
Microbenchmarking for architectural exploration

Probing of the memory hierarchy

Saturation effects

2Microbenchmarking

Motivation for Microbenchmarking as a tool

▪ Isolate small kernels to:

▪ Separate influences

▪ Determine specific machine capabilities (light speed)

▪ Gain experience about software/hardware interaction

▪ Determine programming model overhead

▪ …

▪ Possibilities:

▪ Readymade benchmark collections (epcc OpenMP, IMB)

▪ STREAM benchmark for memory bandwidth

▪ Implement own benchmarks (difficult and error prone)

▪ likwid-bench tool: Offers collection of benchmarks and framework for rapid

development of assembly code kernels

(c) NHR@FAU 2024

(c) NHR@FAU 2024 3

The parallel vector triad benchmark - A “swiss army knife” for microbenchmarking

▪ Report performance for different N, choose iter so that accurate time

measurement is possible

▪ This kernel is limited by data transfer performance for all memory

levels on all architectures, ever!

double striad_seq(double* restrict a, double* restrict b, double* restrict c,

double* restrict d, int N, int iter) {

double S, E;

S = getTimeStamp();

for(int j = 0; j < iter; j++) {

#pragma vector aligned

for (int i = 0; i < N; i++) {

a[i] = b[i] + d[i] * c[i];

}

if (a[N/2] > 2000) printf("Ai = %f\n",a[N-1]);

}

E = getTimeStamp();

return E-S;

}

Keeps smarty-pants

compilers from doing

“clever” stuff

Required to get optimal code with Intel

compiler icc! New icx unclear

Microbenchmarking

(c) NHR@FAU 2024 4

A better way – use a microbenchmarking tool

▪ Microbenchmarking in high-level language is often difficult

▪ Solution: assembly-based microbenchmarking framework

▪ e.g., likwid-bench

$ likwid-bench -t triad_avx512_fma -W S0:28kB:1

benchmark type

topological entity (see likwid-pin)

working set

of threads

Microbenchmarking

(c) NHR@FAU 2024 5

Schönauer triad on one CascadeLake core 2.5GHz

a[i] = b[i] + d[i] * c[i]

likwid-bench -t triad_avx512_fma -W S0:28kB:1

likwid-bench -t triad -W S0:28kB:1

Microbenchmarking

(c) NHR@FAU 2024 6

Schönauer triad on one CascadeLake core 2.5GHz

x
7

 ?

What are the

theoretical limits?

a[i] = b[i] + d[i] * c[i]

Microbenchmarking

(c) NHR@FAU 2024 8

Throughput triad on one CascadeLake node (2.5 GHz)

▪ How does the bandwidth scale

across cores?

▪ Are there any bottlenecks?

▪ How large are the caches?

▪ Scan $size and $threads

▪ Pin threads in chunks of 1 with

distance of 2 (skip SMT threads)

Performance scales in

L1 / L2 cache levels!

Drop stays at the

same place for

private caches!

L3 cache is not

scalable

Adding another socket

doubles the performance

without changing the

shape!

likwid-bench \

-t triad_avx512_fma

-W S0:$size:$threads:1:2

1
 S

o
c
k
e
t

Microbenchmarking

(c) NHR@FAU 2024 9

Throughput triad on CascadeLake (memory close-up)

Performance saturation in

main memory!

Second socket adds

another memory

interface!

Saturating L3 cache

performance

Socket 1

Socket 2

Microbenchmarking

(c) NHR@FAU 2024 10

Memory bandwidth saturation (read-only)

Fujitsu A64FX AMD Zen3

Milan

Intel Ice Lake 32c

SNC=off

AMD MI210

GPU

NVIDIA A100

GPU

Bandwidth

saturation on 1st

ccNUMA domain

Massive thread

parallelism needed

on GPUs to saturate

Microbenchmarking

(c) NHR@FAU 2024 11

The OpenMP-parallel vector triad benchmark

OpenMP worksharing in the benchmark loop

S = getTimeStamp();

#pragma omp parallel

{

for(int j = 0; j < iter; j++) {

#pragma omp for

#pragma vector aligned

for (int i=0; i<N; i++) {

a[i] = b[i] + d[i] * c[i];

}

if (a[N-1] > 2000) printf("Ai = %f\n",a[N-1]);

}

}

E = getTimeStamp();

Implicit barrier

Microbenchmarking

(c) NHR@FAU 2024 12

OpenMP vector triad on CascadeLake node (2.2 GHz)

Sync overhead grows

with number of threads

Impact on

performance even

with 1 thread

Microbenchmarking

(c) NHR@FAU 2024 17

Conclusions from the microbenchmarks

▪ Microbenchmarks can yield surprisingly deep insights

▪ Affinity matters!

▪ Almost all performance properties depend on the position of

▪ Data

▪ Threads/processes

▪ Consequences

▪ Know where your threads are running

▪ Know where your data is (see later for that)

▪ Bandwidth bottlenecks are ubiquitous

▪ Synchronization overhead may be an issue

▪ … and depends on the system topology!

▪ Many-core poses new challenges in terms of synchronization
Microbenchmarking

