NHRJFAU

Introduction to the LIKWID tool suite

Performance Analysis with hardware metrics




_IKWID performance tools

_IKWID tool suite:

Like

|
Knew
What
I’'m
Doing

n https://youtu.be/6uFl11HPg-88 e BT R

Open source tool collection
(developed at RRZE):

J. Treibig, G. Hager, G. Wellein: LIKWID: A lightweight

O httPS . / /91 thub. com/RRZE—HPC/likwid performance-oriented tool suite for x86 multicore

environments. PSTI2010, Sep 13-16, 2010, San Diego,
CA. DOI: 10.1109/ICPPW.2010.38

Topology, Affinity, Clock Speed (c) NHR@FAU 2023


https://github.com/RRZE-HPC/likwid
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38
https://youtu.be/6uFl1HPq-88

LIKWID Tool Suite

= Command line tools for Linux:
easy to install
works with standard Linux kernel
simple and clear to use
supports most X86 CPUs

(also ARMv8, POWER9 and
Nvidia GPUSs)

e—

= Current tools:

likwid-topology - Print thread and cache topology
likwid-pin - Pin threaded application without touching code
likwid-perfctr - Measure performance counters e SIS WS
likwid-powermeter - Measure energy consumption

likwid-bench - Microbenchmarking tool and environment

Topology, Affinity, Clock Speed (c) NHR@FAU 2023



Probing performance behavior

How do we find out about the performance properties and requirements of a parallel code?
Profiling via advanced tools is often overkill

A coarse overview is often sufficient: 1ikwid-perfctr

Simple end-to-end measurement of hardware performance metrics

Operating modes: (" BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio
Wrapper CLOCK: Clock frequency of cores
Stethoscope DATA: Load to store ratio
_ _ FLOPS_DP: Double Precision MFlops/s
Timeline FLOPS SP: Single Precision MFlops/s
L2: L2 cache bandwidth in MBytes/s
Marker API L2CACHE: L2 cache miss rate/ratio
; : L3: L3 cache bandwidth in MBytes/s
PreC_Onflgured and e_XtenSIbIe L3CACHE: L3 cache miss rate/ratio
metric groups, list with MEM: Main memory bandwidth in MBytes/s
likwid—per‘fctr‘ -3 TLB: TLB miss rate/ratio
ENERGY: Power and energy consumption

Hardware Performance Counters (c) NHR@FAU 2023



likwid-perfctr wrapper mode

$ likwid-perfctr -g L2 -C S1:0-3

./a.out

<<<< PROGRAM OUTPUT >>>>

Always

Group 1: L2

| HWThread 38

Configured events
(this group)

----- e s sl

.
| HWThread 39

1393263859 1394342491 1388917034
095261718 2088036330 2075539220 2058287996
2103679392 2121235200 2100479808 2075658144
10476308590 | 10440181650 | 10377696100 | 10291439980
L1D REPLACEMENT 142720376 142481840 142482162 142434419
L2_TRANS_L1D_WB 54986306 54864382 54868339 54815549
ACHE_64B_TIFTAG_MI PMC2 381869 2094 7399 7718
to- - STTETEEETTT R R T Fommmmmm - T +
[.. statistics output omitted ..]
R e T it Fommmmmmm o T R +
| Metric | HWThread 36 | HWThread 37 | HWThread 38 | HWThread 39 |
R e T it Fommmmmmm o T R +
Runtime (RDTSC) [s] 1.0092 1.0092 1.0092 1.0092 ™
Runtime unhalted [s] 0.8751 0.8721 0.8669 0.8597
Clock [MHz] 2384.7406 2356.8484 |  2365.8917 |  2374.2844
CPI 1.4863 1.4987 1.4885 1.4819 )
L2D load bandwidth [MBytes/s] 9050.5857 9035.4589 9035.4794 9032.4518 >>
L2D load data volume [GBytes] 9.1341 9.1188 9.1189 9.1158
L2D evict bandwidth [MBytes/s] 3486.9462 3479.2144 3479.4653 3476.1177
L2D evict data volume [GBytes] 3.5191 3.5113 3.5116 3.5082
L2 bandwidth [MBytes/s] 12561.7480 12514.8061 12515.4139 12509.0589
L2 data volume [GBytes] 12.6777 12.6303 12.6309 12.6245 .
R il LT R e it LT +

Derived
metrics

Hardware Performance Counters

(c) NHR@FAU 2023



likwid-perfctr with MarkerAPI

= The MarkerAPI can restrict measurements to code regions

= The API only reads counters.
The configuration of the counters is still done by 1ikwid-perfctr

= Multiple named regions allowed, accumulation over multiple calls
= |nclusive and overlapping regions allowed

#include <likwid-marker.h>

= Caveat: Marker API can LIKWID MARKER _INIT; // must be called from serial region
cause overhead; do not call

LIkwiD_MARKER_START(“Compute”); // in parallel region
too frequently!

LIKWID MARKER STOP(“Compute”); // in parallel region
LIKWID MARKER START(“Postprocess®); // in parallel region
LIKWID MARKER STOP(“Postprocess™); // in parallel region

LIKWID_MARKER_CLOSE; // must be called from serial region

Hardware Performance Counters (c) NHR@FAU 2023



likwid-perfctr with MarkerAPIl: OpenMP code (C)

#include <likwid-marker.h> Optional: Prepare data
structures (reduced overhead
int main(...) { on 1st marker call , thread
LIKWID MARKER_INIT; barrier after call required)
#pragma omp parallel
{

LIKWID MARKER_REGISTER(“MatrixAssembly”);

} Call markers in parallel
.o region if data should be
#pragma omp parallel taken on all threads

{
LIKWID MARKER START(“MatrixAssembly”);

#pragma omp for

for(int i=0; i<N; ++i) { /* Loop */ }

LIKWID MARKER STOP(“MatrixAssembly”);
}

LIKWID_MARKER_CLOSE; https://github.com/RRZE-
} HPC/likwid/wiki/TutorialMarkerC

Hardware Performance Counters (c) NHR@FAU 2023


https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerC
https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerC

likwid-perfctr with MarkerAPIl: OpenMP code (Fortran)

program p Optional: Prepare data

use lilfwiq . structures (reduced overhead
call likwid markerInit on 1st marker call, thread
I$omp parallel

o , , barrier after call required)
call likwid markerRegisterRegion(“MatrixAssembly”)
I$omp end parallel

I$omp parallel
call likwid markerStartRegion(“MatrixAssembly”)

I$omp do
do i=1,N

I Loop
enddo Call markers in parallel
I$omp end do region if data should be
call likwid markerStopRegion(“MatrixAssembly?®) taken on all threads

I$omp end parallel

call likwid_markerClose https://github.com/RRZE-
end program p HPC/likwid/wiki/TutorialMarkerF90

Hardware Performance Counters (c) NHR@FAU 2023


https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90
https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90

likwid-perfctr with MarkerAPI: source code transformations

#pragma omp parallel
{

LIKWID MARKER START (“Compute”) ;
#pragma omp parallel for ‘ — —
<loop> #pragma omp for
<loop>

LIKWID MARKER STOP (“Compute”) ;

#pragma omp parallel

{
LIKWID MARKER START (“foo”)

}

some parallel f£f() ‘ some parallel £f()
#pragma omp parallel

{
LIKWID MARKER STOP (“foo”)

}

Hardware Performance Counters (c) NHR@FAU 2023



Compiling, linking, and running with marker API

Compile:
cc -1 /path/to/likwid.h@WID_PE@-C program.c

_ Activate LIKWID
Link: macros (C only)

cc -L /path/to/liblikwid program.o -o program -1llikwid

RUN: / Activate
un. markers

likwid-perfctr -C <CPULIST> -g <GROUP> ./program

MPI:
likwid-mpirun (-mpi slurm) -np 4 -t <threads> -g <GROUP> -m ./program

One separate block of output for every marked region

Hardware Performance Counters (c) NHR@FAU 2023

10



So... what should | look at first?

Focus on resource utilization and instruction decomposition!
Metrics to measure:

Operation throughput (Flops/s) Data volumes and bandwidths to main memory
Overall instruction throughput (IPC,CPI) (GB and GB/s)
Instruction breakdown: Data volumes and bandwidth to different cache

EP instructions levels (GB and GB/s)

loads and stores

branch instructions Useful diagnostic metrics are:
other instructions Clock frequency (GHz)
Instruction breakdown to SIMD width Power (W)

(scalar, SSE, AVX, AVX512 for x86)

All the above metrics can be acquired using performance groups:
MEM _DP, MEM_SP, BRANCH, DATA, L2, L3

Hardware Performance Counters (c) NHR@FAU 2023

11



Summary of hardware performance monitoring

Useful only if you know what you are looking for
Hardware event counting bears the potential of acquiring massive amounts of data for nothing!

Resource-based metrics are most useful
Cache lines transferred, work executed, loads/stores, cycles
Instructions, CPI, cache misses may be misleading

Caveat: Processor work !'= user work
Waiting time in libraries (OpenMP, MPI) may cause lots of instructions
—> distorted application characteristic

Another very useful application of PM: validating performance models!
Roofline is data centric = measure data volume through memory hierarchy

Hardware Performance Counters (c) NHR@FAU 2023

12



	Folie 1: Introduction to the LIKWID tool suite
	Folie 2: LIKWID performance tools
	Folie 3: LIKWID Tool Suite
	Folie 4: Probing performance behavior
	Folie 5: likwid-perfctr  wrapper mode
	Folie 6: likwid-perfctr  with MarkerAPI
	Folie 7: likwid-perfctr  with MarkerAPI: OpenMP code (C)
	Folie 8: likwid-perfctr  with MarkerAPI: OpenMP code (Fortran)
	Folie 9: likwid-perfctr  with MarkerAPI: source code transformations
	Folie 10: Compiling, linking, and running with marker API
	Folie 11: So... what should I look at first?
	Folie 12: Summary of hardware performance monitoring 

