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FRASCAL HPC Day

General Introduction



https://go-nhr.de/FRASCAL23

Agenda

= General intro, Q&A
= Computer architecture intro, bottlenecks (all)
= Performance vs. scalability, scaling laws (GHa)
- NHR@FAU clusters + file systems (MW)
= Performance assessment with tools
= Typical performance patterns (GHa)
= ClusterCockpit job monitoring (MW)
= likwid-perfctr (TG)
- Demo: analyzing a preconditioned CG solver
= Introduction to the Intel Trace Analyzer and Collector (GHa)
« Demo: analyzing a simple ray tracer code

* Hints and strategies for code performance and scalability optimization (GHa)
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Quiz

Rate of data transfer between main memory (RAM) and CPU chip. s
Typical CPU bs = 30...300 GB/s, GPU bs = 0.8 ... 2.5 TB/s B

= What is “pipelining” in computing?
An instruction execution unit on the core that executes
a certain task in several simple sub-steps. The stages
of the pipeline can act in parallel on several instructions
at once.

= What is “superscalarity™?
Multiple instructions can be finished in parallel each cycle.
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Quiz

= What is a register?
A storage unit in the CPU core that can take one single value (a few

values in case of SIMD). Operands for computations reside in
registers.

= What is “SIMD"?
Single Instruction Multiple Data.
Data-parallel load/store and execution units.
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Anatomy of a (CPU) compute cluster

ode (2 sockets + memory + |/O,
possibly multiple chips

Core

Supercomputer
(many nodes, high-performance
network, storage)

Chip (up to 64 Cores)
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General-purpose cache based microprocessor core
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A modern CPU compute node (AMD Zen2 “Rome”)

Memory Memory Memory Memory
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Adding accelerators to the node
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Quiz

= What is “network latency™?
The time it takes to set up a data transfer over a network connection. Typically 1-3
us (InfiniBand) or a few 100 ns (intra-node)

Transfer time for package of size V: T =1 + %, where A is the latency and B is the
bandwidth of the connection

= What does the following code do?:

MPI_Isend(&buf, .., &request); It looks like work and |
do_some_work(); communication will overlap, but in
MPI Wait(&request,..); practice this depends on many

factors
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Turning it into a cluster

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

communication network
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Adding permanent storage

communication network

FRASCAL HPC Day
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The crucial questions

Questions
= \What are the hardware

= What software propertles
limit the performance of
my code”?

= How should | know?
= \What can | do about it?

communication network

FRASCAL HPC Day
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Quiz

= What is “strong scaling” vs. “weak scaling™?
Strong scaling: more resources (compute units), same problem size
Weak scaling: problem size scales with resources

T(1)
A

T 1 ( —
= What is “Amdahl’s Law”? 5p = TN~ s+ B

N

\ )
Y

T(4)

= "My code shows a speedup of 1000x on 1024 CPUs, so it’s really

efficient.” Any thoughts?
Speedup and performance are different metrics. The code could scale perfectly but

still make inefficient use of hardware resources (compute units, memory
bandwidth)
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What is “performance”™?

Performance metric: ’
# of flops (+-*/)

# of lattice site updates
# of images processed

/< ns of simulated time
# of iterations

WO rk \_“Solving the problem”...

“Wall-clock time”

FRASCAL HPC Day (c) NHR@FAU 2023
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Parallel performance

Performance is generated by parallelism!

P =P.,.. X (# cores)

%Psocket X (# sockets)

“scaling baselines” %PGPU X ( GPUS)

XPnode X (# nodes)

Pob—ciuster X (# sub—clusters)
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Speedup

“How much faster can | compute with n times as much resources?”

cores GPUs

nodes
P (n) sockets

Best case (sortof): S(n) =n
Usual case: S(n) <n Parallel efficiency:
Worst-case scenario: S(n) <1 S(Tl)

FRASCAL HPC Day (c) NHR@FAU 2023
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Quiz

= \What basic roadblocks exist for scaling?

= Structural impediments
- Load imbalance
- Communication overhead
- Synchronization overhead
- Redundant work

= Hardware limitations
- Memory (also cache) bandwidth saturation
- Network contention
- 1/O contention

= Can | make my code scale better by slowing it down?
Absolutely, if communication and synchronization overhead are relevant.
But you shouldn't.

FRASCAL HPC Day (c) NHR@FAU 2023
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“Structural” scaling roadblocks

Communication, synchronization, work imbalance

Unit 1

Unit 2
Unit 3

Unit 4

FRASCAL HPC Day

(c) NHR@FAU 2023



Scaling baselines: Some resources do not scale

Scaling across cores, sockets, nodes

Does this
code “scale”?

_ p'"'
iSocket !
‘boundary /
: B4 i
| | | l l l
10 15 20 1 3 4
# cores # nodes
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Scalablility of hardware components

Parallel and shared resources within a shared-memory node
Parallel resources:

= Execution units €

Cores@

Inner cache levels €

Sockets / memory domains €
Multiple accelerators @

Shared resources:
= Quter cache levels @
Memory bus per socket @
Intersocket link @

i PCle bus(es) (9]
g | [ i Other 1/O resources @

communication network

<
@)
|
[

How does your application react to all of those details?
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So what should | do?

Assess the scaling properties of your
code by benchmarking

= Scaling baseline: Basic allocation unit
(node, GPU) first, then others

= Less than 50% efficiency is a blatant
waste of resources

If you change the input (geometry,
model, data set size), scaling will
probably change, too

= Repeat scaling runs after significant
changes to setup

Performance [arb. units]

Parallel efficiency
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50 \,//////f{///////) K__—_—__—Yﬁ__“———J
. |
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20

good P(n)
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# nodes

1
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0.4 ( ) 1)(11)

E(n) =

0.2 n- P(l)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# nodes
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What about performance (vs. scaling)?

= “Good” scaling does not mean that your code is fast

= |t may still be that it makes bad use of the available main resources
= Computational performance
= Memory bandwidth

= Clustercockpit monitoring to the rescue

= https://monitoring.nhr.fau.de

= HPC Cafeé (January 2023) on ClusterCockpit and the HPC Portal:
https://www.fau.tv/clip/id/46327

FRASCAL HPC Day (c) NHR@FAU 2023
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Quiz

= How can | compute the peak performance of a CPU or a GPU?
Multiply the amount of available resources on each level, e.g.:

(SIMD width) x (#FP instr/cy) x (2) x (# cores) x (clock frequency)

= How can | know the memory bandwidth of my CPU or GPU
Run a streaming benchmark (e.g., STREAM Triad) to measure it

= What is the “Roofline Model”?
A simple analytic performance model, which assumes that a loop’s performance is
limited either by memory data transfer or by code execution, whichever takes
longer

FRASCAL HPC Day (c) NHR@FAU 2023 24
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A simple performance model for loops

Simplistic view of the hardware:

Execution units
max. performance

Data path,
bandwidth bg
- Unit: byte/s

Data source/sink

Simplistic view of the software:

do i = 1,<sufficient>
<complicated stuff doing

causing
transfer>

Computational intensity [ = %
—> Unit: flop/byte

Also in use: Code balance B, = %
—> Unit: byte/flop

Other metrics for work are possible

FRASCAL HPC Day

(c) NHR@FAU 2023
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Nalve Roofline Model

How fast can tasks be processed at most? P [flop/s]

The bottleneck is either

The execution of work: Ppeak [flop/s]
The data path: I bg [flop/byte x byte/s]
P =min(P,ea1, | - bs) N —
©
é 'Dpeak
This is the “Naive Roofline Model” i
High intensity: P limited by execution
Low intensity: P limited by data transfer \‘\06
‘Knee” at Pyoqx =1 - bs:
Best use of resources
Roofline is an “optimistic” model
/

(think “light speed”)

Intensity

FRASCAL HPC Day

(c) NHR@FAU 2023
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Roofline: application model and machine model

Apply the naive Roofline model in practice

-
Machine parameter #1: Peak performance: Ppeak H
; *1 > Machine model
Machine parameter #2: Memory bandwidth: bs H
_/
Code characteristic: Computational intensity: I E] } Application model
8 - |
Machine properties: A, P pek
P =2.5GF/s
P :4E < ; ___________________ | double s=0, a[];
peak S > i} ' for (i=0; i<N; ++i) {
: L W i s =s +a[i] * a[i];}
GB £ i
bS — 10? £ osk i B
_2F _ F
. i | I_ISB_ 0.25F/5
| | | | < | |

Application property: / o4 132 116 U8 14 1z 1 ;

Computational intensity I [F/B]

FRASCAL HPC Day (c) NHR@FAU 2023
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Diagnostic modeling

= What if we cannot predict the intensity/balance? _ 4
= Code very complicated
= Code not available
= Parameters unknown
= Doubts about correctness of analysis

= Measure data volume V... (and work N,,,..)
= Hardware performance counters
= Tools: likwid-perfctr, PAPI, Intel Vtune,...

* Insights + benefits
= Compare analytic model and measurement - validate model

= Can be applied (semi-)automatically
= Useful in performance monitoring of user jobs on clusters

Performance

Intensity

FRASCAL HPC Day (c) NHR@FAU 2023 29
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Identifying problems:
— Typical performance patterns




Performance patterns 1: low-hanging fruits

= Too many/too few nodes allocated
= Load >#cores per node
= Non-usage of allocated GPU

Probably an oversight, or you copied a script without proper adaptations.

Easy solution: Fix your job script

FRASCAL HPC Day (c) NHR@FAU 2023
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Performance patterns 2: bad hardware utilization

= Far away from Roofline in diagnostic
Roofline plot
-> no large fraction of memBW
—> no large fraction of peak

Possible reasons?
= “Invisible performance ceiling”
= Load imbalance
- Bad memory access patterns

= Large overhead from I/O or
communication/synchronization

= Anything from previous slide

Performance

max

02

Intensity

FRASCAL HPC Day

(c) NHR@FAU 2023
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Performance patterns 2: bad hardware utilization

= | ow vectorization ratio
Low ratio of vectorized (SIMD) vs. scalar instructions; not necessarily bad
= Some codes just cannot be vectorized
= |f hardware utilization is still good, you might not care
= |[f SIMD pays off, a factor of up to 8x (DP) might be achievable

time time
- -
| 1

= Load imbalance (actually,

execution time imbalance) work ,
Should usually be fixed; wok | EwatZ wai g
however, memory-bound code I '
is more forgiving towards e e Hor
load imbalance (why?) work _wait_| work

Caveat: Two extreme cases! S - .
ync point . Sync point .
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Performance patterns 3: |/O

= High IB package rate
= IB latency is in the low-us range; hundreds of millions of IB packages per
second are thus near the limit
- Remedy: Communicate less ©, aggregation

= Probably you are just using too many nodes/processes

= High NFS rate
Some codes write to NFS-mounted volumes frequently; a “fat” server can take up

to 500 MB/sec

* Fine-grained, high-frequency 1/O
Rapid-fire I/0O requests can overload the metadata servers and severely slow down
the shared file system for all users
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