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Microbenchmarking for architectural exploration

Probing of the memory hierarchy

Saturation effects




Motivation for Microbenchmarking as a tool

= |solate small kernels to:

= Separate influences
Determine specific machine capabilities (light speed)
Gain experience about software/hardware interaction
Determine programming model overhead

= Possibilities:
= Readymade benchmark collections (epcc OpenMP, IMB)
= STREAM benchmark for memory bandwidth

= Implement own benchmarks (difficult and error prone)

= 1likwid-bench tool: Offers collection of benchmarks and framework for rapid
development of assembly code kernels
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The parallel vector triad benchmark - A “swiss army knife” for microbenchmarking

double striad seq(double* restrict a, double* restrict b, double* restrict c,
double* restrict d, int N, int iter) {
double S, E;
S = getTimeStamp () ;
for(int j = 0; j < iter; j++) {
#$pragma vector aligned Required to get optimal code with Intel
for (int i = 0; i < N; i++) { compiler icc! New icx unclear
a[i] = b[i] + d[i] * c[i];
}
if (a[N/2] > 2000) printf("Ai = %$£f\n",a[N-1]);
} T
E = getTimeStamp() ;
return E-S;

Keeps smarty-pants
compilers from doing
“clever” stuff

}

= Report performance for different N, choose iter so that accurate time
measurement is possible

= This kernel is limited by data transfer performance for all memory
levels on all architectures, ever!
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A better way — use a microbenchmarking tool

= Microbenchmarking in high-level language is often difficult
= Solution: assembly-based microbenchmarking framework
= €.0., likwid-bench

$ likwid-bench -t triad avx512 fma -W S0:28kB:

benchmark type
topological entity (see likwid-pin)
working set
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Schonauer triad on one CascadelLake core 2.5GHz
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Schonauer triad on one CascadelLake core 2.5GHz
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Throughput triad on one CascadelLake node (2.5 GHz)

= How does the bandwidth scale
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Throughput triad on CascadelLake (memory close-up)
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Memory bandwidth saturation (read-only)
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The OpenMP-parallel vector triad benchmark

OpenMP worksharing in the benchmark loop

S = getTimeStamp () ;
#pragma omp parallel

{

for(int j = 0; j < iter; j++) {
#pragma omp for
#pragma vector aligned
for (int i=0; i<N; i++) {
af[i] = b[i] + d[i] * c[i];

if (a[N- 2000) printf("Ai = %$f\n",a[N-1]);

Implicit barrier

E -
!

getTimeStamp () ;
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OpenMP vector triad on CascadelLake node (2.2 GHz)
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Conclusions from the microbenchmarks

= Microbenchmarks can yield surprisingly deep insights

= Affinity matters!

= Almost all performance properties depend on the position of
- Data
- Threads/processes

= Consequences
- Know where your threads are running
- Know where your data is (see later for that)

= Bandwidth bottlenecks are ubiquitous

= Synchronization overhead may be an issue
= ... and depends on the system topology!
= Many-core poses new challenges in terms of synchronization
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