Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg

Microbenchmarking for architectural exploration

Probing of the memory hierarchy

Saturation effects

Motivation for Microbenchmarking as a tool

= |solate small kernels to:

= Separate influences
Determine specific machine capabilities (light speed)
Gain experience about software/hardware interaction
Determine programming model overhead

= Possibilities:
= Readymade benchmark collections (epcc OpenMP, IMB)
= STREAM benchmark for memory bandwidth

= Implement own benchmarks (difficult and error prone)

= 1likwid-bench tool: Offers collection of benchmarks and framework for rapid
development of assembly code kernels

Microbenchmarking (c) NHR@FAU 2024

The parallel vector triad benchmark - A “swiss army knife” for microbenchmarking

double striad seq(double* restrict a, double* restrict b, double* restrict c,
double* restrict d, int N, int iter) {
double S, E;
S = getTimeStamp () ;
for(int j = 0; j < iter; j++) {
#$pragma vector aligned Required to get optimal code with Intel
for (int i = 0; i < N; i++) { compiler icc! New icx unclear
a[i] = b[i] + d[i] * c[i];
}
if (a[N/2] > 2000) printf("Ai = %$£f\n",a[N-1]);
} T
E = getTimeStamp() ;
return E-S;

Keeps smarty-pants
compilers from doing
“clever” stuff

}

= Report performance for different N, choose iter so that accurate time
measurement is possible

= This kernel is limited by data transfer performance for all memory
levels on all architectures, ever!

Microbenchmarking (c) NHR@FAU 2024

A better way — use a microbenchmarking tool

= Microbenchmarking in high-level language is often difficult
= Solution: assembly-based microbenchmarking framework
= €.0., likwid-bench

$ likwid-bench -t triad avx512 fma -W S0:28kB:

benchmark type
topological entity (see likwid-pin)
working set

Microbenchmarking (c) NHR@FAU 2024

Schonauer triad on one CascadelLake core 2.5GHz

20000

17500

O
=
S

— SIMD
= b[i] + d[i] * c[i] |~ jscalar |

al[i]

12500

likwid-bench -t triad avx512 fma -W S0:28kB:

=
=
IS

7500

/ likwid-bench -t triad -W S0:28kB:

Performance [Mflop/s]

5000

2500 F=—e— 5 \
i o -'——‘-"—-.-.-____ |
_h

0

/ _

10

100 1000 10000 100000
Data set size [kB]

Microbenchmarking

(c) NHR@FAU 2024

Schonauer triad on one CascadelLake core 2.5GHz

20‘(]{]0 I I ' TTTTI I I I T TTTI I I ' TTTTI I I IIIIII| I
17500 — SIMD
i a[i] = b[i] + d[i] * c[i] | scalar i
%15(}00 \ :
Q
12500
g What are the]
8 10000 theoretical limits?
E]
= 7500
LE]
& 5000
2
m_ DIV, _
0 | | Illllllﬁ} | | IIIIII| | | IIIIII| | | IIIIII| |
10' 10° 10° 10° 10°

Data set size [kB]

Microbenchmarking (c) NHR@FAU 2024

Throughput triad on one CascadelLake node (2.5 GHz)

= How does the bandwidth scale

) 800 N R B o Addlng another socket - T T T T TT7TT] T
across cores: n doubles the performance (| =— T1 _
= Are there any bottlenecks? 700 without changing the o | |= T2
\ shape! S |— T4 |
= How large are the caches? o< |=— T8
w' 600 n T12
p=t : —
likwid-bench \ S - Performance scales in = $£g .
-t triad avx512 fma 3 500 L1/ L2 cache levels! 10
-W SO0:S$size: :1:2 o i i}
Q
E Drop stays at the i
= Scan $size and E same place for
: : i =) ' I
= Pin threads in chunks of 1 with s private caches! -
distance of 2 (skip SMT threads) M~ .
L3 cache is not
- scalable
0'%@2‘
10' 10° 10’ 10" 10°

Data set size [kB]

Microbenchmarking (c) NHR@FAU 2024 8

Throughput triad on CascadelLake (memory close-up)

50‘ T T T T |
— T1]
45 —_— T2
e T4 B
40 Saturating L3 cache — T8 Socket 1
@ performance TI2| 7
2 35 — TI16
= Second socket adds — T20 A
% 30 another memory T40 S_ocket 2
2 25 interface!
= i
E 20 Performance saturation in
&8 main memory!
= 15
a¥ i

50000

100000 150000
Data set size [kB]

200000

Microbenchmarking

(c) NHR@FAU 2024

Memory bandwidth saturation (read-only)

GByte/s

GByte/s

900

800 ¢

700 -

600 -

500 -

400 |

300 -

200 ¢

100 +

180

160 +

140 ¢

120 +

100 +

80 |

60 |-

40 |

20

Fujitsu A64FX

30

5 10 15 20 25
#Threads

Intel Ice Lake 32c
SNC=off

5 10 15 20 25 30
#Threads

35

200

180
160

AMD Zen3
Milan

5 10 15 20 25 30 35
#Threads

Bandwidth
saturation on 1st
ccNUMA domain

Massive thread
parallelism needed
on GPUs to saturate

1600

1400 |

1200

1000

GByte/s

600 -

400 -

200 +

1400

1200 ¢

1000 ¢

GByte/s

60

400

200 -

800 -

NVIDIA A100
GPU

60000 80000 100000 120000

#Threads

40000

20000

800 -

AMD MI210
GPU

60000
#Threads

20000 40000

80000 100000 120000

Microbenchmarking

(c) NHR@FAU 2024

10

The OpenMP-parallel vector triad benchmark

OpenMP worksharing in the benchmark loop

S = getTimeStamp () ;
#pragma omp parallel

{

for(int j = 0; j < iter; j++) {
#pragma omp for
#pragma vector aligned
for (int i=0; i<N; i++) {
af[i] = b[i] + d[i] * c[i];

if (a[N- 2000) printf("Ai = %$f\n",a[N-1]);

Implicit barrier

E -
!

getTimeStamp () ;

Microbenchmarking (c) NHR@FAU 2024

11

OpenMP vector triad on CascadelLake node (2.2 GHz)

150 I IIIIIII| I IIIIIII| I IIIIIII| I IIIIIII| I

- Sequential

125 - TI1
== T20 (1 socket)

-E [|==— T40 (2 sockets) T
S 100

3

— i Impact on i
E 75 performance even

= with 1 thread

< 50

D

Ay - Sync overhead grows .

with number of threads

25

10 10° 10° 10 10
Data set size [kB]

Microbenchmarking (c) NHR@FAU 2024

Conclusions from the microbenchmarks

= Microbenchmarks can yield surprisingly deep insights

= Affinity matters!

= Almost all performance properties depend on the position of
- Data
- Threads/processes

= Consequences
- Know where your threads are running
- Know where your data is (see later for that)

= Bandwidth bottlenecks are ubiquitous

= Synchronization overhead may be an issue
= ... and depends on the system topology!
= Many-core poses new challenges in terms of synchronization

Microbenchmarking (c) NHR@FAU 2024

17

