Introduction to OpenMP Part 2

Pointer Aliasing

▪ with simd construct we guarantee loop iterations are independent

void daxpy(long n_el, double a,

double * x, double * y)

{

#pragma omp parallel for simd

for (long i = 0; i < n_el; ++i)

y[i] = a * x[i] + y[i];

}

double A[n];

/* init A */

daxpy(n - 1, a, A + 1, A);

with simd we

guarantee no
pointers are

aliased

A[0] = a * A[1] + A[0]

A[1] = a * A[2] + A[1]

A[2] = a * A[3] + A[2]

A[3] = a * A[4] + A[3]

…

Multiple loop iterations could write to the same memory location

vectorization is only OK if:

▪ no two indices are the same

▪ when there are at least N different
elements before the same element
occurs again in values array, use

safelen(N) clause

/* elements of values array are inside

the bounds of the hist array */

void compute(int * hist, int n_values,

int * values) {

#pragm omp simd

for (int i = 0; i < n_values; ++i) {

++hist[values[i]];

} }

vectorization through gather and scatter

instruction possible, however, multiple SIMD
lanes could write to the same memory location

2024-03-12 24Introduction to OpenMP Part 2

Data Environment

▪ clauses: private, lastprivate

▪ loop counter gets privatized
as lastprivate

▪ privatization for simd loops means one private instance per SIMD lane

int n = 10;

/* define and init a and b */

int i = 0;

#pragma omp simd

for (i = 0; i < 10; ++i)

a[i] += b[i];

printf("i: %d\n", n, i);

/* prints: i: 10 */

#pragma omp simd private(tmp)

for (int i = 0; i < n; ++i) {

tmp = sin(b[i]);

a[i] += tmp;

}

without private(tmp),

tmpwould be shared and

this would lead to races

▪ if(expr)

▪ if false only one loop iteration is executed at a time

▪ simdlen(length)

▪ hint of how many iterations should be executed concurrently

▪ typically 2, 4, 8, 16, depending on variable types and hardware capabilities

▪ compiler might unroll the loop beyond SIMD width

▪ safelen(length)

▪ how many loop iterations can safely be executed concurrently

▪ simdlen ≤ safelen required

▪ aligned(var[:alignment],…)

▪ specify alignment in bytes for listed variables

▪ must be correct, might help optimizer

2024-03-12 25Introduction to OpenMP Part 2

simd construct clauses

▪ linear(list[:step])

▪ listed variables have a linear relationship with the loop

▪ why: help the compiler

▪ if step is not specified its 1

▪ step must be invariant inside the loop

▪ listed variables are privatized

2024-03-12 26Introduction to OpenMP Part 2

simd construct clauses

#pragma omp simd linear(j:2)

for (int i = 0; i < n / 2; ++i) {

a[i] += b[j];

j += 2;

}

▪ collapse(n)

▪ associates n loops

▪ might create complex non-optimal

assembly

▪ check this is what you expect

▪ reduction(rid:list)

▪ works as already known

▪ listed variables are privatized and

aggregated at the end

▪ clauses not discussed:
nontemporal, order

2024-03-12 27Introduction to OpenMP Part 2

simd construct clauses

#pragma omp simd collapse(2)

for (int y = 1; y < ny - 1; ++y) {

for (int x = 1; x < nx - 1; ++x) {

a[y * nx + x] = (b[y * nx + x]

+ b[y * nx + x + 1]

+ b[y * nx + x - 1]

+ b[(y - 1) * nx + x]

+ b[(y + 1) * nx + x]) * 0.25;

}

}

double dotp = 0.0;

#pragma omp simd reduction(+:dotp)

for (int i = 0; i < n; ++i) {

dotp += a[i] * b[i];

}

2024-03-12 28Introduction to OpenMP Part 2

enable simd construct support only

▪ enable only simd construct support without enabling other OpenMP

constructs/features

▪ gcc/gfortran/clang: -fopenmp-simd

▪ icc/ifort/icx/ifx: : -qopenmp-simd

▪ automatically active at ≥ -O2

2024-03-12 29Introduction to OpenMP Part 2

combined for/do simd construct

▪ simd can be combined with for/do

construct

▪ iterations of associated loop(s) get

▪ vectorized and

▪ distributed over threads

#pragma omp for simd \

schedule(simd:static)

for (…)

simdmodifier in schedule

causes chunk size to be a

multiple of simd width

all schedules are allowed

for simd [for and simd clauses …]

do simd [for and simd clauses …]

C/C++

Fortran

2024-03-12 30Introduction to OpenMP Part 2

Vectorizing Functions For Usage Within simd Loops

▪ generate vector versions of functions

to be called from a simd loop

▪ vectorized math functions typically are

already available

▪ create a version for SIMD width n

▪ restrictions:

▪ function cannot have side effects

▪ C++: function must not throw

#pragma omp simd

for (int i = 0; i < n; ++i)

a[i] = sin(i);

declare simd [clauses]

if available
vectorized sin

function called

#pragma omp declare simd simdlen(2)

#pragma omp declare simd simdlen(4)

#pragma omp declare simd simdlen(8)

double sumit(double a, double b)

{

return a + b;

}

...

#pragma omp simd

for (int i = 0; i < n; ++i)

a[i] = sumit(b[i], c[i]);

also create versions of

the function for SIMD
width 2, 4, and 8

declare simd simdlen(n) [clauses]

2024-03-12 31Introduction to OpenMP Part 2

declare simd construct

▪ declare simd + function definition

▪ compiler generates SIMD version

▪ declare simd + function declaration

▪ tells the compiler a SIMD versions exist
#pragma omp declare simd simdlen(2)

double sumit(double a, double b);

...

#pragma omp simd

for (int i = 0; i < n; ++i)

a[i] = sumit(b[i], c[i]);

#pragma omp declare simd simdlen(2)

double sumit(double a, double b)

{

return a + b;

}

fu
n
c
ti
o

n
s
.c

m
a
in

.c

double precision function sumit(a, b)

!$omp declare simd simdlen(2)

double precision, intent(in) :: a, b

sumit = a + b

end function

2024-03-12 32Introduction to OpenMP Part 2

declare simd construct clauses

▪ listed parameters of function will have

the same value through concurrent calls

from a SIMD loop

▪ values of listed parameters have a
linear relationship between their SIMD

lanes in the form of step-size

uniform(list) #pragma omp declare simd uniform(a)

double multit(double a, double b)

{

return a + b;

}

...

#pragma omp simd

for (int i = 0; i < n; ++i)

a[i] = multit(2.0, c[i]);

#pragma omp declare simd uniform(by, a)

linear(index:1)

void incr(double by, double * a, int index)

{

a[index] += by;

}

...

#pragma omp simd

for (int i = 0; i < n; ++i)

incr(2.0, a, i);

linear(list[:step-size])

2024-03-12 33Introduction to OpenMP Part 2

declare simd construct clauses

▪ function is called from inside a branch

of a SIMD loop

▪ function is not called from inside a

branch of a SIMD loop

▪ without inbranch and notinbranch

generated code by the compiler must
be able to handle both situation

inbranch #pragma omp declare simd inbranch

double incr(double a)

{ return a + 1.0; }

#pragma omp declare simd notinbranch

double square(double a)

{ return a * a; }

...

#pragma omp simd

for (int i = 0; i < n; ++i) {

if (a[i] % 2 == 1)

incr(a[i]);

square(a[i]);

}

notinbranch

2024-03-12 34Introduction to OpenMP Part 2

declare simd construct clauses

▪ listed pointer(s) have specified

alignment in bytes

▪ multiple declarations with

different clauses are allowed

#pragma omp declare simd inbranch

#pragma omp declare simd notinbranch

#pragma omp declare simd notinbranch \

uniform(a)

double incr(double a)

{ return a + 1.0; }

aligned(list:alignment)
#pragma omp declare simd aligned(a, b:64)

double process(double a, double b)

{ … }

...

double * a = aligned_alloc(64, n * sizeof(double));

double * b = aligned_alloc(64, n * sizeof(double));

double * c = aligned_alloc(64, n * sizeof(double));

/* init a, b */

#pragma omp simd

for (int i = 0; i < n; ++i)

c[i] = process(a[i], b[i]);

Shared-Memory Parallelization With Tasking

Tasks in OpenMP

▪ tasks in OpenMP refer to an instance of

executable code and associated data environment

▪ we already used tasks unknowingly, e.g.:

▪ internally parallel construct creates an implicit task of the associated

structured block for each thread

▪ explicit tasks allow for greater flexibility

▪ parallelize work-loads which cannot be mapped to worksharing constructs

▪ allow for dependencies between tasks

2024-03-12Introduction to OpenMP Part 2 36

▪ encountering thread creates a task from

associated structured block

▪ task can be executed

▪ undeferred: executed immediately

▪ deferred: possibly executed later

▪ deferred tasks are enqueued to be

processed by (waiting) threads

▪ tasks are executed in unspecified order

▪ barrier is only left iff

▪ all threads have arrived

▪ and all tasks have been processed

Creating Tasks

#pragma omp parallel

{

#pragma omp single

{

for (...) {

#pragma omp task

{ /* work */ }

}

} /* implicit barrier */

}

task [clauses…]

structured-block

2024-03-12 38Introduction to OpenMP Part 2

Task Queue

▪ OpenMP runtimes typically have a

task queue

▪ deferred tasks are enqueued there

▪ waiting threads pick tasks from this

queue

▪ queue has limited capacity for
enqueued tasks, i.e. a threshold

▪ if threshold is reached:

▪ creation of new tasks can be

suspended

▪ tasks from the queue are processed

#pragma omp parallel

#pragma omp single

{

for (int i = 0; i < 10; ++i) {

#pragma omp task

work(data[i]);

}

}

ta
s
k

q
u
e

u
e

?

Data Sharing (Attributes) with Tasks

▪ specify explicitly with clauses:

▪ default, private, shared, firstprivate

▪ rules (as already known):

▪ static/global variables → shared

▪ automatic (stack) variables inside region →

private

▪ referenced variables become
firstprivate iff:

▪ no default clause present

▪ variable not explicitly listed

▪ variable not determined shared in enclosing

constructs

▪ ensures data is still alive when task is

executed

#pragma omp parallel

#pragma omp single

{

double d[100] = ...;

#pragma omp task

work(d, 100);

}

double d[100] = ...;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

work(d, 100);

}

d shared

d firstprivate

as determined
private inside

single

2024-03-12 39Introduction to OpenMP Part 2

Task Clauses

▪ if(true):

▪ deferred task created, possibly

executed later

▪ the default

▪ if(false):

▪ undeferred task is created,

executed immediately

▪ only applies to task at hand

▪ optimization:

▪ stop generating tasks if enough have

been generated, see final

▪ reduce overhead

▪ all other task semantics still apply

if(expression)

Task Clauses

▪ hint to execute tasks with higher

priority first

▪ value

▪ by default 0

▪ range: [0, max-priority]

▪ must be enabled first

▪ set environment variable:
OMP_MAX_TASK_PRIORITY=max-priority

▪ application must not rely on tasks
executed regarding their priority

▪ query maximum priority:
▪ int/integer

omp_get_max_task_priority()

priority(value)

#pragma omp parallel

#pragma omp single

{

#pragma omp task

low_prio_work();

#pragma omp task priority(1)

high_prio_work();

}

OMP_MAX_TASK_PRIORITY=1 ./omp-app

run with:

2024-03-12 42Introduction to OpenMP Part 2

Task Synchronization

▪ waiting for completion of tasks:

▪ explicit barrier

▪ implicit barriers (does not apply for nowait)

▪ with explicit task synchronization constructs
▪ taskwait

▪ taskgroup (see later)

▪ taskwait: wait until all child tasks of current

(implicit) task are completed

▪ NOTE: child tasks include only direct children,

not grandchildren

#pragma omp parallel

#pragma omp single

{

#pragma omp task

work1();

#pragma omp taskwait

#pragma omp task

work2();

} continue
when work1

has finished
wait in impl. barrier

until work2 has

finished

2024-03-12 43Introduction to OpenMP Part 2

Task Synchronization with taskgroup

▪ wait for all tasks created within
taskgroup region

▪ not only the direct children as with
taskwait

#pragma omp parallel

#pragma omp single

{

#pragma omp taskgroup

{

#pragma omp task

work1() /* spawns more tasks */

#pragma omp task

work2() /* spawns more tasks */

}

}
wait here for all tasks in
taskgroup region to finish

work1

work2

tasks created by work1

tasks created by work2

taskgroup

taskwaitwould only wait

for work1 and work2

2024-03-12 44Introduction to OpenMP Part 2

Task Synchronization with taskgroup

▪ allows for dedicated waiting on tasks

#pragma omp parallel

#pragma omp single

{

#pragma omp task

unrelated1();

#pragma omp taskgroup

{

#pragma omp task

work1() /* spawns more tasks */

#pragma omp task

work2() /* spawns more tasks */

} /* wait for tasks */

#pragma omp task

unrelated2();

} /* implicit barrier */

no waiting for
unrelated1

spawn
unrelated1

spawn
unrelated2

execute task group

spawn work1() & work2()

wait for taskgroup tasks to finish

single

impl. barrier

wait for
unrelated1 & unrelated2

2024-03-12 45Introduction to OpenMP Part 2

Task Scheduling Points

▪ threads can suspend execution of

tasks and switch to another task

(task switch)

▪ only at predefined

task scheduling points (TSPs):

▪ task construct

▪ end of task

▪ at taskyieldand taskwait

▪ end of taskgroup construct

▪ at implicit/explicit barrier

▪ (target related constructs & API)

▪ taskyield introduces an explicit TSP

#pragma omp parallel

#pragma omp single

{

double d[100] = ...

#pragm omp task

{

work(d, 100);

#pragma omp taskyield

more_work(d, 100)

}

#pragma omp taskwait

}

task construct

taskyield

end of task

taskwait

impl. barrier
u
n
in

te
rr

u
p

te
d

*

*assuming in work()/more_work() no TSPs occur

task

scheduling
points

2024-03-12 46Introduction to OpenMP Part 2

Task Scheduling Points

▪ best:

▪ do not hold locks when crossing task scheduling points

▪ avoid task scheduling points in critical regions

▪ deadlocks can occur

▪ task A holds a lock/is inside a critical region

▪ task A is suspended due to reaching a task scheduling point

▪ task B is resumed by the same thread

▪ task B tries to acquire the lock/enter the critical region

▪ deadlock occurs

task A

2024-03-12 47Introduction to OpenMP Part 2

Tied and Untied Tasks

▪ tied tasks (default)

▪ cannot leave thread that first

started execution of task (≠

encountering thread)

▪ untied tasks

▪ can be resumed by any thread in
team

NOTE: tied might be desired if

cache/NUMA locality is needed

task B

task A

suspend task A

thread

task A

task B

thread 1 thread 2

task A

tied tasks

(default)
untied tasks

#pragma omp task untied

task_a();

#pragma omp task untied

task_b();

start task B

suspend task B

resume task A

suspend task A

start task B resume task A

#pragma omp parallel

#pragma omp single

{

for (int i = 0; i < n; ++i) {

#pragma omp task

work(data[i]);

}

}

2024-03-12 48Introduction to OpenMP Part 2

Example untied

▪ thread executes untied task that

generates new tasks

▪ if threshold of unassigned tasks is

reached, the generating task
might be suspended at TSP (1)

▪ thread now processes unassigned

tasks

▪ if other threads complete their

work earlier, they can pickup the

suspended generating task

#pragma omp parallel

#pragma omp single

{

#pragma omp task untied

for (int i = 0; i < n; ++i) {

#pragma omp task // (1)

work(data[i]);

}

}

from: OpenMP Application Programming Interface Examples, 5.1 task and taskwaitConstructs

if task has been suspended, it

can be picked up by any thread

if implicit task has been

suspended, it can only be picked
up by the thread that started it

Final and Mergable Tasks

▪ if final-expr is true task is final

▪ final tasks are undeferred, i.e.,

executed immediately

▪ child tasks of final tasks are also

final

▪ in contrast to if clause

▪ no extra data environment for task

is created if task is

▪ final

▪ or undeferred

▪ reduces memory overhead

final(finalize-expr) mergable(mergable-expr)

used for optimization:

• reduce overhead

• reduce consumed memory

2024-03-12 50Introduction to OpenMP Part 2

Reductions with Tasks

▪ requires two components

▪ taskgroup with

task_reduction clause

▪ in_reduction clause of task

≥ v5.0

#pragma omp parallel

#pragma omp single

{

int sum = 0;

#pragma omp taskgroup \

task_reduction(+:sum)

{

#pragma omp task in_reduction(+:sum)

{ /* might spawn tasks that also have

in_reduction(+:sum) */

}

#pragma omp task { }

/* does not take part */

} /* implicit barrier */

/* sum available */

}

2024-03-12 51Introduction to OpenMP Part 2

Task Dependencies

▪ introduce dependencies between sibling

tasks

▪ dependency types:

▪ in: “read” from variables

▪ out/inout: “read” from and “write” to variables

▪ not covering: mutexinoutset, inoutset,
depobj

▪ task graph is build by matching

dependencies to dependencies of already

submitted tasks

task depend(in:…) \

depend(out:…) \

depend(inout:…)

list of variables,

array elements
and sections

NOTE: tasks do not necessarily have to use the variables specified in dependencies

2024-03-12 52Introduction to OpenMP Part 2

in dependency

▪ depends on last out dependency of the listed variables, if any

▪ can be scheduled parallel to other tasks with the same in dependency

▪ if no previous out dependency to listed variable exists, it is assumed as

fulfilled

#pragma omp task depend(out:x) /*A*/

/*…*/

#pragma omp task depend(in:x) /*B*/

/*…*/

#pragma omp task depend(in:x) /*C*/

/*…*/

A

x

out

B

C

task graph

in

2024-03-12 53Introduction to OpenMP Part 2

out/inout dependency

▪ depends on

▪ last out dependency of the listed variables, if any

▪ all in dependencies schedule directly before

▪ if no previous in/inout/out dependency to listed variable exists, it is

assumed as fulfilled

▪ out and inout are effectively the same

#pragma omp task depend(in:x) /*A*/

/*…*/

#pragma omp task depend(in:x) /*B*/

/*…*/

#pragma omp task depend(inout:x) /*C*/

/*…*/

#pragma omp task depend(inout:x) /*D*/

/*…*/

x

C D

in inout

task graph
B

inout

A

2024-03-12 54Introduction to OpenMP Part 2

Oder of Creation Matters

int v = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(out:x) /*A*/

v = 1;

#pragma omp task depend(inout:x) /*B*/

v += 2;

#pragma omp task depend(inout:x) /*C*/

v *= 2;

}

A

x
out

B C

inout
inout

x = ((1) + 2) * 2 = 6

int v = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(out:x) /*A*/

v = 1;

#pragma omp task depend(inout:x) /*C*/

v *= 2;

#pragma omp task depend(inout:x) /*B*/

v += 2;

}

A

x
out

C B

inout
inout

x = ((1) * 2) + 2 = 4

2024-03-12 55Introduction to OpenMP Part 2

Dependencies between Siblings only

int x;

#pragma omp task depend(in: x)

{

#pragma omp task depend(out: x)

{ … }

}

#pragma omp task depend(out: x)

{ … }

unrelated as tasks are

no siblings

related, as tasks

are siblings

taskloop construct

▪ wraps chunks of iterations of assoc.

loops into tasks and executes them

▪ not a worksharing construct

▪ however: created tasks can be

executed by all threads in current team

▪ advantages

▪ can be arbitrarily nested

▪ worksharing loops require nested

parallelism

▪ explicit tasks cannot encounter

worksharing loops

▪ automatic load balancing

taskloop [clauses]

do-/for-loop

#pragma omp parallel num_threads(2)

#pragma omp single

{

int from = omp_get_thread_num();

#pragma omp taskloop

for (int i = 0; i < 5; ++i) {

printf(“%d %d %d\n”,

i, omp_get_thread_num(), from);

}

}

#pragma omp parallel num_threads(2)

{

#pragma omp taskloop

for (int i = 0; i < 5; ++i) {…}

}

one thread encounters it,
all threads execute tasks,

5 lines of output taskloop is executed 2 times

3 0 0

4 0 0

0 1 0

1 1 0

2 1 0

possible output:

2024-03-12 57Introduction to OpenMP Part 2

taskloop clauses

▪ loop related:

▪ collapse, reduction

▪ task related clauses are applied to the created tasks:

▪ final, if, in_reduction, mergeable, priority, untied

▪ chunk size related:

▪ grainsize, num_tasks

▪ data sharing attributes:

▪ firstprivate, private, shared, lastprivate

▪ taskloop is implicitly wrapped into a taskgroup:

▪ nogroup removes impl. taskgroup

2024-03-12 58Introduction to OpenMP Part 2

taskloop clauses

▪ grainsize([strict:]n)

▪ task has between n and 2n iterations

▪ with strict each task has n iterations

▪ last chunk can have less than n iterations

▪ num_tasks([strict:]n)

▪ generated no. of tasks will be = min(n, no. of iterations)

Offloading

Introduction

▪ execute code on a device, typically

an accelerator

▪ not necessarily a GPU, can also be an

FPGA, DSP, …

▪ OpenMP tries to abstract from the

targeted device's architecture

▪ target: device where code and data

is offloaded to

▪ execution always starts on the host
device

▪ here only a small fraction of the
standard is covered

host

device
device,

target

2024-03-12Introduction to OpenMP Part 2 60

2024-03-12 61Introduction to OpenMP Part 2

Offloading Code to the Target

▪ execute associated structured

block on the device

▪ on the target:

▪ execution is initially single threaded

▪ on the host:

▪ wait until offloaded code completes

▪ target construct cannot be nested

inside another target construct

int a[1024], b[1024];

/* init a and b */

#pragma omp target

{

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

} /* wait until complete */

target [clauses…]

<structured block>

host device

omp target

for (…)

a[i] += b[i]

2024-03-12 62Introduction to OpenMP Part 2

Generating Parallelism on the Target

▪ target construct alone does not

generate parallelism

#pragma omp target

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

team

o
n
 t

h
e

d
e

vi
c
e

iterations

visualization idea based on: Using OpenMP 4.5 Target Offload for Programming

Heterogeneous Systems, NASA Advanced Supercomputing Division, Mar 20, 2019

▪ teams construct

▪ generate league of teams

▪ a team has only one initial thread

▪ each team executes the same code

▪ how many teams: impl. defined

▪ num_teams(n) clause

▪ distribute construct

▪ distributes iteration space of

associated loop(s) over teams

2024-03-12 63Introduction to OpenMP Part 2

Generating Parallelism on the Target
#pragma omp target teams

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

#pragma omp target teams distribute

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

team

o
n
 t

h
e

d
e

vi
c
e

visualization idea based on: Using OpenMP 4.5 Target Offload for Programming

Heterogeneous Systems, NASA Advanced Supercomputing Division, Mar 20, 2019

2024-03-12 64Introduction to OpenMP Part 2

Generating Parallelism on the Target

▪ parallel construct

▪ gen. parallel region with multiple

threads inside each team

▪ worksharing loop

▪ distribute team's iteration space over

all threads inside a team

#pragma omp target teams distribute \

parallel

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

#pragma omp target teams distribute \

parallel for

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

visualization idea based on: Using OpenMP 4.5 Target Offload for Programming

Heterogeneous Systems, NASA Advanced Supercomputing Division, Mar 20, 2019

2024-03-12 65Introduction to OpenMP Part 2

Generating Parallelism on the Target

▪ simd construct

▪ use SIMD lanes in each thread

▪ how each directive maps to a GPU entity depends on the compiler

#pragma omp target teams distribute \

parallel for simd

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

2024-03-12 67Introduction to OpenMP Part 2

Generating Parallelism

▪ some possible combinations

omp target <sb>

omp target parallel <sb>

omp target parallel for/do <ln>

omp target parallel for/do simd <ln>

omp target simd <ln>

omp target teams <sb>

omp target teams distribute <ln>

omp target teams distribute parallel for/do <ln>

omp target teams distribute parallel for/do simd <ln>

omp target teams distribute simd <ln>

sb: structured block

ln: loop nest

not covered: section, loop construct

2024-03-12 68Introduction to OpenMP Part 2

target teams construct

▪ each team has a new initial thread

▪ teams are loosely coupled

▪ in contrast to the parallel construct

▪ no synchronization across teams

clauses:

▪ num_teams(expr) clause

▪ no. of teams to create

▪ if unspecified gen. no. of teams is

implementation defined

▪ thread_limit(expr) clause

▪ max. no. of active threads in a team

#pragma omp target teams

{ … }

#pragma omp target

#pragma omp teams

{ … }

target teams must be a

compound construct or

directly nested

▪ if(expr) clause

▪ evaluate to true: create teams

▪ evaluate to false: create only 1 team

▪ shared, private, firstprivate, default:

▪ usual meaning

▪ reduction clause: see later

▪ distribute iterations of associated loop over teams

▪ must be strictly nested inside
a teams construct

▪ iteration space must be the same

for all teams

▪ no implicit barrier at the end

▪ dist_schedule(static[,chunk_size]) clause

▪ if unspecified: implementation defined

▪ w/o chunk_size: each team gets one equally sized chunk

▪ collapse(n) clause

▪ same as for for/do construct

▪ associate and collapse iteration space of n nested loops
2024-03-12 69Introduction to OpenMP Part 2

distribute construct

#pragma omp target teams distribute

<loop>

#pragma omp target teams

#pragma omp distribute

<loop>

distribute must be a

compound construct or

strictly nested

▪ clauses: usual meaning

▪ clause: not handled here

▪ reproducible schedule:
▪ order(reproducible)

▪ dist_schedule(static[,chunk_size]) order(...) where order does not

contain unconstrained

▪ avoid data races with lastprivate

▪ lastprivate variables should not be accessed

between end of distribute and teams construct

order

private, firstprivate, lastprivate

2024-03-12 70Introduction to OpenMP Part 2

distribute construct

#pragma omp target teams

{

#pragma omp distribute \

lastprivate(lp)

{ <loop> }

/* other code */

/* do not access lp */

}

2024-03-12 71Introduction to OpenMP Part 2

Data Mapping

▪ host and device memory can be separate

▪ mapping of variables ensures

▪ a variable is accessible on the target, e.g. by

copy or allocation

▪ a consistent memory view

▪ what can be mapped:

▪ variables, array sections, members of

structures

▪ mapping causes a presence check

▪ copy to device only if not already present

▪ mapping attributes can be

▪ implicit or explicit

int a[1024], b[1024];

/* init a and b */

#pragma omp target

{

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

} /* wait until complete */

host device

omp target

for (…)

a[i] += b[i]

a[1024]
b[1024]

a[1024]
b[1024]

here, implicit

mapping attributes

cause variables to

be mapped, note

a[1024], b[1024]

2024-03-12 72Introduction to OpenMP Part 2

Device Data Environment (DDE)

▪ exists for each device

▪ exists beyond a single target region

▪ contains all variables accessible by
threads running on the device

▪ mapping ensures a variable is in a

device's DDE

int a[1024], b[1024];

/* init a and b */

#pragma omp target

{

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

} /* wait until complete */

host device

omp target

for (…)

a[i] += b[i]

a[1024]
b[1024]

a[1024]
b[1024]

D
D

Ea[1024]
b[1024]

a[1024]
b[1024]original

variable

corresponding

variable

2024-03-12 74Introduction to OpenMP Part 2

Data Mapping Attributes

▪ explicit:

▪ referenced in private, firstprivate, is_device_ptr clause: private

▪ declared inside target construct: private

▪ referenced in a map clause: selected map-type

▪ scalar variable: firstprivate

▪ except if target … defaultmap(tofrom:scalar)

▪ then map-type tofrom

▪ non-scalar variable: map-type tofrom

▪ entry: copy to device, exit: copy back

▪ C/C++: pointer variable in pointer
based array section: private

int a[1024], b[1024];

int n = 1024;

/* init a and b */

#pragma omp target

{

for (int i = 0; i < n; ++i)

a[i] += b[i];

}

2024-03-12 75Introduction to OpenMP Part 2

map clause

▪ map clause

▪ map-type: how a variable is mapped

▪ mtm: map-type-modifier: always, close, present

map([<mtm>,]<map-type>: <variables>)

tofrom default, copy to device on entry of target region

and back at the end

to copy to device on entry of target region

from allocate on entry of target region,

copy from device to host on exit of target region

alloc on entry, allocate on device, but do not initialize

release counterpart to alloc

delete removes variable from device (independent of

RC)

int a[1024], b[1024];

/* init a and b */

#pragma omp target map(a) map(to:b)

{

for (int i = 0; i < 1024; ++i)

a[i] += b[i];

} /* wait until complete */

host device

omp target

for (…)

a[i] += b[i]

a[1024]
b[1024]

a[1024]

tofrom

(default): a

to: b

"force" update even if

variable is already on

the device

2024-03-12 76Introduction to OpenMP Part 2

Allocating on the Device

▪ map-type alloc

▪ allocate variable/array on device

▪ no initialization is performed

▪ no copy back to host

▪ useful, e.g. when an array is only

used on the device

int tmp[1024];

#pragma omp target map(alloc:tmp)

{

for (int i = 0; i < 1024; ++i)

tmp[i] = compute(i);

for (int i = 0; i < 1024; ++i)

work(tmp[i]);

for (int i = 0; i < 1024; ++i)

work2(tmp[i]);

}

tmp allocated on the device

tmp not copied back

2024-03-12 77Introduction to OpenMP Part 2

How to map dynamically allocated arrays in C/C++

▪ map dynamically allocated arrays via array section syntax

double * a = malloc(sizeof(double) * n_el);

double * b = malloc(sizeof(double) * n_el);

/* init a */

#pragma omp target map(to:a[:n_el]) \

map(alloc:b[:n_el])

for (int i = 0; i < n_el; ++i) {

b[i] = a[i];

}

array[[lower-bound]:length]

2024-03-12 78Introduction to OpenMP Part 2

DDE and Reference Counts

▪ every variable is inside a device data environment (DDE)

▪ exists only once

▪ has a reference count (RC) associated

▪ an existing variable in a DDE has always RC ≥ 1

▪ if RC=0: var. newly allocated

▪ ++RC

▪ if map-type in to|tofrom and

(RC=1 || mtm=always):

▪ copy value of var. from host to device

▪ else:

▪ no copy to the device takes place

▪ if map-type in from|tofrom and

(RC=1 || mtm=always)

▪ copy value of var. from device to host

▪ --RC

▪ if map-type = delete and RC!=∞

▪ RC=0

▪ if RC=0: remove var. from DDE

var. on map enter: var. on a map-exit:

mtm = map-type-modifier

2024-03-12 79Introduction to OpenMP Part 2

target data construct

▪ map data for the duration of the

associated block to the DDE

▪ <block> still executed on host

▪ <block> typically includes multiple

target regions

▪ clauses:
▪ map() with to, from, tofrom, alloc

▪ not covered: device, if, use_device_addr,
use_device_ptr

target data [clauses]

<block>

#pragma omp target data map(to:a[:n]) \

map(from:b[:n])

{

#pragma omp target

for (int i = 0; i < n; ++i)

{ b[i] = 2.0 * a[i]; }

#pragma omp target

for (int i = 0; i < n; ++i)

{ b[i] += a[i]; }

}

host device

target data

for (…)

b[i] = 2.0 * a[i];

a[:n]

b[:n]

a[n]

b[n]

target

for (…)

b[i] += a[i];

target

end target data

2024-03-12 80Introduction to OpenMP Part 2

target update Construct

▪ copy data between host and device

▪ runs on the host

▪ cannot appear inside a target construct

▪ copy is always performed

▪ in contrast to target map(…)

▪ clauses

▪ to(var-list) copy vars. to device

▪ from(var-list) copy vars. to host

▪ not covered: device, if, nowait, depend

#pragma omp target data map(to:a[:n]) \

map(from:b[:n])

{

#pragma omp target

for (int i = 0; i < n; ++i)

{ b[i] = 2.0 * a[i]; }

#pragma omp target update from(b[:n])

/* do something with b */

#pragma omp target

for (int i = 0; i < n; ++i)

{ b[i] += a[i]; }

}

target update [clauses]

2024-03-12 81Introduction to OpenMP Part 2

enter data/exit data directives

▪ unstructured

▪ can be called at any point on host

▪ at exit data: listed variables not present

on the device are ignored

▪ clauses not covered: device, if,
depend, nowait

double * vec_allocate(int n_el)

{

double * a = malloc(…);

#pragma omp target enter data \

map(alloc:a[:n_el])

return a;

}

void vec_free(double * a)

{

#pragma omp target exit data \

map(release:a[:n_el])

free(a);

}

allowed: to, alloc

allowed: from, release, delete

target enter data map(…)[clauses]

target exit data map(…) [clauses]

map data

unmap data

2024-03-12 82Introduction to OpenMP Part 2

The Target Task

▪ target task:

▪ device constructs and device memory API create a task

▪ duty of this task: coordinate work between host and device

▪ runs on the host

▪ w/o nowait: included task → execution on host waits until task is completed

▪ by default it is mergable and untied

▪ spawned by: target, target update, target enter data, target exit data

▪ the target task completes when the work on the device is finished

▪ nowait clause makes this a deferrable task

▪ host code does not wait for target task to complete

▪ depend clause(s) are “applied” to the target task

▪ i.e. it can be used like any other task

included task: execution is

sequentially in the generation task

region → it is undeferred

2024-03-12 83Introduction to OpenMP Part 2

declare target clause

▪ map global/static variables to

device

▪ for the duration of the application

▪ map functions

▪ generate a version for the target

device

▪ callable from the device

declare target

globals, function definitions,

function declarations

end declare target

declare target(list)

declare target clauses

#pragma omp declare target

double sumit(double a, double b)

{ return a + b; }

#pragma omp end declare target

static double G = 1.23456;

#pragma omp declare target (G)

…

#pragma omp target

for (int i = 0; i < n; ++i) {

c[i] = sumit(G, b[i]);

}

module xyz

integer :: x

!$omp declare target(x)

end module

subroutine work(x)

!$omp declare target

integer, intent(in) :: x

…

end subroutine

C/C++ only C
/C

+
+

F
o

rt
ra

n

2024-03-12 85Introduction to OpenMP Part 2

Selecting a Device

▪ without specification the default device is used

▪ default device:

▪ get: omp_get_default_device()

▪ logical device ids in the range from
0 to omp_get_num_devices() – 1

▪ use specific device with id:

▪ env. var. OMP_DEFAULT_DEVICE

▪ omp_set_default_device(id)

▪ device(id) clause of target … clauses

Useful Runtime API Calls

▪ get default device
▪ int omp_get_default_device()

▪ integer function

omp_get_default_device()

▪ set default device
▪ void omp_set_default_device(int device)

▪ subroutine

omp_set_default_device(device)

integer device

▪ return no. of non-host offload devices
▪ int omp_get_num_devices();

▪ integer function

omp_get_num_devices()

▪ return no. of initial/host device
▪ int omp_get_initial_device()

▪ integer function

omp_get_initial_device()

▪ return calling thread’s device no.
▪ int omp_get_device_num()

▪ integer function

omp_get_device_num()

▪ on host returns the value of
omp_get_initial_device()

▪ return if calling thread runs on host
▪ int omp_is_initial_device()

▪ integer function

omp_is_initial_device()

H

H

H

H/D

H/D

callable from host H, device D

H

2024-03-12 87Introduction to OpenMP Part 2

Env. Vars. related to Offloading

▪ OMP_DEFAULT_DEVICE=<n> with n ≥ 0

▪ set the default device used for executing target constructs

▪ OMP_TARGET_OFFLOAD=mandatory | disabled | default

▪ mandatory: usage of unsupported or unavailable device or invalid device

number causes termination

▪ disabled: if supported by the OpenMP RT, the only device available is the host

▪ OMP_TEAMS_THREAD_LIMIT=<n>

▪ maximum no. of threads each team can have

2024-03-12 88Introduction to OpenMP Part 2

Performance Aspects

▪ need to know what underlying architecture/RT will do

▪ copy or not copy

▪ avoid unnecessary copies

▪ mapped variables require a presence check on the device

▪ hence: private/firstprivate variables are faster

▪ determine how your compiler maps directives to GPU entities

▪ check how num_teams/thread_limit are interpreted

2024-03-12 89Introduction to OpenMP Part 2

Inspecting Transfers

▪ GCC
▪ GOMP_DEBUG=1 ./a.out

▪ prints a lot of information

▪ LLVM/clang

▪ env. var. LIBOMPTARGET_INFO

▪ from https://openmp.llvm.org/design/Runtimes.html#llvm-openmp-target-host-runtime-libomptarget

▪ 0x01: show data args. when entering device kernel

▪ 0x02: show when a mapped address already exists on device

▪ 0x04: Dump the contents of the device pointer map at kernel exit

▪ 0x08: Indicate when an entry is changed in the device mapping table

▪ 0x10: Print OpenMP kernel information from device plugins

▪ 0x20: Indicate when data is copied to and from the device

▪ LIBOMPTARGET_INFO=$((0x01 | 0x02)) ./a.out

▪ NVHPC

▪ env. var. PGI_ACC_DEBUG=1

▪ env. var. NVCOMPILER_ACC_NOTIFY=1

