
A Beginner's Introduction to Node-Level
Computer Architecture and Performance

Dr. Georg Hager
Erlangen National High Performance Computing Center

(NHR@FAU)

go-nhr.de/NLCA23

https://go-nhr.de/NLCA23

ISC 2023 2Node-level Computer Architecture | Georg Hager

Agenda
 Basic CPU/GPU and node architecture

 Core: Pipelines, SIMD, out-of-order processing, SMT
 Cache hierarchy
 Memory interface
 Basic performance phenomenology and bottlenecks

 Hardware-software interaction
 The naive Roofline model
 Examples: sum reduction, stencils

 Common-sense code analysis
 Using hardware performance counters
 Characterizing code with hardware counters

Modern computer architecture

An introduction for software developers

4Node-level Computer Architecture | Georg Hager

Node topology of HPC systems

© Intel

~ 8 billion
transistors in

500 mm2

Registers

L1 cache

L2 cache

Core

core

core

core

core

core

core

core

core

core

core

core

core
…

Chip (many cores)

Socket

M
em

ory
M

em
ory

Socket

N
od

e
(2

 s
oc

ke
ts

,
po

ss
ib

ly
 m

ul
tip

le

ch
ip

s
pe

r s
oc

ke
t)

Pipelines

L3 cache

Potential scalability
bottlenecks

ISC 2023

G
PU

G
PU

5Node-level Computer Architecture | Georg Hager

Multi-core today: Intel Xeon Ice Lake (2021)

 Xeon “Ice Lake SP” (Platinum/Gold/Silver/Bronze):
Up to 40 cores running at 2+ GHz (+ “Turbo Mode” 3.7 GHz),

 Simultaneous Multithreading
 reports as 80-way chip

 ~15 Billion Transistors / ~10 nm / up to 270 W

 Die size: up to ~600 mm2

 Clock frequency:
flexible 

2-socket server

.

Optional: “Sub-NUMA
Clustering” (SNC) mode
(a.k.a.) Cluster-on-Die

https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595

ISC 2023

https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595

Pipelining, Superscalarity, SIMD, SMT

In-core features

7Node-level Computer Architecture | Georg Hager

General-purpose CPU microprocessor core

 Implements “Stored Program Computer”
concept (Turing 1936)

 Similar designs on all modern systems
 (Still) multiple potential bottlenecks

The clock cycle is the “heartbeat” of the core

Stored-program computer

Modern CPU core

ISC 2023

8Node-level Computer Architecture | Georg Hager

Important in-core features
Pipelining:

Instruction execution in
multiple steps

Fetch Instruction 4
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 3
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 2
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode
Instruction 2

Decode
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 1
from L1I

Decode
Instruction 1

Execute
Instruction 1

Fetch Instruction 5
from L1I

Decode
Instruction 5

Decode
Instruction 9

Execute
Instruction 5

Fetch Instruction 9
from L1I

Fetch Instruction 13
from L1I

Superscalarity:
Multiple instructions

per cycle

Simultaneous Multi-Threading:
Multiple instruction sequences in parallel

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

+

+

+

+

Single Instruction Multiple Data:
Multiple operations per instruction

ISC 2023

ISC 2023Node-level Computer Architecture | Georg Hager

Instruction level parallelism (ILP): pipelining, superscalarity

Pipelining

Instructions

Superscalar execution

4-way superscalar:

 Massive boost in instruction
throughput

 Instructions can be reordered
on the fly

 Dependencies are obeyed

I5 I4 I3 I2 I1

1 2 3 4 5Cycle
12345

Throughput:
1 instruction per cycle after pipeline is full
 Speedup by factor 5

Example: A single instruction takes 5 cycles
(latency)

9

pipeline stages

10Node-level Computer Architecture | Georg Hager

Superscalar out-of-order execution and steady state
Instruction execution

Hardware takes care of executing instructions as soon as their operands are available:
Out-Of-Order (OOO) execution

for(int i=1; i<n; ++i)
a[i] = a[i] + c;

LOAD
(Latency: 4 cy) ADD

(Latency: 3cy)

STORE
(Latency: 2 cy)

“Steady state:”
3 instructions/cy

(“3-way superscalar execution”)

Instructions Per Cycle: IPC=3
Cycles Per Instruction: CPI=0.33

Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 6
Cycle 7
Cycle 8
Cycle 9
Cycle 10
Cycle 11
Cycle 12
Cycle 13
Cycle 14
Cycle 15
Cycle 16
…

load a[1]
load a[2]
load a[3]
load a[4]
load a[5] add a[1]=c,a[1]
load a[6] add a[2]=c,a[2]
load a[7] add a[3]=c,a[3]
load a[8] add a[4]=c,a[4] store a[1]
load a[9] add a[5]=c,a[5] store a[2]
load a[10] add a[6]=c,a[6] store a[3]
load a[11] add a[7]=c,a[7] store a[4]
load a[12] add a[8]=c,a[8] store a[5]
load a[13] add a[9]=c,a[9] store a[6]
load a[14] add a[10]=c,a[10] store a[7]
load a[15] add a[11]=c,a[11] store a[8]
load a[16] add a[12]=c,a[12] store a[10]
… … …

ISC 2023

Quiz time: OoO Execution

https://moodle.nhr.fau.de/mod/h5pactivity/view.php?id=2360

https://moodle.nhr.fau.de/mod/h5pactivity/view.php?id=2360

12Node-level Computer Architecture | Georg Hager

SIMD processing
 Single Instruction Multiple Data (SIMD) operations allow the execution of the same operation on “wide”

registers from a single instruction
 x86 SIMD instruction sets:

 SSE: register width = 128 Bit  2 double precision floating point operands
 AVX: register width = 256 Bit  4 double precision floating point operands
 AVX-512: … you guessed it!

 Adding two registers holding double precision floating point operands:

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A[
0]

B[
0]

C
[0

]64 Bit

25
6

bi
t

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:
R2 ADD [R0,R1]

SIMD execution:
V64ADD [R0,R1] R2

ISC 2023

ISC 2023 13Node-level Computer Architecture | Georg Hager

SIMD terminology

A word on terminology
 SIMD == “one instruction  several operations”
 “SIMD width” == number of operands that fit into a register
 No statement about parallelism among those operations
 Original vector computers: long registers, pipelined execution,

but no parallelism
(within the instruction)

Today
 x86: most SIMD instructions fully parallel

 “Short Vector SIMD”
 Some exceptions on some architectures (e.g., vdivpd)

 NEC Tsubasa: 32-way parallelism but SIMD width = 256 (DP)

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C[
0]

C[
1]

C[
2]

C[
3]

+

+

+

+

R0 R1 R2

ISC 2023 14Node-level Computer Architecture | Georg Hager

Scalar execution units

Register width
 1 operand

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

= +

Scalar execution

ISC 2023 15Node-level Computer Architecture | Georg Hager

Data-parallel execution units (short vector SIMD)

= +

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Register width
 1 operand

 2 operands (SSE)

 4 operands (AVX)

 8 operands (AVX512)

Best code requires vectorized
LOADs, STOREs, and arithmetic!

SIMD execution

16Node-level Computer Architecture | Georg Hager

Simultaneous multi-threading (SMT)

St
an

da
rd

 c
or

e
2-

w
ay

 S
M

T

ISC 2023

Memory Hierarchy and Affinity

19Node-level Computer Architecture | Georg Hager

Memory hierarchy

You can either build a
small and fast memory
or a
large and slow memory.

Purpose of many optimizations is to load data from fast memory

Memory

L3 Cache

Disk

L2 Cache

L1 Cache10-9

10-8

10-7

10-4

Latency [s]

1012

1011

109

Bandwidth
[bytes/s]

Core

ISC 2023

L1
32 KiB

L2
256 KiB

L3
25 MiB

20Node-level Computer Architecture | Georg Hager

Getting data from far away

ISC 2023

!

A(:) = B(:) + C(:) * D(:)

Varying loop length,
repeat many times

Ivy Bridge core 2.2GHz

22Node-level Computer Architecture | Georg Hager

Parallelism and bottlenecks in a modern compute node

Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

Parallel resources:
 Execution/SIMD units
 Cores
 Inner cache levels
 Sockets / ccNUMA domains
 Multiple accelerators

Shared resources:
 Outer cache level per socket
 Memory bus per socket
 Intersocket link
 PCIe bus(es)
 Other I/O resources

Other I/O

1
2

3
4 5

1

2

3

4

5

6

6
7

7

8

8

9

9

10

10

How does your application react to all of those details?
ISC 2023

23Node-level Computer Architecture | Georg Hager

Scalable and saturating behavior
Clearly distinguish between “saturating” and “scalable” performance on the chip level

One of the most important performance signatures

shared resources
may show
saturating
performance

parallel resources
show
scalable
performance

ISC 2023

ISC 2023 24Node-level Computer Architecture | Georg Hager

Memory bandwidth saturation (read-only)

Fujitsu A64FX AMD Zen3
Milan

Intel Ice Lake 32c
SNC=off

AMD MI210
GPU

NVIDIA A100
GPU

Bandwidth
saturation on 1st
ccNUMA domain

Massive thread
parallelism needed

on GPUs to saturate

25Node-level Computer Architecture | Georg Hager

Putting the cores & caches together
AMD Epyc 7742 64-Core Processor («Rome»)

 Core features:
 Two-way SMT
 Two 256-bit SIMD FMA units (AVX2)
16 flops/cycle (actually 24 because 2 ADDs can be done alongside)
 32 KiB L1 data cache per core
 512 KiB L2 cache per core

 64 cores per socket hierarchically built up from
 16 CCX with 4 cores and 16 MiB of L3 cache
 2 CCX form 1 CCD (silicon die)
 8 CCDs connected to IO device “Infinity Fabric” (memory controller & PCIe)

 8 channels of DDR4-3200 per IO device
 MemBW: 8 ch x 8 byte x 3.2 GHz = 204.8 GB/s

 ccNUMA-feature (Boot time option):
 Node Per Socket (NPS)=1 , 2 or 4
 NPS=4  4 ccNUMA domains

one socket

ISC 2023

LD1LD0

LD1LD0

ISC 2023 26Node-level Computer Architecture | Georg Hager

ccNUMA – cache-coherent Non-Uniform Memory Architecture
 ccNUMA:

 Whole memory is transparently accessible by
all cores
 but physically distributed across multiple

locality domains (LDs)
 with varying bandwidth and latency
 and potential contention (shared memory

paths)

 How do we make sure that memory access is
always as "local" and "distributed" as
possible?

Note: Page placement is implemented in units of
OS pages (often 4 KiB, possibly more)

ISC 2023 27Node-level Computer Architecture | Georg Hager

Coding for ccNUMA data locality

integer,parameter :: N=10000000
double precision A(N), B(N)

A=0.d0

!$OMP parallel do
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end parallel do

integer,parameter :: N=10000000
double precision A(N),B(N)
!$OMP parallel
!$OMP do schedule(static)
do i = 1, N

A(i)=0.d0
end do
!$OMP end do
...
!$OMP do schedule(static)
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end do
!$OMP end parallel

Simplest case: explicit initialization

ISC 2023 28Node-level Computer Architecture | Georg Hager

DAXPY test on A64FX
Anarchy vs. thread pinning

No pinning

“Compact” pinning
(fill first socket first)

There are several reasons for caring about
affinity:
 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

OpenMP-parallel
A(:)=A(:)+s*B(:)

L2

Memory Interface

Memory

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L2

Memory Interface

Memory

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L2

Memory Interface

Memory

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L2

Memory Interface

Memory

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

L1D
P

Core-
memory
group
(CMG)

Mean-max-min
20 runs per point

ISC 2023 29Node-level Computer Architecture | Georg Hager

Means of enforcing thread or process affinity
 OpenMP

 Compiler-specific facilities
 OpenMP standard (OMP_PROC_BIND, OMP_PLACES)
 likwid-pin from the LIKWID tool suite (https://github.com/RRZE-HPC/likwid)

 MPI
 Implementation-specific facilities
 SLURM resource manager options to srun
 likwid-mpirun

 Hybrid MPI+OpenMP
 likwid-mpirun
 SLURM (but inferior since individual threads are not pinned)
 Hoping for the best and that MPI and OpenMP implementations work together

https://github.com/RRZE-HPC/likwid

NVIDIA “Ampere” A100
vs.
AMD Zen2 “Rome”

GPGPU accelerators

31Node-level Computer Architecture | Georg Hager

Nvidia A100 “Ampere” SXM4 specs
Architecture

 54.2 B Transistors
 ~ 1.4 GHz clock speed
 ~ 108 “SM” units

 64 SP “cores” each (FMA)
 32 DP “cores” each (FMA)
 4 “Tensor Cores” each
 2:1 SP:DP

performance

 9.7 TFlop/s DP peak (FP64)
 40 MiB L2 Cache

 40 GB (5120-bit) HBM2
 MemBW ~ 1555 GB/s (theoretical)
 MemBW ~ 1400 GB/s (measured)

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷 = 𝑛𝑛𝑆𝑆𝑆𝑆 ⋅ 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑛𝑛𝐹𝐹𝐹𝐹 � 𝑓𝑓

SMs # CUDA
cores/SM

FP
ops/cy

𝑛𝑛𝑆𝑆𝑆𝑆 = 108
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 32
𝑛𝑛𝐹𝐹𝐹𝐹 = 2flops

cy
𝑓𝑓 = 1.4Gcy

s

© Nvidia

ISC 2023

32Node-level Computer Architecture | Georg Hager

Trading single thread performance for parallelism:
GPGPUs vs. CPUs

GPU vs. CPU
light speed estimate
(per processor chip)

MemBW ~ 7 – 10x
Peak ~ 4 – 8x

2 x AMD EPYC 7742 ”Rome” NVidia Tesla A100 “Ampere”

Cores@Clock 2 x 64 @ 2.25 GHz 108 SMs @ ~1.4 GHz

FP32 Performance/core 72 GFlop/s ~179 GFlop/s

Threads@STREAM ~16 ~ 100000

FP32 peak 9.2 TFlop/s ~19.5 TFlop/s

Stream BW (meas.) 2 x 180 GB/s 1400 GB/s

Transistors / TDP ~2x40 Billion / 2x225 W 54 Billion/400 W

ISC 2023

Quiz time

“Simple” predictive performance modeling:
The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks.
Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers.
Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD
thesis (2008)

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/%7Erx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

ISC 2023 35Node-level Computer Architecture | Georg Hager

A simple performance model for loops

Simplistic view of the hardware:

do i = 1,<sufficient>
<complicated stuff doing
N flops causing
V bytes of data transfer>

enddo

Execution units
max. performance

𝑷𝑷𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

Data source/sink

Data path,
bandwidth 𝒃𝒃𝑺𝑺
 Unit: byte/s

Simplistic view of the software:

Computational intensity 𝐼𝐼 = 𝑁𝑁
𝑉𝑉

 Unit: flop/byte

Also in use: Code balance 𝐵𝐵𝑐𝑐 = 𝑉𝑉
𝑁𝑁

 Unit: byte/flop

Other metrics for work are possible

ISC 2023 36Node-level Computer Architecture | Georg Hager

Naïve Roofline Model
How fast can tasks be processed at most? 𝑷𝑷 [flop/s]

The bottleneck is either
 The execution of work: 𝑃𝑃peak [flop/s]

 The data path: 𝐼𝐼 � 𝑏𝑏𝑆𝑆 [flop/byte x byte/s]

This is the “Naïve Roofline Model”
 High intensity: P limited by execution
 Low intensity: P limited by data transfer
 “Knee” at 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐼𝐼 � 𝑏𝑏𝑆𝑆:

Best use of resources
 Roofline is an “optimistic” model

(think “light speed”)

𝑃𝑃 = min(𝑃𝑃peak, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)

Intensity

Pe
rfo

rm
an

ce

Ppeak

ISC 2023 37Node-level Computer Architecture | Georg Hager

Roofline: application model and machine model

Machine properties:

𝑷𝑷𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 4
GF
s

𝒃𝒃𝑺𝑺 = 10
GB
s

Application property: I

double s=0, a[];
for(i=0; i<N; ++i) {

s = s + a[i] * a[i];}

𝑃𝑃 = 2.5 GF/s

𝐼𝐼 = 2 𝐹𝐹
8 𝐵𝐵

= 0.25 ⁄𝐹𝐹 𝐵𝐵

Apply the naive Roofline model in practice

 Machine parameter #1: Peak performance: 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐹𝐹
𝑠𝑠

 Machine parameter #2: Memory bandwidth: 𝑏𝑏𝑆𝑆
𝐵𝐵
𝑠𝑠

 Code characteristic: Computational intensity: 𝐼𝐼 𝐹𝐹
𝐵𝐵

Machine model

Application model

ISC 2023 38Node-level Computer Architecture | Georg Hager

Roofline for architecture and code comparison
With Roofline, we can
 Compare capabilities of different machines
 Compare performance expectations for

different loops

 Roofline always provides upper bound – but is
it realistic?
 Simple case: Loop kernel has loop-carried

dependecncies  cannot achieve peak flat
ceiling may be code specific (𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 → 𝑃𝑃max)
 Other bandwidth bottlenecks may apply  there

may be other sloped ceilings

3D
 2

7p
t s

te
nc

il
SP

D
en

se
 M

VM
 D

P

Sp
ar

se
 M

VM
 D

P

Tensor core peak

No tensor cores

co
m

pu
te

 b
ou

nd

ev
er

yw
he

re

m
em

ory bound
everyw

here

A not-so-simple loop

Example: The sum reduction

40Node-level Computer Architecture | Georg Hager

A “simple” example: The sum reduction

 Loop-carried dependency on summation variable
 Execution stalls at every ADD until previous ADD is complete

No pipelining?
No SIMD?

…in single precision on an AVX-
capable core (ADD latency = 3 cy)

How fast can this loop possibly run
with data in the L1 cache?

for (int i=0; i<N; ++i){
sum += a[i];

}

ISC 2023

41Node-level Computer Architecture | Georg Hager

Applicable peak for the sum reduction (I)
Plain scalar code, no SIMD

LOAD r1.0  0
i  1
loop:
LOAD r2.0  a(i)
ADD r1.0  r1.0 + r2.0
++i ? loop

result  r1.0

ADD pipes utilization:

 1/24 of ADD peak

s

SI
M

D
 la

ne
s

for (int i=0; i<N; i++){
sum += a[i];

}

SIMD lane

ISC 2023

42Node-level Computer Architecture | Georg Hager

Applicable peak for the sum reduction (II)
Scalar code, 3-way “modulo variable expansion” (MVE)

LOAD r1.0  0
LOAD r2.0  0
LOAD r3.0  0
i  1

loop:
LOAD r4.0  a(i)
LOAD r5.0  a(i+1)
LOAD r6.0  a(i+2)

ADD r1.0  r1.0 + r4.0 # scalar ADD
ADD r2.0  r2.0 + r5.0 # scalar ADD
ADD r3.0  r3.0 + r6.0 # scalar ADD

i+=3 ? loop
result  r1.0+r2.0+r3.0

 1/8 of ADD peak

s1 s2 s3

for (int i=0; i<N; i+=3){
s1 += a[i+0];
s2 += a[i+1];
s3 += a[i+2];

}
sum = sum + s1+s2+s3;

ISC 2023

43Node-level Computer Architecture | Georg Hager

Applicable peak for the sum reduction (III)
SIMD vectorization (8-way MVE) x

pipelining (3-way MVE)

LOAD [r1.0,…,r1.7]  [0,…,0]
LOAD [r2.0,…,r2.7]  [0,…,0]
LOAD [r3.0,…,r3.7]  [0,…,0]
i  1

loop:
LOAD [r4.0,…,r4.7]  [a(i),…,a(i+7)] # SIMD LOAD
LOAD [r5.0,…,r5.7]  [a(i+8),…,a(i+15)] # SIMD
LOAD [r6.0,…,r6.7]  [a(i+16),…,a(i+23)] # SIMD

ADD r1  r1 + r4 # SIMD ADD
ADD r2  r2 + r5 # SIMD ADD
ADD r3  r3 + r6 # SIMD ADD

i+=24 ? loop
result  r1.0+r1.1+...+r3.6+r3.7


AD

D
 p

ea
k

s11 s21 s31

s12 s22 s32

s13 s23 s33

s14 s24 s34

s15 s25 s35

s16 s26 s36

s17 s27 s37

s10 s20 s30

for (int i=0; i<N; i+=24){
s10 += a[i+0]; s20 += a[i+8]; s30 += a[i+16];
s11 += a[i+1]; s21 += a[i+9]; s31 += a[i+17];
s12 += a[i+2]; s22 += a[i+10]; s32 += a[i+18];
s13 += a[i+3]; s23 += a[i+11]; s33 += a[i+19];
s14 += a[i+4]; s24 += a[i+12]; s34 += a[i+20];
s15 += a[i+5]; s25 += a[i+13]; s35 += a[i+21];
s16 += a[i+6]; s26 += a[i+14]; s36 += a[i+22];
s17 += a[i+7]; s27 += a[i+15]; s37 += a[i+23];

}
sum = sum + s10+s11+…+s37;

ISC 2023

ISC 2023 45Node-level Computer Architecture | Georg Hager

Putting it together
Example: for(int i=0; i<N; ++i) sum += a[i];
in single precision on an 8-core 2.2 GHz Sandy Bridge socket @ “large” N

ADD peak
(best possible
code)

no SIMD

3-cycle latency
per ADD if not
unrolled

P (worst loop code)

𝑃𝑃 = min(𝑃𝑃max, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak
(ADD+MULT)
Out of reach for this
code

P
(better loop code)

Diagnostic / phenomenological Roofline modeling

Diagnostic modeling
 What if we cannot predict the intensity/balance?

 Code very complicated
 Code not available
 Parameters unknown
 Doubts about correctness of analysis

 Measure data volume 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (and work 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
 Hardware performance counters
 Tools: likwid-perfctr, PAPI, Intel Vtune,…

 Insights + benefits
 Compare analytic model and measurement  validate model
 Can be applied (semi-)automatically
 Useful in performance monitoring of user jobs on clusters

Intensity

Pe
rfo

rm
an

ce

Pmax

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

ISC 2023Node-level Computer Architecture | Georg Hager 48

ISC 2023 49Node-level Computer Architecture | Georg Hager

Roofline and performance monitoring of clusters
Two cluster jobs…

Which of them is
“good” and which is
“bad”?

ISC 2023 50Node-level Computer Architecture | Georg Hager

Roofline conclusion
 Roofline = simple first-principle model for upper performance limit of data-

streaming loops
 Machine model (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑏𝑏𝑆𝑆) + application model (𝐼𝐼)
 Conditions apply, extensions exist

 Two modes of operation
 Predictive: Calculate 𝐼𝐼, calculate upper limit, validate model, optimize, iterate
 Diagnostic: Measure 𝐼𝐼 and 𝑃𝑃, compare with roof

 Challenge of predictive modeling: Getting 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐼𝐼 right

Performance analysis with hardware metrics

likwid-perfctr

ISC 2023 52Node-level Computer Architecture | Georg Hager

Probing performance behavior
 How do we find out about the performance properties and

requirements of a parallel code?
Profiling via advanced tools is often overkill

 A coarse overview is often sufficient: likwid-perfctr
 Simple measurement of hardware performance metrics
 Preconfigured and extensible metric groups, list with
likwid-perfctr -a:

 Operating modes:
 Wrapper
 Stethoscope
 Timeline
 Marker API

BRANCH: Branch prediction miss rate/ratio
CLOCK: Clock frequency of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS_SP: Single Precision MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
ENERGY: Power and energy consumption

ISC 2023 53Node-level Computer Architecture | Georg Hager

Best practices for Performance profiling

 Operation throughput (Flops/s)
 Overall instruction throughput (CPI or IPC)
 Instruction breakdown:
 FP instructions
 loads and stores
 branch instructions
 other instructions

 Instruction breakdown to SIMD width (scalar,
SSE, AVX, AVX512 for X86). (only arithmetic
instruction on most architectures)

 Data volumes and bandwidths to
 main memory (GB and GB/s)
 cache levels (GB and GB/s)

Useful diagnostic metrics are:
 Clock frequency (GHz)
 Power (W)

Focus on resource utilization and instruction mix!
Metrics to measure:

All above metrics can be acquired using these performance groups:
MEM_DP, MEM_SP, BRANCH, DATA, L2, L3

ISC 2023 54Node-level Computer Architecture | Georg Hager

likwid-perfctr wrapper mode
$ likwid-perfctr –g L2 –C S1:0-3 ./a.out
--
CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz […]
--
<<<< PROGRAM OUTPUT >>>>
--
Group 1: L2
+-----------------------+---------+------------+------------+------------+------------+
| Event | Counter | Core 14 | Core 15 | Core 16 | Core 17 |
+-----------------------+---------+------------+------------+------------+------------+
INSTR_RETIRED_ANY	FIXC0	1298031144	1965945005	1854182290	1862521357
CPU_CLK_UNHALTED_CORE	FIXC1	2353698512	2894134935	2894645261	2895023739
CPU_CLK_UNHALTED_REF	FIXC2	2057044629	2534405765	2535218217	2535560434
L1D_REPLACEMENT	PMC0	212900444	200544877	200389272	200387671
L2_TRANS_L1D_WB	PMC1	112464863	99931184	99982371	99976697
ICACHE_MISSES	PMC2	21265	26233	12646	12363
+-----------------------+---------+------------+------------+------------+------------+					
[… statistics output omitted …]					
+--------------------------------+------------+------------+------------+------------+					
Metric	Core 14	Core 15	Core 16	Core 17	
+--------------------------------+------------+------------+------------+------------+					
Runtime (RDTSC) [s]	1.1314	1.1314	1.1314	1.1314	
Runtime unhalted [s]	1.0234	1.2583	1.2586	1.2587	
Clock [MHz]	2631.6699	2626.4367	2626.0579	2626.0468	
CPI	1.8133	1.4721	1.5611	1.5544	
L2D load bandwidth [MBytes/s]	12042.7388	11343.8446	11335.0428	11334.9523	
L2D load data volume [GBytes]	13.6256	12.8349	12.8249	12.8248	
L2D evict bandwidth [MBytes/s]	6361.5883	5652.6192	5655.5146	5655.1937	
L2D evict data volume [GBytes]	7.1978	6.3956	6.3989	6.3985	
L2 bandwidth [MBytes/s]	18405.5299	16997.9477	16991.2728	16990.8453	
L2 data volume [GBytes]	20.8247	19.2321	19.2246	19.2241	
+--------------------------------+------------+------------+------------+------------+

Always
measured for

Intel CPUs

Configured metrics
(this group)

Derived
metrics

ISC 2023 55Node-level Computer Architecture | Georg Hager

likwid-perfctr stethoscope mode
 likwid-perfctr counts events on hardware threads

it has no notion of what kind of code is running (if any)

This allows you to “listen” to what is currently happening,
without any overhead:

$ likwid-perfctr -c N:0-11 -g FLOPS_DP -S 10s

 It can be used as cluster/server monitoring tool
 A frequent use is to measure a certain part of a long running parallel

application from outside

ISC 2023 56Node-level Computer Architecture | Georg Hager

Roofline and performance monitoring of clusters
Using Roofline for monitoring “live” jobs on a cluster
Based on measured BW and Flop/s data via likwid-perfctr

ISC 2023 57Node-level Computer Architecture | Georg Hager

likwid-perfctr with Marker API
 The MarkerAPI can restrict measurements to code regions
 The API only reads counters.

The configuration of the counters is still done by likwid-perfctr

 Available for C and Fortran (contributed für Julia and Python)

#include <likwid-marker.h>

LIKWID_MARKER_INIT; // must be called from serial region
. . .
LIKWID_MARKER_START(“Compute”); // call markers for each thread
. . .
LIKWID_MARKER_STOP(“Compute”);
. . .
LIKWID_MARKER_START(“Postprocess”);
. . .
LIKWID_MARKER_STOP(“Postprocess”);
. . .
LIKWID_MARKER_CLOSE; // must be called from serial region

ISC 2023 58Node-level Computer Architecture | Georg Hager

Summary of hardware performance monitoring
 Useful only if you know what you are looking for

 PM bears potential of acquiring massive amounts of data for nothing!

 Resource-based metrics are most useful
 Cache lines transferred, work executed, loads/stores, cycles
 Instructions, CPI, cache misses may be misleading

 Caveat: Processor work != user work
 Waiting time in libraries (OpenMP, MPI) may cause lots of instructions
  distorted application characteristic

 Another very useful application of PM: validating performance models!
 Roofline is data centric  measure data volume through memory hierarchy

Example: Simple stencil algorithms

ISC 2023 60Node-level Computer Architecture | Georg Hager

Stencil schemes
 Stencil schemes frequently occur in PDE solvers on regular lattice structures
 Basically it is a sparse matrix vector multiply (spMVM) embedded in an iterative

scheme (outer loop)
 … but the regular access structure allows for matrix-free coding

 Complexity of implementation and performance depends on
 stencil operator, e.g. Jacobi-type, Gauss-Seidel-type, …
 discretization, e.g. 7-pt or 27-pt in 3D,…

do iter = 1, max_iterations

Perform sweep over regular grid: y(:)  x(:)

Swap y  x

enddo
y x

ISC 2023 61Node-level Computer Architecture | Georg Hager

Jacobi-type 5-pt stencil sweep in 2D

do k=1,kmax
do j=1,jmax
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo

j

k

sw
ee

p

Lattice site
update
(LUP)

y(0:jmax+1,0:kmax+1) x(0:jmax+1,0:kmax+1)

Appropriate performance metric: “Lattice site updates per second” [LUP/s]
(here: Multiply by 4 FLOP/LUP to get FLOP/s rate)

Naive balance (incl. write allocate):

x(:, :) : 3 RD +
y(:, :) : 1 WR+ 1 RD

 BC = 5 Words / LUP = 40 B / LUP (assuming double precision)

ISC 2023 62Node-level Computer Architecture | Georg Hager

Jacobi 5-pt stencil 2D: data transfer analysis

do k=1,kmax
do j=1,jmax
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo

sw
ee

p

RD+WR y(j,k)
(incl. write allocate)

RD x(j+1,k)

Available in cache
(used 2 updates before)

RD x(j,k+1)RD x(j,k-1)

ISC 2023 63Node-level Computer Architecture | Georg Hager

Jacobi 5-pt stencil 2D: Single-core performance

jmax=kmax jmax*kmax = const

L3
 C

ac
he

~24 B / LUP ~40 B / LUP

Code balance (BC)
measured with likwid-perfctr

Questions:

1. How to achieve
24 B/LUP also
for large jmax?

2. How to sustain
>800 MLUP/s for
jmax > 104 ?

Intel Xeon Platinum 8360Y
(“IcelakeSP”@2.4 GHz)

Intel Compiler 2022.1.0

ISC 2023 64Node-level Computer Architecture | Georg Hager

Analyzing the data flow

cached

Worst case: Cache not large enough to hold 3 layers (rows) of grid (assume “Least Recently Used” replacement
strategy)

j

k

x(0:jmax+1,0:kmax+1)

H
al

o
ce

lls
H

al
o

ce
lls

miss

miss

miss

hit

miss

miss

miss

hit

ISC 2023 65Node-level Computer Architecture | Georg Hager

Analyzing the data flow

j

k

Worst case: Cache not large enough to hold 3 layers (rows) of grid (assume „Least Recently Used“ replacement
strategy)

x(0:jmax+1,0:kmax+1)

miss

miss

miss

hit

miss

miss

miss

hit

ISC 2023 66Node-level Computer Architecture | Georg Hager

Analyzing the data flow

Reduce inner (j-)
loop dimension
successively

Best case: 3
“layers” of grid fit
into the cache!

j

k

x(0:jmax2+1,0:kmax+1)

x(0:jmax1+1,0:kmax+1)

miss

miss
miss

hit

miss

miss
miss

hit

miss

hit
hit

hit

ISC 2023 67Node-level Computer Architecture | Georg Hager

Analyzing the data flow: Layer condition

2D 5-pt Jacobi-type stencil

do k=1,kmax
do j=1,jmax
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo 3 * jmax * 8B < CacheSize/2
“Layer condition”

double
precision

3 rows of
jmax Safety margin

(Rule of thumb)

Layer condition:
• Does not depend on outer loop length (kmax)
• No strict guideline (cache associativity, data traffic for y not included)
• Needs to be adapted for other stencils (e.g., long-range stencils)

ISC 2023 68Node-level Computer Architecture | Georg Hager

Analyzing the data flow: Layer condition

3 * jmax * 8B < CacheSize/2
Layer condition fulfilled?

BC = 24 B / LUP

do k=1,kmax
do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &
+ x(j,k-1) + x(j,k+1))

enddo
enddo

YES

do k=1,kmax
do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &
+ x(j,k-1) + x(j,k+1))

enddo
enddo BC = 40 B / LUP

y: (1 RD + 1 WR) / LUP

NO

x: 3 RD / LUP

x: 1 RD / LUPy: (1 RD + 1 WR) / LUP

ISC 2023 69Node-level Computer Architecture | Georg Hager

Enforcing a layer condition (2D 5-pt)
 How can we enforce a layer condition for all domain sizes ?
 Idea: Spatial blocking

 Reuse elements of x() as long as they stay in cache
 Sweep can be executed in any order, e.g. compute blocks in j-direction

“Spatial Blocking” of j-loop:

Determine for given CacheSize an appropriate jblock value:

do jb=1,jmax,jblock !
do k=1,kmax
do j= jb, min(jb+jblock-1,jmax) !inner loop length jblock
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo
enddo

New layer condition (blocking)
3 * jblock * 8B < CacheSize/2

jblock < CacheSize / 48B

ISC 2023 70Node-level Computer Architecture | Georg Hager

Establish the layer condition by blocking
Split
domain into
subblocks:

e.g. block
size = 5

ISC 2023 71Node-level Computer Architecture | Georg Hager

Establish the layer condition by blocking

Additional data
transfers (overhead)
at block boundaries!

ISC 2023 72Node-level Computer Architecture | Georg Hager

Establish layer condition by spatial blocking

jmax=kmax jmax*kmax = const

L3
 C

ac
he

L1: 48 KB
L2: 1.25 MB
L3: 54 MB

Which cache to block for?jblock < CacheSize / 48 B

L2: CS=1.25 MB
jblock=min(jmax,25K)

L3: CS=54 MB
jblock=min(jmax,500K)

Intel Xeon Platinum 8360Y
(“IcelakeSP”@2.4 GHz)

Intel Compiler 2022.1.0

ISC 2023 73Node-level Computer Architecture | Georg Hager

Validating the model: Memory code balance

M
ea

su
re

d
m

ai
n

m
em

or
y

co
de

 b
al

an
ce

 (𝐵𝐵
𝐶𝐶
) [

By
te

/L
U

P]

Blocking factor still a
little too large

Main memory access is not reason
for different performance

(but L3 access is!)

Intel Xeon Platinum 8360Y
(“IcelakeSP”@2.4 GHz)

Intel Compiler 2022.1.0

ISC 2023 74Node-level Computer Architecture | Georg Hager

OpenMP parallelization of the blocked 2D stencil
Straightforward OpenMP work sharing:

 Caveat: LC must be fulfilled per thread  shared cache causes smaller blocks!

do jb=1,jmax,jblock
!$OMP PARALLEL DO SCHEDULE(static)
do k=1,kmax
do j= jb, min(jb+jblock-1,jmax)
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1))
enddo

enddo
!$OMP END PARALLEL DO
enddo

Layer condition:
3 * jblock * 8B < CSt/2

Cache size available
per thread

T0

T1

T2

ISC 2023 75Node-level Computer Architecture | Georg Hager

OpenMP parallelization and blocking for a shared cache

Layer conditions make for interesting effects

 Less and less shared cache available per
thread as #threads goes up

 LC may break “along the way”

 Solutions
1. Choose small enough block or domain

size
2. Adaptive blocking

jblock = CS/(#threads * 48B)

Conclusions from the stencil example

 We have made sense of the memory-bound performance vs. problem size
 “Layer conditions” lead to predictions of code balance
 “What part of the data comes from where” is a crucial question
 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Avoiding slow data paths == re-establishing the most favorable layer condition
 Improved code showed the predicted speedup
 Optimal blocking factor can be estimated

 Manual analysis of stencil codes can be tedious
 Online Layer Condition Calculator:

http://tiny.cc/LayerConditions

ISC 2023Node-level Computer Architecture | Georg Hager 77

http://tiny.cc/LayerConditions

 J. Hammer, G. Hager, J. Eitzinger, and G. Wellein: Automatic Loop Kernel Analysis and Performance Modeling With
Kerncraft. Proc. PMBS15, the 6th International Workshop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems, in conjunction with ACM/IEEE Supercomputing 2015 (SC15), November 16, 2015, Austin,
TX. DOI: 10.1145/2832087.2832092, Preprint: arXiv:1509.03778

 H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying performance bottlenecks of stencil computations using the
Execution-Cache-Memory model. Proc. ICS15,
DOI: 10.1145/2751205.2751240, Preprint: arXiv:1410.5010

 M. Wittmann, G. Hager, T. Zeiser, J. Treibig, and G. Wellein: Chip-level and multi-node analysis of energy-optimized lattice-
Boltzmann CFD simulations. Concurrency and Computation: Practice and Experience (2015). DOI:10.1002/cpe.3489
Preprint: arXiv:1304.7664

 J. Treibig, G. Wellein and G. Hager: Efficient multicore-aware parallelization strategies for iterative stencil computations.
Journal of Computational Science 2 (2), 130-137 (2011). DOI 10.1016/j.jocs.2011.01.010

 M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel temporal blocking of stencil codes
on multicore processors and clusters. Parallel Processing Letters 20 (4), 359-376 (2010).

 G. Wellein, G. Hager, T. Zeiser, M. Wittmann and H. Fehske: Efficient temporal blocking for stencil computations by
multicore-aware wavefront parallelization. Proc. COMPSAC 2009. DOI: 10.1109/COMPSAC.2009.82

Stencil references

ISC 2023Node-level Computer Architecture | Georg Hager 78

http://www.dcs.warwick.ac.uk/pmbs/pmbs15/PMBS15/Welcome.html
http://sc15.supercomputing.org/
http://dx.doi.org/10.1145/2832087.2832092
http://arxiv.org/abs/1509.03778
http://www.cs.ucr.edu/%7Eics15/
http://dx.doi.org/10.1145/2751205.2751240
http://arxiv.org/abs/1410.5010
http://dx.doi.org/10.1002/cpe.3489
http://arxiv.org/abs/1304.7664
http://dx.doi.org/10.1016/j.jocs.2011.01.010
http://dx.doi.org/10.1109/COMPSAC.2009.82

Quiz time

ISC 2023 80Node-level Computer Architecture | Georg Hager

Tutorial conclusion
 Know your system (node) architecture

 Enforce affinity

 Back-of-the-envelope models are extremely useful

 Modeling is not always predictive

 Bottleneck awareness rules

 Performance is not about tools. Use your brain!

BACKUP

The Basics

SIMD

ISC 2023 83Node-level Computer Architecture | Georg Hager

SIMD processing – Basics

Steps (done by the compiler) for “SIMD processing”
for(int i=0; i<n; i++)

C[i]= A[i] + B[i];

for(int i=0; i<n; i+=4){
C[i] = A[i] + B[i];
C[i+1]= A[i+1] + B[i+1];
C[i+2]= A[i+2] + B[i+2];
C[i+3]= A[i+3] + B[i+3];}

//remainder loop handling

LABEL1:
VLOAD R0  A[i]
VLOAD R1  B[i]
V64ADD[R0,R1]  R2
VSTORE R2  C[i]
ii+4
i<(n-4)? JMP LABEL1

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of
A[i] to register R0, B[i] in R1

Add the corresponding 64 Bit entries in
R0 and R1 and store the 4 results to R2

Store R2(256 Bit) to address starting at C[i]

This should
not be done
by hand!

ISC 2023 84Node-level Computer Architecture | Georg Hager

SIMD processing: Roadblocks

 No SIMD vectorization for loops with data dependencies:

 “Pointer aliasing” may prevent vectorization

C/C++ allows: A=&C[-1] and B=&C[-2]  C[i]=C[i-1]+C[i-2]
 data dependency  no SIMD
 If pointer aliasing does not occur in code, tell the compiler:
–fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc)
restrict keyword (C only!):

for(int i=1; i<n; i++)
A[i] = A[i-1] * s;

void f(double *A, double *B, double *C, int n) {
for(int i=0; i<n; ++i)

C[i] = A[i] + B[i];
}

void f(double *restrict A, double *restrict B, double *restrict C, int n) {…}

ISC 2023 85Node-level Computer Architecture | Georg Hager

How to leverage SIMD: your options

Options:
 The compiler does it for you

(but: aliasing, alignment, language, abstractions)
 Compiler directives (pragmas) – OpenMP 4.0++ has ample support
 Alternative programming models for compute kernels (OpenCL, ispc)
 Intrinsics (restricted to C/C++)
 Implement directly in assembly

Example: x86 SIMD (SSE) intrinsics

#include <x86intrin.h>
...
for (int j=0; j<size; j+=16){

t0 = _mm_loadu_ps(data+j);
t1 = _mm_loadu_ps(data+j+4);
t2 = _mm_loadu_ps(data+j+8);
t3 = _mm_loadu_ps(data+j+12);
sum0 = _mm_add_ps(sum0, t0);
sum1 = _mm_add_ps(sum1, t1);
sum2 = _mm_add_ps(sum2, t2);
sum3 = _mm_add_ps(sum3, t3);

}

ISC 2023 86Node-level Computer Architecture | Georg Hager

Vectorization compiler options (Intel)

 The compiler will vectorize starting with –O2
 To enable specific SIMD extensions use the –x option:

-xSSE2, -xSSE3, -xSSSE3, -xSSE4.1, -xSSE4.2, -xAVX, …

 -xAVX on Sandy/Ivy Bridge processors
 -xCORE-AVX2 on Haswell/Broadwell
 -xCORE-AVX512 on Skylake (certain models) and Icelake

Recommended option:
 -xHost will optimize for the architecture you compile on
 To really enable 512-bit SIMD with current Intel compilers you need to

set -qopt-zmm-usage=high (not available for new icx)

ISC 2023 87Node-level Computer Architecture | Georg Hager

User-mandated vectorization (OpenMP 4)

 Since OpenMP 4.0 SIMD features are a part of the OpenMP standard
 #pragma omp simd enforces vectorization
 Essentially a standardized “go ahead, no dependencies here!”

Do not lie to the compiler!

 Prerequisites
 Countable loop
 Innermost loop
 Must conform to for-loop style of OpenMP worksharing constructs

 There are additional clauses:
reduction, vectorlength, private, collapse, ...

for (int j=0; j<n; j++) {
#pragma omp simd reduction(+:b[j:1])
for (int i=0; i<n; i++) {

b[j] += a[j][i];
}

}

ISC 2023 88Node-level Computer Architecture | Georg Hager

Limits of the SIMD benefit
Why does SIMD usually not give the expected speedup?
 Analyze time contributions for data and execution

for(int i=0; i<size; i++)
sum += data[i];

Registers &
execution units

L1 cache

L2 cache

L3 cache

Memory

Scalar: 4 cy
SSE2: 2 cy
AVX: 1 cy

Required time per 8 iterations:

1 cy for CL
transfer

Full SIMD benefit
for data in L1

Always the same
regardless of SIMD

2 cy for CL
transfer

Always the same
regardless of SIMD

2 cy for CL
transfer

Always the same
regardless of SIMD

Intel Ice Lake
2.4 GHz

ISC 2023 89Node-level Computer Architecture | Georg Hager

Rules and guidelines for vectorizable loops
1. Inner loop
2. Countable (loop length can be determined at loop entry)
3. Single entry and single exit
4. Straight line code (no conditionals) – unless masks can be used
5. No function calls (exceptions: SIMD declared functions, intrinsic math)

Better performance with:
1. Simple inner loops with unit stride (contiguous data access)
2. Minimize indirect addressing
3. Align data structures to SIMD width boundary (minor impact)

In C use the restrict keyword and/or const qualifiers and/or compiler options to
rule out array/pointer aliasing

Keep it
simple,
stupid!

ISC 2023 90Node-level Computer Architecture | Georg Hager

SIMD conclusions

 Short-vector SIMD = data-parallel execution on the instruction level
 Best option: make the compiler employ SIMD instructions

 SIMD is an in-core feature
 Boosts work per cycle in core (peak performance)
 The further away the data, the less benefit
 If the code is memory bound, you may not even care

	Slide Number 1
	Agenda
	Modern computer architecture
	Node topology of HPC systems
	Multi-core today: Intel Xeon Ice Lake (2021)
	In-core features
	General-purpose CPU microprocessor core
	Important in-core features
	Instruction level parallelism (ILP): pipelining, superscalarity
	Superscalar out-of-order execution and steady state
	Quiz time: OoO Execution
	SIMD processing
	SIMD terminology
	Scalar execution units
	Data-parallel execution units (short vector SIMD)
	Simultaneous multi-threading (SMT)
	Memory Hierarchy and Affinity
	Memory hierarchy
	Getting data from far away
	Parallelism and bottlenecks in a modern compute node
	Scalable and saturating behavior
	Memory bandwidth saturation (read-only)
	Putting the cores & caches together�AMD Epyc 7742 64-Core Processor («Rome»)
	ccNUMA – cache-coherent Non-Uniform Memory Architecture
	Coding for ccNUMA data locality
	DAXPY test on A64FX�Anarchy vs. thread pinning
	Means of enforcing thread or process affinity
	GPGPU accelerators
	Nvidia A100 “Ampere” SXM4 specs
	Trading single thread performance for parallelism:�GPGPUs vs. CPUs
	Quiz time
	“Simple” predictive performance modeling:�The Roofline Model
	A simple performance model for loops
	Naïve Roofline Model
	Roofline: application model and machine model
	Roofline for architecture and code comparison
	Example: The sum reduction
	A “simple” example: The sum reduction
	Applicable peak for the sum reduction (I)
	Applicable peak for the sum reduction (II)
	Applicable peak for the sum reduction (III)
	Putting it together
	Diagnostic / phenomenological Roofline modeling
	Diagnostic modeling
	Roofline and performance monitoring of clusters
	Roofline conclusion
	Performance analysis with hardware metrics
	Probing performance behavior
	Best practices for Performance profiling
	likwid-perfctr wrapper mode
	likwid-perfctr stethoscope mode
	Roofline and performance monitoring of clusters
	likwid-perfctr with Marker API
	Summary of hardware performance monitoring
	Example: Simple stencil algorithms
	Stencil schemes
	Jacobi-type 5-pt stencil sweep in 2D
	Jacobi 5-pt stencil 2D: data transfer analysis
	Jacobi 5-pt stencil 2D: Single-core performance
	Analyzing the data flow
	Analyzing the data flow
	Analyzing the data flow
	Analyzing the data flow: Layer condition
	Analyzing the data flow: Layer condition
	Enforcing a layer condition (2D 5-pt)
	Establish the layer condition by blocking
	Establish the layer condition by blocking
	Establish layer condition by spatial blocking
	Validating the model: Memory code balance
	OpenMP parallelization of the blocked 2D stencil
	OpenMP parallelization and blocking for a shared cache
	Conclusions from the stencil example
	Stencil references
	Quiz time
	Tutorial conclusion
	BACKUP
	SIMD
	SIMD processing – Basics
	SIMD processing: Roadblocks
	How to leverage SIMD: your options
	Vectorization compiler options (Intel)
	User-mandated vectorization (OpenMP 4)
	Limits of the SIMD benefit
	Rules and guidelines for vectorizable loops
	SIMD conclusions

