NHRJFAU

FRASCAL HPC Day

General Introduction

https://go-nhr.de/FRASCAL23

Agenda

= General intro, Q&A
= Computer architecture intro, bottlenecks (all)
= Performance vs. scalability, scaling laws (GHa)
- NHR@FAU clusters + file systems (MW)
= Performance assessment with tools
= Typical performance patterns (GHa)
= ClusterCockpit job monitoring (MW)
= likwid-perfctr (TG)
- Demo: analyzing a preconditioned CG solver
= Introduction to the Intel Trace Analyzer and Collector (GHa)
« Demo: analyzing a simple ray tracer code

* Hints and strategies for code performance and scalability optimization (GHa)

FRASCAL HPC Day (c) NHR@FAU 2023 2

Quiz

Rate of data transfer between main memory (RAM) and CPU chip. s
Typical CPU bs = 30...300 GB/s, GPU bs = 0.8 ... 2.5 TB/s B

= What is “pipelining” in computing?
An instruction execution unit on the core that executes
a certain task in several simple sub-steps. The stages
of the pipeline can act in parallel on several instructions
at once.

= What is “superscalarity™?
Multiple instructions can be finished in parallel each cycle.

FRASCAL HPC Day (c) NHR@FAU 2023

Quiz

= What is a register?
A storage unit in the CPU core that can take one single value (a few

values in case of SIMD). Operands for computations reside in
registers.

= What is “SIMD"?
Single Instruction Multiple Data.
Data-parallel load/store and execution units.

INEY

—
m
—
o
—
(o]
—
o
—
—l
—
o
—
Y
—
o

A[@] A[1] A[2]

FRASCAL HPC Day (c) NHR@FAU 2023

Anatomy of a (CPU) compute cluster

ode (2 sockets + memory + |/O,
possibly multiple chips

Core

Supercomputer
(many nodes, high-performance
network, storage)

Chip (up to 64 Cores)

FRASCAL HPC Day (c) NHR@FAU 2023

General-purpose cache based microprocessor core

CPU L1 Icache Modern CPU core
Control Arithn_letic -5- > o
) logic o
unit unit 5
O | ousser | oo | Dscuer | Docoser |
=
>
3
— - Reorder buffer / Regi i
Memory 3T__; eorder buffer / Register renaming G
';g): -.,i—_J Scheduler
ocC
Stored-program Computer Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
— — — — —
ALU_| AU | LOAD | LOAD | STORE/| AL
= Implements “Stored Program Computer” _MUL | DD abi=m EeDR=E EME
concept S
= Similar designs on all modern systems “
= (Still) multiple potential bottlenecks | l l
- Daia flow
- . Gontrol flow
. « ” cache Memory control ot. bottlenec
The clock cycle is the “heartbeat” of the core — ot botlleneck

FRASCAL HPC Day (c) NHR@FAU 2023

A modern CPU compute node (AMD Zen2 “Rome”)

Memory Memory Memory Memory

T
PP

22 Lo |22+ io ||[azeLio | [zs o a2 Lo | [z e ||[22c cro 3z o
s1zc 2 ||| sezwz || sizeiz| [s1ze 2 sk | [||[sew e ||[sone

{

B
v
o
o
o

(7] T
PP

o=
o

)RR
PIP|P

a2k L1o ||[az6 Lio |f|[azv Lo | [[aze Lo
sazciz ||| sizein [sizecz || [sz

22 L1n|([[2« e [3z o 220

core Frme | e e o

16 MiB L3 8 16 MiB L3 16 MiB L3 16 MiB L3
e1damel 8 BETED £1amol RETER
zoxas [zwans [z s) 21xzrs BEESIBEER | RS BEES i [z s [l z1xzes [lff 2742 BIEH| BEES BEES|| BEES
e e o e o B e e e | ke ot et | evm oot

didjd|d
(o1 ol T

(R
P P|P|P

22 Lin|([[22 an | [22 oo 22610
sizk 2 | [s1zwiz || [[siew iz | sizn iz

dld|d]|d d|ld|d|d
3L ESEN EVEY VTN I NI VY VY

dlld]d]d
¥5EY EVEY ENEN ESEY

i 0 6 6O
PIP|P|P

22 110 |[22¢ 1o |22 w0 | [[=ze 1o
sizi2 ||[sizeia [sizeiz || s12e 2

))
PlrlP|P PIPIP P

2210 ||[22¢ o [|[22c oo [zzc 0 22 Lo | [[azw i |22 cio |3z Lo
51z 2 || sizw 2 ||[size 2| [s12e 2 sizwiz |[[size 2 | [[suzw 2 ||| 512k 2

16 MiB L3 8 8 16 MiB L3 16 MiB L3 16 MiB L3
€199l BETTED e1amal £19IN 91

BEES RS || e EaEET zozs [zvvars f[[zoers [[zvzrs ERET] | | Bk ke EakEEd 21azis ||f) 21 xzis Jlf] 21 %21 || 29z is

T e |9 vee || [T e ||| 0T v T ||[on e |([ameE | e e arT e ([T se || [oF e || [OrT e (SR | CIREES| (| CEEE | R

didjd|d
(o1 ol e

d|d|ld]d dlld|d]d
TS EVEY BT BB BB oo 6o

dild|d|ld
Y VY S VY

R
PIPlP|P

ETIRT: (| EEPIRT | EETRE | ETTREY

il i |))
Plriirp|P dRELE

ETIRE] | EEAREN || EECTRE | TR 22 o | [[azk e | |3z Lro 3z Lo

Ok G
Plr|r|P

EFTTR) | EETIRTS || EETRI: || TR

sizc 2| [s1zeiz || [srzciz ||| ez s1zc 2 ||| sezwz || sizei2 || |[s12e 2 suzeiz |[[sezcz || [sizz ||[sene saziz ||| sizei || sizecz || sz
16 MiB L3 8 16 MiB L3 16 MiB L3 16 MiB L3
€1 9N 91 e1am st gl1amal €19 91
T vis [[[[2w [e s [e s Tiwzis [Tz [l 21 i [l iz TS [[[[21 vzis [2 [2 v BlEH | B REE | REES
a1 vz | @ vee |G e | T vee G e || [veE | [e a7 e | [arT e @ e | [a0 e | [T || @ | ([arTveE

didjd|d
B O 60 60
R
P PlP|P

azx Lio|([[azx ao | |[azx o] a2k Lo

d|idjdj|d djidjd|d
(o o) (2T [T | S BEY VS
FFFE| RS R
AR Plp|P|P

ETIRE] | EZ2REN || EE2TRE) | ETTRr azx Lo | [[azk L1 | [z cro |3z 1o

djid|d|d
3 BV EE i
FFRFERFET
PIPIPI[P

2k 110 ||[3z6 Lio |f|[2zv Lo | [[aze Lo

sizcz ||[siniz || sz I sezwiz sizcL2 |l si 2 [size 2] [z 2 sizeiz |[[sez iz ||[[size 2 || siz iz iz ||[sizi iz | size 2 || siz 2
16 MiB L3 8 16 MiB L3 16 MiB L3 16 MiB L3
€78 91 €749 91 €78 91 €181 91

TS [e e [wes T e [z [z T [[[zres [ez 2 wes, T [e [e [[ees

e | e || o e || AT v || [T | AT T vee | arT e v v | /arT e o v | [arTree || |G (@

d|d|d|d
B0 BB B0 DD

d
]

d dl[d|d]d
(2] BO BO OO BO

d
B0

FE
FHEE

%n.
&n.
%n.

ccNUMA domain

Aowapy Aowapy fowap Aowapy

FRASCAL HPC Day (c) NHR@FAU 2023

Adding accelerators to the node

>
2
il
&
&

e1amsL

i

=

T[]

Y
Vo
al
£
o o0
= .
A - 8 >
2 2
@ @
r r
o 5

accelerator
die core hyper-thread

FRASCAL HPC Day (c) NHR@FAU 2023

Quiz

= What is “network latency™?
The time it takes to set up a data transfer over a network connection. Typically 1-3
us (InfiniBand) or a few 100 ns (intra-node)

Transfer time for package of size V: T =1 + %, where A is the latency and B is the
bandwidth of the connection

= What does the following code do?:

MPI_Isend(&buf, .., &request); It looks like work and |
do_some_work(); communication will overlap, but in
MPI Wait(&request,..); practice this depends on many

factors

FRASCAL HPC Day (c) NHR@FAU 2023 9

Turning it into a cluster

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

NIC

communication network

10

(c) NHR@FAU 2023

FRASCAL HPC Day

Adding permanent storage

communication network

FRASCAL HPC Day

(c) NHR@FAU 2023

11

https://creativecommons.org/licenses/by-sa/3.0/deed.en

The crucial questions

Questions
= \What are the hardware

= What software propertles
limit the performance of
my code”?

= How should | know?
= \What can | do about it?

communication network

FRASCAL HPC Day

(c) NHR@FAU 2023

12

https://creativecommons.org/licenses/by-sa/3.0/deed.en

Quiz

= What is “strong scaling” vs. “weak scaling™?
Strong scaling: more resources (compute units), same problem size
Weak scaling: problem size scales with resources

T(1)
A

T 1 (—
= What is “Amdahl’s Law”? 5p = TN~ s+ B

N

\)
Y

T(4)

= "My code shows a speedup of 1000x on 1024 CPUs, so it’s really

efficient.” Any thoughts?
Speedup and performance are different metrics. The code could scale perfectly but

still make inefficient use of hardware resources (compute units, memory
bandwidth)

FRASCAL HPC Day (c) NHR@FAU 2023 13

What is “performance”™?

Performance metric: ’
of flops (+-*/)

of lattice site updates
of images processed

/< ns of simulated time
of iterations

WO rk _“Solving the problem”...

“Wall-clock time”

FRASCAL HPC Day (c) NHR@FAU 2023

14

Parallel performance

Performance is generated by parallelism!

P =P.,.. X (# cores)

%Psocket X (# sockets)

“scaling baselines” %PGPU X (GPUS)

XPnode X (# nodes)

Pob—ciuster X (# sub—clusters)

FRASCAL HPC Day (c) NHR@FAU 2023 15

Speedup

“How much faster can | compute with n times as much resources?”

cores GPUs

nodes
P (n) sockets

Best case (sortof): S(n) =n
Usual case: S(n) <n Parallel efficiency:
Worst-case scenario: S(n) <1 S(Tl)

FRASCAL HPC Day (c) NHR@FAU 2023

16

Quiz

= \What basic roadblocks exist for scaling?

= Structural impediments
- Load imbalance
- Communication overhead
- Synchronization overhead
- Redundant work

= Hardware limitations
- Memory (also cache) bandwidth saturation
- Network contention
- 1/O contention

= Can | make my code scale better by slowing it down?
Absolutely, if communication and synchronization overhead are relevant.
But you shouldn't.

FRASCAL HPC Day (c) NHR@FAU 2023

17

“Structural” scaling roadblocks

Communication, synchronization, work imbalance

Unit 1

Unit 2
Unit 3

Unit 4

FRASCAL HPC Day

(c) NHR@FAU 2023

Scaling baselines: Some resources do not scale

Scaling across cores, sockets, nodes

Does this
code “scale”?

_ p'"'
iSocket !
‘boundary /
: B4 i
| | | l l l
10 15 20 1 3 4
cores # nodes

FRASCAL HPC Day

(c) NHR@FAU 2023

19

Scalablility of hardware components

Parallel and shared resources within a shared-memory node
Parallel resources:

= Execution units €

Cores@

Inner cache levels €

Sockets / memory domains €
Multiple accelerators @

Shared resources:
= Quter cache levels @
Memory bus per socket @
Intersocket link @

i PCle bus(es) (9]
g | [i Other 1/O resources @

communication network

<
@)
|
[

How does your application react to all of those details?

FRASCAL HPC Day (c) NHR@FAU 2023 21

https://creativecommons.org/licenses/by-sa/3.0/deed.en

So what should | do?

Assess the scaling properties of your
code by benchmarking

= Scaling baseline: Basic allocation unit
(node, GPU) first, then others

= Less than 50% efficiency is a blatant
waste of resources

If you change the input (geometry,
model, data set size), scaling will
probably change, too

= Repeat scaling runs after significant
changes to setup

Performance [arb. units]

Parallel efficiency

70

60
50 \,//////f{///////) K__—_—__—Yﬁ__“———J
. |

40 ok-ish yuck!

30

20

good P(n)

10

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
nodes

1
0.8
0.6
0.4 () 1)(11)

E(n) =

0.2 n- P(l)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
nodes

FRASCAL HPC Day

(c) NHR@FAU 2023 22

What about performance (vs. scaling)?

= “Good” scaling does not mean that your code is fast

= |t may still be that it makes bad use of the available main resources
= Computational performance
= Memory bandwidth

= Clustercockpit monitoring to the rescue

= https://monitoring.nhr.fau.de

= HPC Cafeé (January 2023) on ClusterCockpit and the HPC Portal:
https://www.fau.tv/clip/id/46327

FRASCAL HPC Day (c) NHR@FAU 2023

23

https://monitoring.nhr.fau.de/
https://www.fau.tv/clip/id/46327

Quiz

= How can | compute the peak performance of a CPU or a GPU?
Multiply the amount of available resources on each level, e.g.:

(SIMD width) x (#FP instr/cy) x (2) x (# cores) x (clock frequency)

= How can | know the memory bandwidth of my CPU or GPU
Run a streaming benchmark (e.g., STREAM Triad) to measure it

= What is the “Roofline Model”?
A simple analytic performance model, which assumes that a loop’s performance is
limited either by memory data transfer or by code execution, whichever takes
longer

FRASCAL HPC Day (c) NHR@FAU 2023 24

FAU F/A\\U El"g“ﬁ' werg

The Roofline Model

A simple performance model for loops

Simplistic view of the hardware:

Execution units
max. performance

Data path,
bandwidth bg
- Unit: byte/s

Data source/sink

Simplistic view of the software:

do i = 1,<sufficient>
<complicated stuff doing

causing
transfer>

Computational intensity [= %
—> Unit: flop/byte

Also in use: Code balance B, = %
—> Unit: byte/flop

Other metrics for work are possible

FRASCAL HPC Day

(c) NHR@FAU 2023

26

Nalve Roofline Model

How fast can tasks be processed at most? P [flop/s]

The bottleneck is either

The execution of work: Ppeak [flop/s]
The data path: I bg [flop/byte x byte/s]
P =min(P,ea1, | - bs) N —
©
é 'Dpeak
This is the “Naive Roofline Model” i
High intensity: P limited by execution
Low intensity: P limited by data transfer \‘\06
‘Knee” at Pyoqx =1 - bs:
Best use of resources
Roofline is an “optimistic” model
/

(think “light speed”)

Intensity

FRASCAL HPC Day

(c) NHR@FAU 2023

27

Roofline: application model and machine model

Apply the naive Roofline model in practice

-
Machine parameter #1: Peak performance: Ppeak H
; *1 > Machine model
Machine parameter #2: Memory bandwidth: bs H
_/
Code characteristic: Computational intensity: I E] } Application model
8 - |
Machine properties: A, P pek
P =2.5GF/s
P :4E < ; ___________________ | double s=0, a[];
peak S > i} ' for (i=0; i<N; ++i) {
: L W i s =s +a[i] * a[i];}
GB £ i
bS — 10? £ osk i B
_2F _ F
. i | I_ISB_ 0.25F/5
| | | | < | |

Application property: / o4 132 116 U8 14 1z 1 ;

Computational intensity I [F/B]

FRASCAL HPC Day (c) NHR@FAU 2023

28

Diagnostic modeling

= What if we cannot predict the intensity/balance? _ 4
= Code very complicated
= Code not available
= Parameters unknown
= Doubts about correctness of analysis

= Measure data volume V... (and work N,,,..)
= Hardware performance counters
= Tools: likwid-perfctr, PAPI, Intel Vtune,...

* Insights + benefits
= Compare analytic model and measurement - validate model

= Can be applied (semi-)automatically
= Useful in performance monitoring of user jobs on clusters

Performance

Intensity

FRASCAL HPC Day (c) NHR@FAU 2023 29

FAU FAU s

Identifying problems:
— Typical performance patterns

Performance patterns 1: low-hanging fruits

= Too many/too few nodes allocated
= Load >#cores per node
= Non-usage of allocated GPU

Probably an oversight, or you copied a script without proper adaptations.

Easy solution: Fix your job script

FRASCAL HPC Day (c) NHR@FAU 2023

32

Performance patterns 2: bad hardware utilization

= Far away from Roofline in diagnostic
Roofline plot
-> no large fraction of memBW
—> no large fraction of peak

Possible reasons?
= “Invisible performance ceiling”
= Load imbalance
- Bad memory access patterns

= Large overhead from I/O or
communication/synchronization

= Anything from previous slide

Performance

max

02

Intensity

FRASCAL HPC Day

(c) NHR@FAU 2023

33

Performance patterns 2: bad hardware utilization

= | ow vectorization ratio
Low ratio of vectorized (SIMD) vs. scalar instructions; not necessarily bad
= Some codes just cannot be vectorized
= |f hardware utilization is still good, you might not care
= |[f SIMD pays off, a factor of up to 8x (DP) might be achievable

time time
- -
| 1

= Load imbalance (actually,

execution time imbalance) work ,
Should usually be fixed; wok | EwatZ wai g
however, memory-bound code I '
is more forgiving towards e e Hor
load imbalance (why?) work _wait_| work

Caveat: Two extreme cases! S - .
ync point . Sync point .

FRASCAL HPC Day (c) NHR@FAU 2023 34

Performance patterns 3: |/O

= High IB package rate
= IB latency is in the low-us range; hundreds of millions of IB packages per
second are thus near the limit
- Remedy: Communicate less ©, aggregation

= Probably you are just using too many nodes/processes

= High NFS rate
Some codes write to NFS-mounted volumes frequently; a “fat” server can take up

to 500 MB/sec

* Fine-grained, high-frequency 1/O
Rapid-fire I/0O requests can overload the metadata servers and severely slow down
the shared file system for all users

FRASCAL HPC Day (c) NHR@FAU 2023 35

	FRASCAL HPC Day
	Agenda
	Quiz
	Quiz
	Anatomy of a (CPU) compute cluster
	General-purpose cache based microprocessor core
	A modern CPU compute node (AMD Zen2 “Rome”)
	Adding accelerators to the node
	Quiz
	Turning it into a cluster
	Adding permanent storage
	The crucial questions
	Quiz
	What is “performance”?
	Parallel performance
	Speedup
	Quiz
	“Structural” scaling roadblocks
	Scaling baselines: Some resources do not scale
	Scalablility of hardware components
	So what should I do?
	What about performance (vs. scaling)?
	Quiz
	The Roofline Model
	A simple performance model for loops
	Naïve Roofline Model
	Roofline: application model and machine model
	Diagnostic modeling
	Identifying problems:�Typical performance patterns
	Performance patterns 1: low-hanging fruits
	Performance patterns 2: bad hardware utilization
	Performance patterns 2: bad hardware utilization
	Performance patterns 3: I/O

