
FRASCAL HPC Day

General Introduction

https://go-nhr.de/FRASCAL23

https://go-nhr.de/FRASCAL23

Agenda
 General intro, Q&A

 Computer architecture intro, bottlenecks (all)
 Performance vs. scalability, scaling laws (GHa)
 NHR@FAU clusters + file systems (MW)

 Performance assessment with tools
 Typical performance patterns (GHa)
 ClusterCockpit job monitoring (MW)
 likwid-perfctr (TG)

 Demo: analyzing a preconditioned CG solver

 Introduction to the Intel Trace Analyzer and Collector (GHa)
 Demo: analyzing a simple ray tracer code

 Hints and strategies for code performance and scalability optimization (GHa)
(c) NHR@FAU 2023FRASCAL HPC Day 2

Quiz
 What is “memory bandwidth”?

Rate of data transfer between main memory (RAM) and CPU chip.
Typical CPU 𝑏𝑏𝑆𝑆 ≈ 30 … 300 GB/s, GPU 𝑏𝑏𝑆𝑆 ≈ 0.8 … 2.5 TB/s

 What is “pipelining” in computing?
An instruction execution unit on the core that executes
a certain task in several simple sub-steps. The stages
of the pipeline can act in parallel on several instructions
at once.

 What is “superscalarity”?
Multiple instructions can be finished in parallel each cycle.

(c) NHR@FAU 2023FRASCAL HPC Day 3

Quiz
 What is a register?

A storage unit in the CPU core that can take one single value (a few
values in case of SIMD). Operands for computations reside in
registers.

 What is “SIMD”?
Single Instruction Multiple Data.
Data-parallel load/store and execution units.

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C[
0]

C[
1]

C[
2]

C[
3]

+

+

+

+

R0 R1 R2

(c) NHR@FAU 2023FRASCAL HPC Day 4

Anatomy of a (CPU) compute cluster
Core

Chip (up to 64 Cores)

Node (2 sockets + memory + I/O,
possibly multiple chips

per socket)

Socket

M
em

ory
M

em
ory

Socket

core

core

core

core

core

core

core

core

core

core

core

core
…

L3 cache

Registers

L1 cache

L2 cache

Exec. units

Supercomputer
(many nodes, high-performance

network, storage)

(c) NHR@FAU 2023FRASCAL HPC Day 5

6FRASCAL HPC Day

General-purpose cache based microprocessor core

 Implements “Stored Program Computer”
concept

 Similar designs on all modern systems
 (Still) multiple potential bottlenecks

The clock cycle is the “heartbeat” of the core

Stored-program computer

Modern CPU core

(c) NHR@FAU 2023

(c) NHR@FAU 2023 7FRASCAL HPC Day

A modern CPU compute node (AMD Zen2 “Rome”)

ccNUMA domain

core

(c) NHR@FAU 2023 8FRASCAL HPC Day

Adding accelerators to the node
PCIe

accelerator

CPU 1

CPU 0

hyper-threadcoredie

Quiz
 What is “network latency”?

The time it takes to set up a data transfer over a network connection. Typically 1-3
µs (InfiniBand) or a few 100 ns (intra-node)

Transfer time for package of size 𝑉𝑉: 𝑇𝑇 = 𝜆𝜆 + 𝑉𝑉
𝐵𝐵
, where 𝜆𝜆 is the latency and 𝐵𝐵 is the

bandwidth of the connection

 What does the following code do?:

MPI_Isend(&buf, …, &request);
do_some_work();
MPI_Wait(&request,…);

It looks like work and
communication will overlap, but in
practice this depends on many
factors

(c) NHR@FAU 2023FRASCAL HPC Day 9

Turning it into a cluster

C
PU

 1

C
PU

 0
N

IC

N
IC

C
PU

 1

C
PU

 0
N

IC

N
IC

C
PU

 1

C
PU

 0
N

IC

N
IC

communication network
C

PU
 1

C
PU

 0
N

IC

N
IC

C
PU

 1

C
PU

 0
N

IC

N
IC

C
PU

 1

C
PU

 0
N

IC

N
IC

…

(c) NHR@FAU 2023FRASCAL HPC Day 10

(c) NHR@FAU 2023 11FRASCAL HPC Day

Adding permanent storage

CPU 1

CPU 0 NIC

NIC

CPU 1

CPU 0 NIC

NIC

CPU 1

CPU 0 NIC

NIC

co
m

m
un

ic
at

io
n

ne
tw

or
k

©
 G

. S
hu

kli
n

https://creativecommons.org/licenses/by-sa/3.0/deed.en

The crucial questions
Questions
 What are the hardware

components that limit the
performance of my code?

 What software properties
limit the performance of
my code?

 How should I know?
 What can I do about it? CPU 1

CPU 0 NIC

NIC

CPU 1

CPU 0 NIC

NIC

CPU 1

CPU 0 NIC

NIC

co
m

m
un

ic
at

io
n

ne
tw

or
k

©
 G

. S
hu

kli
n

(c) NHR@FAU 2023FRASCAL HPC Day 12

https://creativecommons.org/licenses/by-sa/3.0/deed.en

Quiz
 What is “strong scaling” vs. “weak scaling”?

Strong scaling: more resources (compute units), same problem size
Weak scaling: problem size scales with resources

 What is “Amdahl’s Law”?

 “My code shows a speedup of 1000x on 1024 CPUs, so it’s really
efficient.” Any thoughts?
Speedup and performance are different metrics. The code could scale perfectly but
still make inefficient use of hardware resources (compute units, memory
bandwidth)

𝑆𝑆𝑝𝑝 =
𝑇𝑇(1)
𝑇𝑇(𝑁𝑁)

=
1

𝑠𝑠 + 1−𝑠𝑠
𝑁𝑁

𝑇𝑇(1)

𝑇𝑇(4)

(c) NHR@FAU 2023FRASCAL HPC Day 13

What is “performance”?

Performance metric:

𝑃𝑃 =
Work
Time

of flops (+ - * /)
of lattice site updates
of images processed
ns of simulated time
of iterations
“Solving the problem”...

“Wall-clock time”

(c) NHR@FAU 2023FRASCAL HPC Day 14

Parallel performance
Performance is generated by parallelism!

𝑃𝑃 = 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × (# cores)

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × (# sockets)

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 × (# nodes)

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × (# sub−clusters)

“scaling baselines” 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺 × (# GPUs)

(c) NHR@FAU 2023FRASCAL HPC Day 15

Speedup
“How much faster can I compute with 𝑛𝑛 times as much resources?”

Best case (sort of): 𝑆𝑆(𝑛𝑛) = 𝑛𝑛
Usual case: 𝑆𝑆 𝑛𝑛 < 𝑛𝑛
Worst-case scenario: 𝑆𝑆 𝑛𝑛 < 1

𝑆𝑆 𝑛𝑛 =
𝑃𝑃 𝑛𝑛
𝑃𝑃(1)

cores

sockets
nodes

GPUs

…

𝜀𝜀 𝑛𝑛 =
𝑆𝑆 𝑛𝑛
𝑛𝑛

Parallel efficiency:

(c) NHR@FAU 2023FRASCAL HPC Day 16

Quiz
 What basic roadblocks exist for scaling?

 Structural impediments
 Load imbalance
 Communication overhead
 Synchronization overhead
 Redundant work

 Hardware limitations
 Memory (also cache) bandwidth saturation
 Network contention
 I/O contention

 Can I make my code scale better by slowing it down?
Absolutely, if communication and synchronization overhead are relevant.
But you shouldn’t.

(c) NHR@FAU 2023FRASCAL HPC Day 17

“Structural” scaling roadblocks
Communication, synchronization, work imbalance

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

Unit 1

Unit 2

Unit 3

Unit 4

time

(c) NHR@FAU 2023FRASCAL HPC Day 18

Scaling baselines: Some resources do not scale
Scaling across cores, sockets, nodes

Socket
boundary

Does this
code “scale”?

(c) NHR@FAU 2023FRASCAL HPC Day 19

CPU 1

CPU 0 NIC

NIC

CPU 1

CPU 0 NIC

NIC

CPU 1

CPU 0 NIC

NIC

co
m

m
un

ic
at

io
n

ne
tw

or
k

©
 G

. S
hu

kli
n

21FRASCAL HPC Day

Scalablility of hardware components

Parallel and shared resources within a shared-memory node
Parallel resources:
 Execution units
 Cores
 Inner cache levels
 Sockets / memory domains
 Multiple accelerators

Shared resources:
 Outer cache levels
 Memory bus per socket
 Intersocket link
 PCIe bus(es)
 Other I/O resources

1

2

3

4
5

1

2

3

4

56

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?
(c) NHR@FAU 2023

10

10

https://creativecommons.org/licenses/by-sa/3.0/deed.en

So what should I do?
Assess the scaling properties of your
code by benchmarking
 Scaling baseline: Basic allocation unit

(node, GPU) first, then others
 Less than 50% efficiency is a blatant

waste of resources

If you change the input (geometry,
model, data set size), scaling will
probably change, too
 Repeat scaling runs after significant

changes to setup

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Pe
rfo

rm
an

ce
 [a

rb
. u

ni
ts

]
Pa

ra
lle

l e
ffi

ci
en

cy

nodes

𝜀𝜀 𝑛𝑛 =
𝑃𝑃(𝑛𝑛)

𝑛𝑛 ⋅ 𝑃𝑃(1)

𝑃𝑃(𝑛𝑛)good

ok-ish yuck!

nodes

(c) NHR@FAU 2023FRASCAL HPC Day 22

What about performance (vs. scaling)?
 “Good” scaling does not mean that your code is fast
 It may still be that it makes bad use of the available main resources

 Computational performance
 Memory bandwidth

 Clustercockpit monitoring to the rescue
 https://monitoring.nhr.fau.de
 HPC Café (January 2023) on ClusterCockpit and the HPC Portal:

https://www.fau.tv/clip/id/46327

(c) NHR@FAU 2023FRASCAL HPC Day 23

https://monitoring.nhr.fau.de/
https://www.fau.tv/clip/id/46327

Quiz
 How can I compute the peak performance of a CPU or a GPU?

Multiply the amount of available resources on each level, e.g.:

(SIMD width) x (#FP instr/cy) x (2) x (# cores) x (clock frequency)

 How can I know the memory bandwidth of my CPU or GPU
Run a streaming benchmark (e.g., STREAM Triad) to measure it

 What is the “Roofline Model”?
A simple analytic performance model, which assumes that a loop’s performance is
limited either by memory data transfer or by code execution, whichever takes
longer

(c) NHR@FAU 2023FRASCAL HPC Day 24

The Roofline Model

(c) NHR@FAU 2023 26FRASCAL HPC Day

A simple performance model for loops

Simplistic view of the hardware:

do i = 1,<sufficient>
<complicated stuff doing
N flops causing
V bytes of data transfer>

enddo

Execution units
max. performance

𝑷𝑷𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

Data source/sink

Data path,
bandwidth 𝒃𝒃𝑺𝑺
 Unit: byte/s

Simplistic view of the software:

Computational intensity 𝐼𝐼 = 𝑁𝑁
𝑉𝑉

 Unit: flop/byte

Also in use: Code balance 𝐵𝐵𝑐𝑐 = 𝑉𝑉
𝑁𝑁

 Unit: byte/flop

Other metrics for work are possible

(c) NHR@FAU 2023 27FRASCAL HPC Day

Naïve Roofline Model
How fast can tasks be processed at most? 𝑷𝑷 [flop/s]

The bottleneck is either
 The execution of work: 𝑃𝑃peak [flop/s]

 The data path: 𝐼𝐼 � 𝑏𝑏𝑆𝑆 [flop/byte x byte/s]

This is the “Naïve Roofline Model”
 High intensity: P limited by execution
 Low intensity: P limited by data transfer
 “Knee” at 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐼𝐼 � 𝑏𝑏𝑆𝑆:

Best use of resources
 Roofline is an “optimistic” model

(think “light speed”)

𝑃𝑃 = min(𝑃𝑃peak, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)

Intensity

Pe
rfo

rm
an

ce

Ppeak

(c) NHR@FAU 2023 28FRASCAL HPC Day

Roofline: application model and machine model

Machine properties:

𝑷𝑷𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 4
GF
s

𝒃𝒃𝑺𝑺 = 10
GB
s

Application property: I

double s=0, a[];
for(i=0; i<N; ++i) {

s = s + a[i] * a[i];}

𝑃𝑃 = 2.5 GF/s

𝐼𝐼 = 2 𝐹𝐹
8 𝐵𝐵

= 0.25 ⁄𝐹𝐹 𝐵𝐵

Apply the naive Roofline model in practice

 Machine parameter #1: Peak performance: 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐹𝐹
𝑠𝑠

 Machine parameter #2: Memory bandwidth: 𝑏𝑏𝑆𝑆
𝐵𝐵
𝑠𝑠

 Code characteristic: Computational intensity: 𝐼𝐼 𝐹𝐹
𝐵𝐵

Machine model

Application model

Diagnostic modeling
 What if we cannot predict the intensity/balance?

 Code very complicated
 Code not available
 Parameters unknown
 Doubts about correctness of analysis

 Measure data volume 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (and work 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
 Hardware performance counters
 Tools: likwid-perfctr, PAPI, Intel Vtune,…

 Insights + benefits
 Compare analytic model and measurement  validate model
 Can be applied (semi-)automatically
 Useful in performance monitoring of user jobs on clusters

Intensity

Pe
rfo

rm
an

ce

Pmax

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(c) NHR@FAU 2023FRASCAL HPC Day 29

Identifying problems:
Typical performance patterns

Performance patterns 1: low-hanging fruits
 Too many/too few nodes allocated
 Load >#cores per node
 Non-usage of allocated GPU

Probably an oversight, or you copied a script without proper adaptations.

Easy solution: Fix your job script

(c) NHR@FAU 2023FRASCAL HPC Day 32

Performance patterns 2: bad hardware utilization
 Far away from Roofline in diagnostic

Roofline plot
 no large fraction of memBW
 no large fraction of peak

Possible reasons?
 “Invisible performance ceiling”
 Load imbalance
 Bad memory access patterns
 Large overhead from I/O or

communication/synchronization
 Anything from previous slide

Intensity

Pe
rfo

rm
an

ce

Pmax

(c) NHR@FAU 2023FRASCAL HPC Day 33

Performance patterns 2: bad hardware utilization
 Low vectorization ratio

Low ratio of vectorized (SIMD) vs. scalar instructions; not necessarily bad
 Some codes just cannot be vectorized
 If hardware utilization is still good, you might not care
 If SIMD pays off, a factor of up to 8x (DP) might be achievable

 Load imbalance (actually,
execution time imbalance)
Should usually be fixed;
however, memory-bound code
is more forgiving towards
load imbalance (why?)
Caveat: Two extreme cases!

(c) NHR@FAU 2023FRASCAL HPC Day 34

Performance patterns 3: I/O
 High IB package rate

 IB latency is in the low-µs range; hundreds of millions of IB packages per
second are thus near the limit

 Remedy: Communicate less , aggregation
 Probably you are just using too many nodes/processes

 High NFS rate
Some codes write to NFS-mounted volumes frequently; a “fat” server can take up
to 500 MB/sec

 Fine-grained, high-frequency I/O
Rapid-fire I/O requests can overload the metadata servers and severely slow down
the shared file system for all users

(c) NHR@FAU 2023FRASCAL HPC Day 35

	FRASCAL HPC Day
	Agenda
	Quiz
	Quiz
	Anatomy of a (CPU) compute cluster
	General-purpose cache based microprocessor core
	A modern CPU compute node (AMD Zen2 “Rome”)
	Adding accelerators to the node
	Quiz
	Turning it into a cluster
	Adding permanent storage
	The crucial questions
	Quiz
	What is “performance”?
	Parallel performance
	Speedup
	Quiz
	“Structural” scaling roadblocks
	Scaling baselines: Some resources do not scale
	Scalablility of hardware components
	So what should I do?
	What about performance (vs. scaling)?
	Quiz
	The Roofline Model
	A simple performance model for loops
	Naïve Roofline Model
	Roofline: application model and machine model
	Diagnostic modeling
	Identifying problems:�Typical performance patterns
	Performance patterns 1: low-hanging fruits
	Performance patterns 2: bad hardware utilization
	Performance patterns 2: bad hardware utilization
	Performance patterns 3: I/O

