
Microbenchmarking for architectural exploration

Probing of the memory hierarchy

Saturation effects

2Microbenchmarking

Motivation for Microbenchmarking as a tool
§ Isolate small kernels to:

§ Separate influences
§ Determine specific machine capabilities (light speed)
§ Gain experience about software/hardware interaction
§ Determine programming model overhead
§ …

§ Possibilities:
§ Readymade benchmark collections (epcc OpenMP, IMB)
§ STREAM benchmark for memory bandwidth
§ Implement own benchmarks (difficult and error prone)
§ likwid-bench tool: Offers collection of benchmarks and framework for rapid

development of assembly code kernels
(c) NHR@FAU 2024

(c) NHR@FAU 2024 3

The parallel vector triad benchmark - A “swiss army knife” for microbenchmarking

§ Report performance for different N, choose iter so that accurate time
measurement is possible

§ This kernel is limited by data transfer performance for all memory
levels on all architectures, ever!

double striad_seq(double* restrict a, double* restrict b, double* restrict c,
double* restrict d, int N, int iter) {

double S, E;
S = getTimeStamp();
for(int j = 0; j < iter; j++) {

#pragma vector aligned
for (int i = 0; i < N; i++) {

a[i] = b[i] + d[i] * c[i];
}
if (a[N/2] > 2000) printf("Ai = %f\n",a[N-1]);

}
E = getTimeStamp();
return E-S;

}

Keeps smarty-pants
compilers from doing

“clever” stuff

Required to get optimal code with Intel
compiler icc! New icx unclear

Microbenchmarking

(c) NHR@FAU 2024 4

A better way – use a microbenchmarking tool
§ Microbenchmarking in high-level language is often difficult
§ Solution: assembly-based microbenchmarking framework

§ e.g., likwid-bench

$ likwid-bench -t triad_avx512_fma -W S0:28kB:1

benchmark type
topological entity (see likwid-pin)
working set
of threads

Microbenchmarking

(c) NHR@FAU 2024 5

Schönauer triad on one CascadeLake core 2.5GHz

a[i] = b[i] + d[i] * c[i]

likwid-bench -t triad_avx512_fma -W S0:28kB:1

likwid-bench -t triad -W S0:28kB:1

Microbenchmarking

(c) NHR@FAU 2024 6

Schönauer triad on one CascadeLake core 2.5GHz

x7
 ?

What are the
theoretical limits?

a[i] = b[i] + d[i] * c[i]

Microbenchmarking

(c) NHR@FAU 2024 8

Throughput triad on one CascadeLake node (2.5 GHz)

§ How does the bandwidth scale
across cores?

§ Are there any bottlenecks?
§ How large are the caches?

§ Scan $size and $threads
§ Pin threads in chunks of 1 with

distance of 2 (skip SMT threads)

Performance scales in
L1 / L2 cache levels!

Drop stays at the
same place for
private caches!

L3 cache is not
scalable

Adding another socket
doubles the performance

without changing the
shape!

likwid-bench \
-t triad_avx512_fma
-W S0:$size:$threads:1:2

1
So

ck
et

Microbenchmarking

(c) NHR@FAU 2024 9

Throughput triad on CascadeLake (memory close-up)

Performance saturation in
main memory!

Second socket adds
another memory

interface!

Saturating L3 cache
performance

Socket 1

Socket 2

Microbenchmarking

(c) NHR@FAU 2024 10

Memory bandwidth saturation (read-only)

Fujitsu A64FX AMD Zen3
Milan

Intel Ice Lake 32c
SNC=off

AMD MI210
GPU

NVIDIA A100
GPU

Bandwidth
saturation on 1st
ccNUMA domain

Massive thread
parallelism needed

on GPUs to saturate

Microbenchmarking

(c) NHR@FAU 2024 11

The OpenMP-parallel vector triad benchmark
OpenMP worksharing in the benchmark loop

S = getTimeStamp();
#pragma omp parallel

{
for(int j = 0; j < iter; j++) {

#pragma omp for
#pragma vector aligned

for (int i=0; i<N; i++) {
a[i] = b[i] + d[i] * c[i];

}
if (a[N-1] > 2000) printf("Ai = %f\n",a[N-1]);

}
}
E = getTimeStamp();

Implicit barrier

Microbenchmarking

(c) NHR@FAU 2024 12

OpenMP vector triad on CascadeLake node (2.2 GHz)

Sync overhead grows
with number of threads

Impact on
performance even

with 1 thread

Microbenchmarking

(c) NHR@FAU 2024 17

Conclusions from the microbenchmarks
§ Microbenchmarks can yield surprisingly deep insights

§ Affinity matters!
§ Almost all performance properties depend on the position of

§ Data
§ Threads/processes

§ Consequences
§ Know where your threads are running
§ Know where your data is (see later for that)

§ Bandwidth bottlenecks are ubiquitous
§ Synchronization overhead may be an issue

§ … and depends on the system topology!
§ Many-core poses new challenges in terms of synchronization

Microbenchmarking

