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Agenda
 Basic CPU/GPU and node architecture

 Core: Pipelines, SIMD, out-of-order processing, SMT
 Cache hierarchy
 Memory interface
 Basic performance phenomenology and bottlenecks

 Hardware-software interaction
 The naive Roofline model
 Examples: sum reduction, stencils

 Common-sense code analysis 
 Using hardware performance counters
 Characterizing code with hardware counters



Modern computer architecture

An introduction for software developers



4Node-level Computer Architecture  |  Georg Hager

Node topology of HPC systems
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Multi-core today: Intel Xeon Ice Lake (2021)

 Xeon “Ice Lake SP” (Platinum/Gold/Silver/Bronze):
Up to 40 cores running at 2+ GHz (+ “Turbo Mode” 3.7 GHz),

 Simultaneous Multithreading
 reports as 80-way chip

 ~15 Billion Transistors / ~10 nm / up to 270 W

 Die size: up to ~600 mm2

 Clock frequency:
flexible 

2-socket server

. . . . . .

Optional: “Sub-NUMA 
Clustering” (SNC) mode
(a.k.a.) Cluster-on-Die

https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595

ISC 2023

https://ark.intel.com/content/www/us/en/ark.html#@PanelLabel595


Pipelining, Superscalarity, SIMD, SMT

In-core features
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General-purpose CPU microprocessor core

 Implements “Stored Program Computer” 
concept (Turing 1936)

 Similar designs on all modern systems
 (Still) multiple potential bottlenecks

The clock cycle is the “heartbeat” of the core

Stored-program computer

Modern CPU core

ISC 2023
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Important in-core features
Pipelining: 

Instruction execution in 
multiple steps

Fetch Instruction 4
from L1I

Decode 
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode 
Instruction 2

Decode 
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 3
from L1I

Decode 
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode 
Instruction 2

Decode 
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 2
from L1I

Decode 
Instruction 1

Execute
Instruction 1

Fetch Instruction 2
from L1I

Decode 
Instruction 2

Decode 
Instruction 3

Execute
Instruction 2

Fetch Instruction 3
from L1I

Fetch Instruction 4
from L1I

Fetch Instruction 1
from L1I

Decode 
Instruction 1

Execute
Instruction 1

Fetch Instruction 5
from L1I

Decode
Instruction 5

Decode 
Instruction 9

Execute
Instruction 5

Fetch Instruction 9
from L1I

Fetch Instruction 13
from L1I

Superscalarity:
Multiple instructions

per cycle

Simultaneous Multi-Threading:
Multiple instruction sequences in parallel
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Single Instruction Multiple Data: 
Multiple operations per instruction

ISC 2023
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Instruction level parallelism (ILP): pipelining, superscalarity

Pipelining

Instructions

Superscalar execution

4-way superscalar:

 Massive boost in instruction 
throughput

 Instructions can be reordered 
on the fly

 Dependencies are obeyed

I5 I4 I3 I2 I1

1 2 3 4 5Cycle
12345

Throughput: 
1 instruction per cycle after pipeline is full
 Speedup by factor 5

Example: A single instruction takes 5 cycles 
(latency)

9

pipeline stages
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Superscalar out-of-order execution and steady state
Instruction execution

Hardware takes care of executing instructions as soon as their operands are available:
Out-Of-Order (OOO) execution

for(int i=1; i<n; ++i) 
a[i] = a[i] + c;

LOAD
(Latency: 4 cy) ADD

(Latency: 3cy)

STORE
(Latency: 2 cy)

“Steady state:”
3 instructions/cy

(“3-way superscalar execution”)

Instructions Per Cycle: IPC=3
Cycles Per Instruction: CPI=0.33

Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 6
Cycle 7
Cycle 8
Cycle 9
Cycle 10
Cycle 11
Cycle 12
Cycle 13
Cycle 14
Cycle 15
Cycle 16
…

load a[1]
load a[2]
load a[3]
load a[4]
load a[5] add a[1]=c,a[1]
load a[6] add a[2]=c,a[2]
load a[7] add a[3]=c,a[3]
load a[8] add a[4]=c,a[4] store a[1]
load a[9] add a[5]=c,a[5] store a[2]
load a[10] add a[6]=c,a[6] store a[3] 
load a[11] add a[7]=c,a[7] store a[4] 
load a[12] add a[8]=c,a[8] store a[5]
load a[13] add a[9]=c,a[9] store a[6]
load a[14] add a[10]=c,a[10] store a[7]
load a[15] add a[11]=c,a[11] store a[8]
load a[16] add a[12]=c,a[12] store a[10]
… … …

ISC 2023



Quiz time: OoO Execution

https://moodle.nhr.fau.de/mod/h5pactivity/view.php?id=2360

https://moodle.nhr.fau.de/mod/h5pactivity/view.php?id=2360
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SIMD processing
 Single Instruction Multiple Data (SIMD) operations allow the execution of the same operation on “wide” 

registers from a single instruction
 x86 SIMD instruction sets:

 SSE: register width = 128 Bit  2 double precision floating point operands 
 AVX: register width = 256 Bit  4 double precision floating point operands
 AVX-512: … you guessed it!

 Adding two registers holding double precision floating point operands: 

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C
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]
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[3
]

A[
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B[
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C
[0

]64 Bit

25
6 
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t

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:
R2 ADD [R0,R1]

SIMD execution:
V64ADD [R0,R1] R2

ISC 2023
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SIMD terminology

A word on terminology
 SIMD == “one instruction  several operations”
 “SIMD width” == number of operands that fit into a register
 No statement about parallelism among those operations
 Original vector computers: long registers, pipelined execution, 

but no parallelism
(within the instruction)

Today
 x86: most SIMD instructions fully parallel

 “Short Vector SIMD”
 Some exceptions on some architectures (e.g., vdivpd)

 NEC Tsubasa: 32-way parallelism but SIMD width = 256 (DP) 

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C[
0]
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3]

+

+

+

+

R0 R1 R2
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Scalar execution units

Register width
 1 operand

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

= +

Scalar execution
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Data-parallel execution units (short vector SIMD)

= +

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Register width
 1 operand

 2 operands (SSE)

 4 operands (AVX)

 8 operands (AVX512)

Best code requires vectorized 
LOADs, STOREs, and arithmetic!

SIMD execution
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Simultaneous multi-threading (SMT)
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Memory Hierarchy and Affinity 
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Memory hierarchy

You can either build a
small and fast memory
or a
large and slow memory.

Purpose of many optimizations is to load data from fast memory

Memory

L3 Cache

Disk

L2 Cache

L1 Cache10-9

10-8

10-7

10-4

Latency [s]

1012

1011

109

Bandwidth 
[bytes/s]

Core

ISC 2023



L1
32 KiB

L2
256 KiB

L3
25 MiB
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Getting data from far away

ISC 2023

!

A(:) = B(:) + C(:) * D(:)

Varying loop length,
repeat many times

Ivy Bridge core 2.2GHz
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Parallelism and bottlenecks in a modern compute node

Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

Parallel resources:
 Execution/SIMD units
 Cores
 Inner cache levels
 Sockets / ccNUMA domains
 Multiple accelerators

Shared resources:
 Outer cache level per socket
 Memory bus per socket
 Intersocket link
 PCIe bus(es)
 Other I/O resources

Other I/O

1
2

3
4 5

1

2

3

4

5

6

6
7

7

8

8

9

9

10

10

How does your application react to all of those details?
ISC 2023
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Scalable and saturating behavior
Clearly distinguish between “saturating” and “scalable” performance on the chip level

One of the most important performance signatures

shared resources 
may show 
saturating 
performance

parallel resources 
show
scalable 
performance

ISC 2023



ISC 2023 24Node-level Computer Architecture  |  Georg Hager

Memory bandwidth saturation (read-only)

Fujitsu A64FX AMD Zen3 
Milan

Intel Ice Lake 32c 
SNC=off

AMD MI210 
GPU

NVIDIA A100
GPU

Bandwidth 
saturation on 1st 
ccNUMA domain

Massive thread 
parallelism needed 

on GPUs to saturate
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Putting the cores & caches together
AMD Epyc 7742 64-Core Processor («Rome»)

 Core features:
 Two-way SMT
 Two 256-bit SIMD FMA units (AVX2)
16 flops/cycle (actually 24 because 2 ADDs can be done alongside)
 32 KiB L1 data cache per core
 512 KiB L2 cache per core

 64 cores per socket hierarchically built up from
 16 CCX with 4 cores and 16 MiB of L3 cache
 2 CCX form 1 CCD (silicon die)
 8 CCDs connected to IO device “Infinity Fabric” (memory controller & PCIe)

 8 channels of DDR4-3200 per IO device
 MemBW: 8 ch x 8 byte x 3.2 GHz = 204.8 GB/s

 ccNUMA-feature (Boot time option): 
 Node Per Socket (NPS)=1 , 2 or 4
 NPS=4  4 ccNUMA domains

one socket

ISC 2023
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ccNUMA – cache-coherent Non-Uniform Memory Architecture
 ccNUMA:

 Whole memory is transparently accessible by 
all cores
 but physically distributed across multiple 

locality domains (LDs)
 with varying bandwidth and latency
 and potential contention (shared memory 

paths)

 How do we make sure that memory access is 
always as "local" and "distributed" as 
possible?

Note: Page placement is implemented in units of 
OS pages (often 4 KiB, possibly more)
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Coding for ccNUMA data locality

integer,parameter :: N=10000000
double precision A(N), B(N)

A=0.d0

!$OMP parallel do
do i = 1, N

B(i) = function ( A(i) )
end do
!$OMP end parallel do

integer,parameter :: N=10000000
double precision A(N),B(N)
!$OMP parallel 
!$OMP do schedule(static)
do i = 1, N

A(i)=0.d0
end do
!$OMP end do
...
!$OMP do schedule(static)
do i = 1, N

B(i) = function ( A(i) )
end do
!$OMP end do
!$OMP end parallel

Simplest case: explicit initialization 
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DAXPY test on A64FX
Anarchy vs. thread pinning

No pinning

“Compact” pinning 
(fill first socket first)

There are several reasons for caring about 
affinity:
 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

OpenMP-parallel
A(:)=A(:)+s*B(:)
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Means of enforcing thread or process affinity
 OpenMP

 Compiler-specific facilities
 OpenMP standard (OMP_PROC_BIND, OMP_PLACES)
 likwid-pin from the LIKWID tool suite (https://github.com/RRZE-HPC/likwid)

 MPI
 Implementation-specific facilities
 SLURM resource manager options to srun
 likwid-mpirun

 Hybrid MPI+OpenMP
 likwid-mpirun
 SLURM (but inferior since individual threads are not pinned)
 Hoping for the best and that MPI and OpenMP implementations work together

https://github.com/RRZE-HPC/likwid


NVIDIA “Ampere” A100
vs. 
AMD Zen2 “Rome”

GPGPU accelerators
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Nvidia A100 “Ampere” SXM4 specs
Architecture

 54.2 B Transistors
 ~ 1.4 GHz clock speed
 ~ 108 “SM” units

 64 SP “cores” each (FMA)
 32 DP “cores” each (FMA)
 4 “Tensor Cores” each
 2:1 SP:DP 

performance

 9.7 TFlop/s DP peak (FP64)
 40 MiB L2 Cache

 40 GB (5120-bit) HBM2
 MemBW ~ 1555 GB/s (theoretical)
 MemBW ~ 1400 GB/s (measured)

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷 = 𝑛𝑛𝑆𝑆𝑆𝑆 ⋅ 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑛𝑛𝐹𝐹𝐹𝐹 � 𝑓𝑓

# SMs # CUDA 
cores/SM

# FP
ops/cy

𝑛𝑛𝑆𝑆𝑆𝑆 = 108
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 32
𝑛𝑛𝐹𝐹𝐹𝐹 = 2flops

cy
𝑓𝑓 = 1.4Gcy

s

© Nvidia

ISC 2023
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Trading single thread performance for parallelism:
GPGPUs vs. CPUs

GPU vs. CPU 
light speed estimate
(per processor chip)

MemBW ~ 7 – 10x
Peak ~ 4 – 8x

2 x AMD EPYC 7742 ”Rome” NVidia Tesla A100 “Ampere”

Cores@Clock 2 x 64 @ 2.25 GHz 108 SMs @ ~1.4 GHz

FP32 Performance/core 72 GFlop/s ~179 GFlop/s

Threads@STREAM ~16 ~ 100000

FP32 peak 9.2 TFlop/s ~19.5 TFlop/s

Stream BW (meas.) 2 x 180 GB/s 1400 GB/s

Transistors / TDP ~2x40 Billion / 2x225 W 54 Billion/400 W

ISC 2023
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“Simple” predictive performance modeling:
The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks. 
Parallel Computing 10, 277-286 (1989).  DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers.  
Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers.  UCB Technical Report No. UCB/EECS-2008-164. PhD 
thesis (2008)

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/%7Erx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
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A simple performance model for loops

Simplistic view of the hardware:

do i = 1,<sufficient> 
<complicated stuff doing 
N flops causing 
V bytes of data transfer>

enddo

Execution units
max. performance

𝑷𝑷𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

Data source/sink

Data path, 
bandwidth 𝒃𝒃𝑺𝑺
 Unit: byte/s

Simplistic view of the software:

Computational intensity 𝐼𝐼 = 𝑁𝑁
𝑉𝑉

 Unit: flop/byte

Also in use: Code balance 𝐵𝐵𝑐𝑐 = 𝑉𝑉
𝑁𝑁

 Unit: byte/flop

Other metrics for work are possible
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Naïve Roofline Model
How fast can tasks be processed at most? 𝑷𝑷 [flop/s]

The bottleneck is either
 The execution of work: 𝑃𝑃peak [flop/s]

 The data path: 𝐼𝐼 � 𝑏𝑏𝑆𝑆 [flop/byte x byte/s]

This is the “Naïve Roofline Model”
 High intensity: P limited by execution
 Low intensity: P limited by data transfer
 “Knee” at 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐼𝐼 � 𝑏𝑏𝑆𝑆: 

Best use of resources
 Roofline is an “optimistic” model

(think “light speed”)

𝑃𝑃 = min(𝑃𝑃peak, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)

Intensity

Pe
rfo

rm
an

ce

Ppeak
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Roofline: application model and machine model 

Machine properties:

𝑷𝑷𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 4
GF
s

𝒃𝒃𝑺𝑺 = 10
GB
s

Application property: I

double s=0, a[];
for(i=0; i<N; ++i) {

s = s + a[i] * a[i];}

𝑃𝑃 = 2.5 GF/s

𝐼𝐼 = 2 𝐹𝐹
8 𝐵𝐵

= 0.25 ⁄𝐹𝐹 𝐵𝐵

Apply the naive Roofline model in practice

 Machine parameter #1: Peak performance:         𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐹𝐹
𝑠𝑠

 Machine parameter #2: Memory bandwidth:         𝑏𝑏𝑆𝑆
𝐵𝐵
𝑠𝑠

 Code characteristic:  Computational intensity: 𝐼𝐼 𝐹𝐹
𝐵𝐵

Machine model

Application model
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Roofline for architecture and code comparison
With Roofline, we can 
 Compare capabilities of different machines
 Compare performance expectations for 

different loops

 Roofline always provides upper bound – but is 
it realistic?
 Simple case: Loop kernel has loop-carried

dependecncies  cannot achieve peak flat 
ceiling may be code specific (𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 → 𝑃𝑃max )
 Other bandwidth bottlenecks may apply  there 

may be other sloped ceilings
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A not-so-simple loop

Example: The sum reduction
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A “simple” example: The sum reduction

 Loop-carried dependency on summation variable
 Execution stalls at every ADD until previous ADD is complete

No pipelining?
No SIMD?

…in single precision on an AVX-
capable core (ADD latency = 3 cy)

How fast can this loop possibly run
with data in the L1 cache?

for (int i=0; i<N; ++i){
sum += a[i];

}

ISC 2023



41Node-level Computer Architecture  |  Georg Hager

Applicable peak for the sum reduction (I)
Plain scalar code, no SIMD

LOAD r1.0  0
i  1
loop: 
LOAD r2.0  a(i)
ADD r1.0  r1.0 + r2.0
++i ? loop

result  r1.0

ADD pipes utilization:

 1/24 of ADD peak

s

SI
M

D
 la

ne
s

for (int i=0; i<N; i++){
sum += a[i];

}

SIMD lane

ISC 2023



42Node-level Computer Architecture  |  Georg Hager

Applicable peak for the sum reduction (II)
Scalar code, 3-way “modulo variable expansion” (MVE)

LOAD r1.0  0
LOAD r2.0  0
LOAD r3.0  0
i  1

loop: 
LOAD r4.0  a(i)     
LOAD r5.0  a(i+1)   
LOAD r6.0  a(i+2)   

ADD r1.0  r1.0 + r4.0  # scalar ADD
ADD r2.0  r2.0 + r5.0  # scalar ADD
ADD r3.0  r3.0 + r6.0  # scalar ADD

i+=3 ? loop
result  r1.0+r2.0+r3.0

 1/8 of ADD peak

s1 s2 s3

for (int i=0; i<N; i+=3){
s1 += a[i+0];
s2 += a[i+1];
s3 += a[i+2];

}
sum = sum + s1+s2+s3;

ISC 2023
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Applicable peak for the sum reduction (III)
SIMD vectorization (8-way MVE) x 

pipelining (3-way MVE)

LOAD [r1.0,…,r1.7]  [0,…,0]
LOAD [r2.0,…,r2.7]  [0,…,0]
LOAD [r3.0,…,r3.7]  [0,…,0]
i  1

loop: 
LOAD [r4.0,…,r4.7]  [a(i),…,a(i+7)]     # SIMD LOAD
LOAD [r5.0,…,r5.7]  [a(i+8),…,a(i+15)]  # SIMD
LOAD [r6.0,…,r6.7]  [a(i+16),…,a(i+23)] # SIMD

ADD r1  r1 + r4  # SIMD ADD
ADD r2  r2 + r5  # SIMD ADD
ADD r3  r3 + r6  # SIMD ADD

i+=24 ? loop
result  r1.0+r1.1+...+r3.6+r3.7


AD

D
 p

ea
k

s11 s21 s31

s12 s22 s32

s13 s23 s33

s14 s24 s34

s15 s25 s35

s16 s26 s36

s17 s27 s37

s10 s20 s30

for (int i=0; i<N; i+=24){
s10 += a[i+0]; s20 += a[i+8]; s30 += a[i+16];
s11 += a[i+1]; s21 += a[i+9]; s31 += a[i+17];
s12 += a[i+2]; s22 += a[i+10]; s32 += a[i+18];
s13 += a[i+3]; s23 += a[i+11]; s33 += a[i+19];
s14 += a[i+4]; s24 += a[i+12]; s34 += a[i+20];
s15 += a[i+5]; s25 += a[i+13]; s35 += a[i+21];
s16 += a[i+6]; s26 += a[i+14]; s36 += a[i+22];
s17 += a[i+7]; s27 += a[i+15]; s37 += a[i+23];

}
sum = sum + s10+s11+…+s37;

ISC 2023
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Putting it together
Example: for(int i=0; i<N; ++i) sum += a[i]; 
in single precision on an 8-core 2.2 GHz Sandy Bridge socket @ “large” N

ADD peak  
(best possible 
code)

no SIMD

3-cycle latency 
per ADD if not 
unrolled

P (worst loop code)

𝑃𝑃 = min(𝑃𝑃max, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak  
(ADD+MULT)
Out of reach for this 
code

P
(better loop code)



Diagnostic / phenomenological Roofline modeling



Diagnostic modeling
 What if we cannot predict the intensity/balance?

 Code very complicated
 Code not available
 Parameters unknown
 Doubts about correctness of analysis

 Measure data volume 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (and work 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
 Hardware performance counters
 Tools: likwid-perfctr, PAPI, Intel Vtune,…

 Insights + benefits
 Compare analytic model and measurement  validate model
 Can be applied (semi-)automatically
 Useful in performance monitoring of user jobs on clusters

Intensity

Pe
rfo

rm
an

ce

Pmax

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
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Roofline and performance monitoring of clusters
Two cluster jobs…

Which of them is 
“good” and which is
“bad”? 
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Roofline conclusion
 Roofline = simple first-principle model for upper performance limit of data-

streaming loops
 Machine model (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑏𝑏𝑆𝑆) + application model (𝐼𝐼) 
 Conditions apply, extensions exist

 Two modes of operation
 Predictive: Calculate 𝐼𝐼, calculate upper limit, validate model, optimize, iterate
 Diagnostic: Measure 𝐼𝐼 and 𝑃𝑃, compare with roof 

 Challenge of predictive modeling: Getting 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐼𝐼 right



Performance analysis with hardware metrics

likwid-perfctr
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Probing performance behavior
 How do we find out about the performance properties and 

requirements of a parallel code?
Profiling via advanced tools is often overkill

 A coarse overview is often sufficient: likwid-perfctr
 Simple measurement of hardware performance metrics
 Preconfigured and extensible metric groups, list with
likwid-perfctr -a:

 Operating modes:
 Wrapper
 Stethoscope
 Timeline
 Marker API

BRANCH: Branch prediction miss rate/ratio
CLOCK: Clock frequency of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS_SP: Single Precision MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
ENERGY: Power and energy consumption
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Best practices for Performance profiling

 Operation throughput (Flops/s)
 Overall instruction throughput (CPI or IPC)
 Instruction breakdown:
 FP instructions
 loads and stores
 branch instructions
 other instructions

 Instruction breakdown to SIMD width (scalar, 
SSE, AVX, AVX512 for X86). (only arithmetic
instruction on most architectures)

 Data volumes and bandwidths to
 main memory (GB and GB/s)
 cache levels (GB and GB/s)

Useful diagnostic metrics are:
 Clock frequency (GHz)
 Power (W)

Focus on resource utilization and instruction mix!
Metrics to measure:

All above metrics can be acquired using these performance groups:
MEM_DP, MEM_SP, BRANCH, DATA, L2,  L3
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likwid-perfctr wrapper mode
$ likwid-perfctr –g L2 –C S1:0-3 ./a.out
--------------------------------------------------------------------------------
CPU name:       Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz […]
--------------------------------------------------------------------------------
<<<< PROGRAM OUTPUT >>>>
--------------------------------------------------------------------------------
Group 1: L2
+-----------------------+---------+------------+------------+------------+------------+
|         Event         | Counter |   Core 14  |   Core 15  |   Core 16  |   Core 17  |
+-----------------------+---------+------------+------------+------------+------------+
|   INSTR_RETIRED_ANY |  FIXC0  | 1298031144 | 1965945005 | 1854182290 | 1862521357 |
| CPU_CLK_UNHALTED_CORE |  FIXC1  | 2353698512 | 2894134935 | 2894645261 | 2895023739 |
|  CPU_CLK_UNHALTED_REF |  FIXC2  | 2057044629 | 2534405765 | 2535218217 | 2535560434 |
|    L1D_REPLACEMENT    |   PMC0  |  212900444 |  200544877 |  200389272 |  200387671 |
|    L2_TRANS_L1D_WB    |   PMC1  |  112464863 |  99931184  |  99982371  |  99976697  |
|     ICACHE_MISSES     |   PMC2  |    21265   |    26233   |    12646   |    12363   |
+-----------------------+---------+------------+------------+------------+------------+
[… statistics output omitted …]
+--------------------------------+------------+------------+------------+------------+
|             Metric |   Core 14  |   Core 15  |   Core 16  |   Core 17  |
+--------------------------------+------------+------------+------------+------------+
|       Runtime (RDTSC) [s]      |   1.1314   |   1.1314   |   1.1314   |   1.1314   |
|      Runtime unhalted [s]      |  1.0234   |   1.2583   |   1.2586   |   1.2587   |
|           Clock [MHz]          |  2631.6699 |  2626.4367 |  2626.0579 |  2626.0468 |
|               CPI              |   1.8133   |   1.4721   |   1.5611   |   1.5544   |
|  L2D load bandwidth [MBytes/s] | 12042.7388 | 11343.8446 | 11335.0428 | 11334.9523 |
|  L2D load data volume [GBytes] |   13.6256  |   12.8349  |   12.8249  |   12.8248  |
| L2D evict bandwidth [MBytes/s] |  6361.5883 |  5652.6192 |  5655.5146 |  5655.1937 |
| L2D evict data volume [GBytes] |   7.1978   |   6.3956   |   6.3989   |   6.3985   |
|     L2 bandwidth [MBytes/s]    | 18405.5299 | 16997.9477 | 16991.2728 | 16990.8453 |
|     L2 data volume [GBytes]   |   20.8247  |   19.2321  |   19.2246  |   19.2241  |
+--------------------------------+------------+------------+------------+------------+

Always 
measured for 

Intel CPUs

Configured metrics 
(this group)

Derived 
metrics
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likwid-perfctr stethoscope mode
 likwid-perfctr counts events on hardware threads

it has no notion of what kind of code is running (if any)

This allows you to “listen” to what is currently happening,
without any overhead:

$ likwid-perfctr -c N:0-11 -g FLOPS_DP  -S 10s

 It can be used as cluster/server monitoring tool
 A frequent use is to measure a certain part of a long running parallel 

application from outside
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Roofline and performance monitoring of clusters
Using Roofline for monitoring “live” jobs on a cluster
Based on measured BW and Flop/s data via likwid-perfctr
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likwid-perfctr with Marker API
 The MarkerAPI can restrict measurements to code regions
 The API only reads counters.

The configuration of the counters is still done by likwid-perfctr

 Available for C and Fortran (contributed für Julia and Python)

#include <likwid-marker.h>

LIKWID_MARKER_INIT; // must be called from serial region
. . .
LIKWID_MARKER_START(“Compute”);   // call markers for each thread
. . .
LIKWID_MARKER_STOP(“Compute”);
. . .
LIKWID_MARKER_START(“Postprocess”);
. . .
LIKWID_MARKER_STOP(“Postprocess”);
. . .
LIKWID_MARKER_CLOSE;  // must be called from serial region
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Summary of hardware performance monitoring 
 Useful only if you know what you are looking for

 PM bears potential of acquiring massive amounts of data for nothing!

 Resource-based metrics are most useful
 Cache lines transferred, work executed, loads/stores, cycles
 Instructions, CPI, cache misses may be misleading

 Caveat: Processor work != user work
 Waiting time in libraries (OpenMP, MPI) may cause lots of instructions
  distorted application characteristic

 Another very useful application of PM: validating performance models!
 Roofline is data centric  measure data volume through memory hierarchy



Example: Simple stencil algorithms
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Stencil schemes
 Stencil schemes frequently occur in PDE solvers on regular lattice structures
 Basically it is a sparse matrix vector multiply (spMVM) embedded in an iterative 

scheme (outer loop) 
 … but the regular access structure allows for matrix-free coding

 Complexity of implementation and performance depends on
 stencil operator, e.g. Jacobi-type, Gauss-Seidel-type, … 
 discretization, e.g. 7-pt or 27-pt in 3D,…

do iter = 1, max_iterations

Perform sweep over regular grid: y(:)  x(:)

Swap y  x 

enddo
y x
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Jacobi-type 5-pt stencil sweep in 2D

do k=1,kmax
do j=1,jmax
y(j,k) = const * ( x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1) )
enddo

enddo

j

k

sw
ee

p

Lattice site 
update
(LUP)

y(0:jmax+1,0:kmax+1) x(0:jmax+1,0:kmax+1)

Appropriate performance metric: “Lattice site updates per second” [LUP/s]
(here: Multiply by 4 FLOP/LUP to get FLOP/s rate)



Naive balance (incl. write allocate): 

x( :, :) : 3 RD + 
y( :, :) : 1 WR+ 1 RD

 BC = 5 Words / LUP = 40 B / LUP (assuming double precision) 
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Jacobi 5-pt stencil 2D: data transfer analysis

do k=1,kmax
do j=1,jmax
y(j,k) = const * ( x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1) )
enddo

enddo

sw
ee

p

RD+WR y(j,k)
(incl. write allocate)

RD x(j+1,k)

Available in cache 
(used 2 updates before)

RD x(j,k+1)RD x(j,k-1)
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Jacobi 5-pt stencil 2D: Single-core performance

jmax=kmax jmax*kmax = const

L3
 C

ac
he

~24 B / LUP ~40 B / LUP

Code balance  (BC) 
measured with likwid-perfctr

Questions:

1. How to achieve 
24 B/LUP also 
for large jmax?

2. How to sustain 
>800 MLUP/s for 
jmax > 104 ?

Intel Xeon Platinum 8360Y 
(“IcelakeSP”@2.4 GHz)

Intel Compiler 2022.1.0
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Analyzing the data flow

cached

Worst case: Cache not large enough to hold 3 layers (rows) of grid (assume “Least Recently Used” replacement 
strategy)

j

k

x(0:jmax+1,0:kmax+1)

H
al

o 
ce

lls
H

al
o 

ce
lls

miss

miss

miss

hit

miss

miss

miss

hit
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Analyzing the data flow

j

k

Worst case: Cache not large enough to hold 3 layers (rows) of grid (assume „Least Recently Used“ replacement
strategy)

x(0:jmax+1,0:kmax+1)

miss

miss

miss

hit

miss

miss

miss

hit
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Analyzing the data flow

Reduce inner (j-) 
loop dimension
successively

Best case: 3 
“layers” of grid fit 
into the cache!

j

k

x(0:jmax2+1,0:kmax+1)

x(0:jmax1+1,0:kmax+1)

miss

miss
miss

hit

miss

miss
miss

hit

miss

hit
hit

hit
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Analyzing the data flow: Layer condition

2D 5-pt Jacobi-type stencil

do k=1,kmax
do j=1,jmax
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+ x(j,k-1) + x(j,k+1) )
enddo

enddo 3 * jmax * 8B < CacheSize/2
“Layer condition” 

double 
precision

3 rows of 
jmax Safety margin 

(Rule of thumb)

Layer condition:
• Does not depend on outer loop length (kmax)
• No strict guideline (cache associativity, data traffic for y not included)
• Needs to be adapted for other stencils (e.g., long-range stencils)
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Analyzing the data flow: Layer condition

3 * jmax * 8B < CacheSize/2
Layer condition fulfilled? 

BC = 24 B / LUP

do k=1,kmax
do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &
+  x(j,k-1) + x(j,k+1) )

enddo
enddo

YES

do k=1,kmax
do j=1,jmax

y(j,k) = const * (x(j-1,k) + x(j+1,k) &
+  x(j,k-1) + x(j,k+1) )

enddo
enddo BC = 40 B / LUP

y: (1 RD + 1 WR) / LUP

NO

x: 3 RD / LUP

x: 1 RD / LUPy: (1 RD + 1 WR) / LUP
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Enforcing a layer condition (2D 5-pt)
 How can we enforce a layer condition for all domain sizes ?
 Idea: Spatial blocking

 Reuse elements of x() as long as they stay in cache
 Sweep can be executed in any order, e.g. compute blocks in j-direction

“Spatial Blocking” of j-loop:

Determine for given CacheSize an appropriate jblock value:

do jb=1,jmax,jblock !
do k=1,kmax
do j= jb, min(jb+jblock-1,jmax) !inner loop length jblock
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+  x(j,k-1) + x(j,k+1) )
enddo

enddo
enddo

New layer condition (blocking)
3 * jblock * 8B < CacheSize/2

jblock < CacheSize / 48B
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Establish the layer condition by blocking
Split 
domain into
subblocks:

e.g. block 
size = 5
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Establish the layer condition by blocking

Additional data 
transfers (overhead) 
at block boundaries!
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Establish layer condition by spatial blocking

jmax=kmax jmax*kmax = const

L3
 C

ac
he

L1: 48 KB 
L2: 1.25 MB 
L3: 54 MB

Which cache to block for?jblock < CacheSize / 48 B

L2: CS=1.25 MB
jblock=min(jmax,25K)

L3: CS=54 MB
jblock=min(jmax,500K)

Intel Xeon Platinum 8360Y 
(“IcelakeSP”@2.4 GHz)

Intel Compiler 2022.1.0
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Validating the model: Memory code balance

M
ea

su
re

d 
m

ai
n 

m
em

or
y

co
de

 b
al

an
ce

 (𝐵𝐵
𝐶𝐶
) [

By
te

/L
U

P]

Blocking factor still a 
little too large

Main memory access is not reason 
for different performance

(but L3 access is!)

Intel Xeon Platinum 8360Y 
(“IcelakeSP”@2.4 GHz)

Intel Compiler 2022.1.0
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OpenMP parallelization of the blocked 2D stencil
Straightforward OpenMP work sharing:

 Caveat: LC must be fulfilled per thread  shared cache causes smaller blocks!

do jb=1,jmax,jblock
!$OMP PARALLEL DO SCHEDULE(static)
do k=1,kmax
do j= jb, min(jb+jblock-1,jmax)
y(j,k) = const * (x(j-1,k) + x(j+1,k) &

+  x(j,k-1) + x(j,k+1) )
enddo

enddo
!$OMP END PARALLEL DO
enddo

Layer condition:
3 * jblock * 8B < CSt/2

Cache size available 
per thread

T0

T1

T2
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OpenMP parallelization and blocking for a shared cache

Layer conditions make for interesting effects

 Less and less shared cache available per 
thread as #threads goes up

 LC may break “along the way”

 Solutions
1. Choose small enough block or domain 

size
2. Adaptive blocking 

jblock = CS/(#threads * 48B)



Conclusions from the stencil example

 We have made sense of the memory-bound performance vs. problem size
 “Layer conditions” lead to predictions of code balance
 “What part of the data comes from where” is a crucial question
 The model works only if the bandwidth is “saturated”

 In-cache modeling is more involved

 Avoiding slow data paths == re-establishing the most favorable layer condition
 Improved code showed the predicted speedup
 Optimal blocking factor can be estimated

 Manual analysis of stencil codes can be tedious
 Online Layer Condition Calculator:

http://tiny.cc/LayerConditions
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http://tiny.cc/LayerConditions
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Quiz time
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Tutorial conclusion
 Know your system (node) architecture

 Enforce affinity

 Back-of-the-envelope models are extremely useful

 Modeling is not always predictive

 Bottleneck awareness rules

 Performance is not about tools. Use your brain!



BACKUP



The Basics

SIMD
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SIMD processing – Basics 

Steps (done by the compiler) for “SIMD processing”
for(int i=0; i<n; i++)

C[i]= A[i] + B[i];

for(int i=0; i<n; i+=4){
C[i]  = A[i]   + B[i];
C[i+1]= A[i+1] + B[i+1];
C[i+2]= A[i+2] + B[i+2];
C[i+3]= A[i+3] + B[i+3];}

//remainder loop handling

LABEL1:
VLOAD R0  A[i]
VLOAD R1  B[i]
V64ADD[R0,R1]  R2
VSTORE R2  C[i]
ii+4
i<(n-4)? JMP LABEL1 

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of
A[i] to register R0, B[i] in R1

Add the corresponding 64 Bit entries in  
R0 and R1 and store the 4 results to R2

Store R2(256 Bit) to address starting at C[i]

This should 
not be done 
by hand! 
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SIMD processing: Roadblocks

 No SIMD vectorization for loops with data dependencies:

 “Pointer aliasing” may prevent  vectorization

C/C++ allows: A=&C[-1] and B=&C[-2]  C[i]=C[i-1]+C[i-2] 
 data dependency  no SIMD
 If pointer aliasing does not occur in code, tell the compiler:
–fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc)
restrict keyword (C only!):

for(int i=1; i<n; i++) 
A[i] = A[i-1] * s;

void f(double *A, double *B, double *C, int n) {
for(int i=0; i<n; ++i) 

C[i] = A[i] + B[i];
}

void f(double *restrict A, double *restrict B, double *restrict C, int n) {…}
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How to leverage SIMD: your options

Options:
 The compiler does it for you

(but: aliasing, alignment, language, abstractions)
 Compiler directives (pragmas) – OpenMP 4.0++ has ample support
 Alternative programming models for compute kernels (OpenCL, ispc)
 Intrinsics (restricted to C/C++)
 Implement directly in assembly

Example: x86 SIMD (SSE) intrinsics

#include <x86intrin.h>
...
for (int j=0; j<size; j+=16){

t0 = _mm_loadu_ps(data+j);
t1 = _mm_loadu_ps(data+j+4);
t2 = _mm_loadu_ps(data+j+8);
t3 = _mm_loadu_ps(data+j+12);
sum0 = _mm_add_ps(sum0, t0);
sum1 = _mm_add_ps(sum1, t1);
sum2 = _mm_add_ps(sum2, t2);
sum3 = _mm_add_ps(sum3, t3);

}
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Vectorization compiler options (Intel)

 The compiler will vectorize starting with –O2
 To enable specific SIMD extensions use the –x option:

-xSSE2, -xSSE3, -xSSSE3, -xSSE4.1, -xSSE4.2, -xAVX, …

 -xAVX on Sandy/Ivy Bridge processors
 -xCORE-AVX2 on Haswell/Broadwell 
 -xCORE-AVX512 on Skylake (certain models) and Icelake

Recommended option:
 -xHost will optimize for the architecture you compile on
 To really enable 512-bit SIMD with current Intel compilers you need to 

set -qopt-zmm-usage=high (not available for new icx)
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User-mandated vectorization (OpenMP 4)

 Since OpenMP 4.0 SIMD features are a part of the OpenMP standard
 #pragma omp simd enforces vectorization
 Essentially a standardized “go ahead, no dependencies here!”

Do not lie to the compiler! 

 Prerequisites
 Countable loop
 Innermost loop
 Must conform to for-loop style of OpenMP worksharing constructs

 There are additional clauses:
reduction, vectorlength, private, collapse, ...

for (int j=0; j<n; j++) {
#pragma omp simd reduction(+:b[j:1])
for (int i=0; i<n; i++) {

b[j] += a[j][i];
}

}
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Limits of the SIMD benefit
Why does SIMD usually not give the expected speedup? 
 Analyze time contributions for data and execution

for(int i=0; i<size; i++)
sum += data[i];

Registers & 
execution units

L1 cache

L2 cache

L3 cache

Memory

Scalar: 4 cy
SSE2: 2 cy
AVX: 1 cy

Required time per 8 iterations:

1 cy for CL 
transfer

Full SIMD benefit
for data in L1 

Always the same
regardless of SIMD 

2 cy for CL 
transfer

Always the same
regardless of SIMD 

2 cy for CL 
transfer

Always the same
regardless of SIMD 

Intel Ice Lake 
2.4 GHz
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Rules and guidelines for vectorizable loops
1. Inner loop 
2. Countable (loop length can be determined at loop entry)
3. Single entry and single exit
4. Straight line code (no conditionals) – unless masks can be used
5. No function calls (exceptions: SIMD declared functions, intrinsic math)

Better performance with:
1. Simple inner loops with unit stride (contiguous data access)
2. Minimize indirect addressing
3. Align data structures to SIMD width boundary (minor impact)

In C use the restrict keyword and/or const qualifiers and/or compiler options to 
rule out array/pointer aliasing 

Keep it 
simple, 
stupid!
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SIMD conclusions

 Short-vector SIMD = data-parallel execution on the instruction level
 Best option: make the compiler employ SIMD instructions

 SIMD is an in-core feature
 Boosts work per cycle in core (peak performance)
 The further away the data, the less benefit
 If the code is memory bound, you may not even care
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