Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Efficient parallel programming
on ccNUMA nodes

Performance characteristics of ccNUMA nodes

First touch placement policy

cCNUMA — The “other affinity”

CCNUMA:
Whole memory is transparently accessible by e

HERE EEIEEIEEIEEIEEI , IRERE EEIEEIEEIEE =
all processors P[P [P [elfP P
. ELI:: L:: 2 l.z L2: EL:: L:: Lz 2 Lz LZ:

but physically distributed across multiple
locality domains (LDs)

with varying bandwidth and latency [i] Memery J
and potential contention (shared memory
paths)

How do we make sure that memory access is

always as "local" and "distributed" as

possible?

——

Note: Page placement is implemented in units of =1 ®f """ "7 1T "
OS pages (often 4 KiB, possibly more) [Momory | Memory]

ccNUMA (c) NHR@FAU 2024

How much does nonlocal access cost?

Example: AMD “Naples” 2-socket system
(8 chips, 2 sockets, 48 cores):

STREAM Triad bandwidth measurements [Gbyte/s]
o
3]
CPU node 0 1 2 3 4 5 6 7 S
MEM node (C/D)
0 . 21.8 | 219
1 . 219 | 21.9
2
3
4 —
3]
S
> o
0p]
6 219 | 21.9
7 219 | 21.9

ccNUMA (c) NHR@FAU 2024

numactl as a simple ccNUMA locality tool :
How do we enforce some locality of access?

numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>
--preferred=<node> a.out # map pages on <node>
and others if <node> is full
-—-interleave=<nodes> a.out # map pages round robin across
all <nodes>

Examples:
for m in 'seq 0 7°; do ccNUMA map scan
for ¢ in ‘seq 0 7°; do for Naples system

env OMP NUM THREADS=6 \
numactl --membind=$m likwid-pin -c M${c}:0-5 ./stream
done
done

numactl --interleave=0-7 likwid-pin -c E:N:8:1:12 ./stream

But what is the default without numactl?

ccNUMA (c) NHR@FAU 2024

ccNUMA default memory locality

"Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the processor that first touches it!
(Except if there is not enough local memory available)

Caveat: “to touch” means “to write,” not “to allocate”

Example: / Memory not
mapped here yet

double *huge = (double*)malloc (N*sizeof (double)) ;

for (i=0; i<N; i++) // or i+=PAGE SIZE/sizeof (double)

huge[i] = 0.0; ‘\\\\\\\\\\\\\\\\\\\\\

Mapping takes
place here

It is sufficient to touch a single item to map the entire page

ccNUMA (c) NHR@FAU 2024

Coding for ccNUMA data locality

Simplest case: explicit initialization

integer,parameter :: N=10000000 integer,parameter :: N=10000000
double precision, allocatable :: A(:), B(:) double precision, allocatable :: A(:), B(:)
allocate(A(N) ,B(N)) allocate (A(N) ,B(N))

1SOMP parallel
ISOMP do schedule(static)
do i =1, N

A=0.d0 A(i)=0.d0

end do
1SOMP end do

'SOMP parallel do 1SOMP do schedule (static)

doi=1, N doi=1, N
B(i) = function (A(i)) B(i) = function (A(i))
end do end do

1SOMP end do

!SOMP end parallel do 1$OMP end parallel

ccNUMA (c) NHR@FAU 2024

Coding for ccNUMA data locality

Sometimes initialization is not so obvious: I/O cannot be easily parallelized, so “localize”
arrays before I/O

integer,parameter :: N=10000000 integer,parameter :: N=10000000
double precision, allocatable :: A(:), B(:) double precision, allocatable :: A(:), B(:)
allocate(A(N) ,B(N)) allocate (A(N) ,B(N))

1SOMP parallel
ISOMP do schedule(static)

do i =1, N
' A(i)=0.d0
> end do
, ISOMP end do
ISOMP single
READ (1000) A
1SOMP end single
SOMP do schedule(static)
doi=1, N
B(i) = function (A(i))

READ (1000) A |

1SOMP parallel do
doi=1, N
B(i) = function (A(i))

end do
end do 1SOMP end do
1SOMP end parallel do 1SOMP end parallel

ccNUMA (c) NHR@FAU 2024

Coding for Data Locality

Required condition: OpenMP loop schedule of initialization must be the same as in all
computational loops
Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to be sure...
Imposes some constraints on possible optimizations (e.g. load balancing)

Presupposes that all worksharing loops with the same loop length have the same thread-
chunk mapping

If dynamic scheduling/tasking is unavoidable, the problem cannot be solved completely if a
team of threads spans more than one LD

Static parallel first touch is still a good idea
OpenMP 5.0 will have rudimentary memory affinity functionality

How about global objects?
Initialized before main() is called

If communication vs. computation is favorable, might consider properly placed copies of
global data

C++: Arrays of objects and std: : vector<> are by default initialized sequentially
STL allocators provide an elegant solution

ccNUMA (c) NHR@FAU 2024

Coding for Data Locality:
NUMA allocator for parallel first touch in std: : vector<>

template <class T> class NUMA Allocator ({
public:
T* allocate(size type numObjects, const void
*localityHint=0) ({
size type ofs,len = numObjects * sizeof (T)
void *m = malloc(len);
char *p = static cast<char*>(m) ;
int i,pages = len >> PAGE BITS;
#pragma omp parallel for schedule(static) private (ofs)
for (i=0; i<pages; ++i) {
ofs = static cast<size t>(i) << PAGE BITS;
plofs]=0;
}

return static cast<pointer>(m) ;

}
b g
Application:
vector<double ,NUMA Allocator<double> > x(10000000) ;

ccNUMA (c) NHR@FAU 2024

Diagnosing bad locality

If your code is cache bound, you might not notice any

, serial init.
locality problems] B PR B B
Otherwise, bad locality limits scalability Ll g)
(whenever a ccNUMA node boundary Is crossed) ! g]

Just an indication, not a proof yet 10k § | |
Running with numactl --interleave might give 8 > ! -
you a hint 5 [A |

See later or qﬂ | %nﬂo_

a4 -
Consider using performance counters i f‘ | _
likwid-perfctr can be used to measure non-local memory accesses Ld 5 |

Example for Intel dual-socket system (lvy Bridge, 2x10-core): i I |

$ likwid-perfctr -g NUMA -C M0:0-4@M1:0-4 ./a.out 0 lg ,;ll if, ;;I llg 1|2 1|4 1|5

COrcs

ccNUMA (c) NHR@FAU 2024 10

Using performance counters for diagnosis

Intel vy Bridge EP node (running 2x5 threads):

measure NUMA traffic

$ likwid-perfctr -g NUMA -C M0:0-4@M1:0-4

Summary output:

Runtime (RDTSC) [s] STAT
Runtime unhalted [s] STAT
Clock [MHz] STAT
CPI STAT

Local DRAM data volume [GByte]
Local DRAM bandwidth [MByte/s]
Remote DRAM data volume [GByte]
Remote DRAM bandwidth [MByte/s]

STAT
STAT
STAT
STAT

Memory data volume [GByte] STAT
Memory bandwidth [MByte/s] STAT

./a.out
______________ +_____________
Sum | Min
______________ +_____________
4.050483 | 0.4050483
3.03537 | 0.3026072
32996.94 | 3299.692
40.3212 | 3.702072
7.752933632 | 0.735579264
19140.761 _ | 1816.028
9.16628352 0.86682464
22630.098 2140.052

16.919217152
41770.861

9037

Caveat: NUMA metrics vary strongly between CPU models

On ICX: UPI groups

6128

4o - - - +
| Max | Avg |
4o - - - +
0.4050483	0.4050483
0.3043367	0.303537
3299.696	3299.694
4.244213	4.03212
0.823551488	0.7752933632
2033.218	1914.0761
0.957811776	0.916628352
2364 .685	2263.0098
1.69339104	1.6919217152
4180.714	4177.0861
- - - - +

About half of the overall
memory traffic is caused by
the remote domain!

ccNUMA

(c) NHR@FAU 2024

11

OpenMP STREAM triad on a dual AMD Epyc 7451 (“Naples”)
(6 cores per LD)

1. Parallel init: Correct parallel initialization
2. LDO: Force data into LDO via numactl -m O
3. Interleaved: numactl --interleave <LD range>
2501 | | | | | | a
| I Parallel placement
B LDO placement
200 W Interleaved placement —
z l
O 150 -
=
= B
=
= 100 .
m
50 -
L
of locality domains
ccNUMA (c) NHR@FAU 2024 12

A weird observation

Experiment. memory-bound Jacobi solver with sequential data initialization

No parallel data placement at all!

Expect no scaling across LDs
Convergence threshold 6
determines the runtime

The smaller §, the longer the run

Observation

No scaling across LDs for large ¢
(runtime 0.5 s)

Scaling gets better with smaller §
up to almost perfect efficiency ¢
(runtime 91 s)

Conclusion

Something seems to “heal” the bad
access locality on a time scale of tens of seconds

4000

w
o
o
o

Performance [MLUPs/sec]
S
o
o

o
o
o

Longer runtime

ccNUMA

(c) NHR@FAU 2024

13

Riddle solved: NUMA balancing

Linux kernel supports automatic page migration

$ cat /proc/sys/kernel/numa balancing

0

$ echo 1 > /proc/sys/kernel/numa balancing # activate

Active on all current Linux distributions, some performance impact for
single core execution

Parameters control aggressiveness

$ 11 /proc/sys/kernel/numa¥*

-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root

root
root
root
root
root

0

0
0
0
0

Jun
Jun
Jun
Jun
Jun

26
26
26
26
26

09:
09:
09:
09:
09:

16
16
16
16
16

Default behavior is “take it slow”
Do not rely on it! Parallel first touch is still a good idea!

numa balancing

numa balancing scan_delay ms

numa balancing scan period max ms
numa balancing scan period min ms
numa balancing scan_size mb

ccNUMA

(c) NHR@FAU 2024

14

Summary on ccNUMA issues

|dentify the problem

Is ccNUMA an issue in your code?
Simple test: run with numactl --interleave

Consider performance counters if available

Apply first-touch placement in initialization loops
Consider loop lengths and static scheduling
C++ and global/static objects may require special care

NUMA balancing is active on many Linux systems today
Automatic page migration
Slow process, may take many seconds (configurable)
Not a silver bullet
Still a good idea to do parallel first touch

If dynamic scheduling cannot be avoided
Consider round-robin placement as a quick (but non-ideal) fix
OpenMP 5.0 has some data affinity support

ccNUMA

(c) NHR@FAU 2024

15

