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Introduction to the LIKWID tool suite

Performance Analysis with hardware metrics




_IKWID performance tools

_IKWID tool suite:
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Open source tool collection
(developed at RRZE):

J. Treibig, G. Hager, G. Wellein: LIKWID: A lightweight

O httPS . / /91 thub. com/RRZE—HPC/likwid performance-oriented tool suite for x86 multicore

environments. PSTI2010, Sep 13-16, 2010, San Diego,
CA. DOI: 10.1109/ICPPW.2010.38
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LIKWID Tool Suite

= Command line tools for Linux:
easy to install
works with standard Linux kernel
simple and clear to use
supports most X86 CPUs

(also ARMv8, POWER9 and
Nvidia GPUSs)

e—

= Current tools:

likwid-topology - Print thread and cache topology
likwid-pin - Pin threaded application without touching code
likwid-perfctr - Measure performance counters e SIS WS
likwid-powermeter - Measure energy consumption

likwid-bench - Microbenchmarking tool and environment

Topology, Affinity, Clock Speed (c) NHR@FAU 2023



Probing performance behavior

How do we find out about the performance properties and requirements of a parallel code?
Profiling via advanced tools is often overkill

A coarse overview is often sufficient: 1ikwid-perfctr

Simple end-to-end measurement of hardware performance metrics

Operating modes: (" BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio
Wrapper CLOCK: Clock frequency of cores
Stethoscope DATA: Load to store ratio
_ _ FLOPS_DP: Double Precision MFlops/s
Timeline FLOPS SP: Single Precision MFlops/s
L2: L2 cache bandwidth in MBytes/s
Marker API L2CACHE: L2 cache miss rate/ratio
; : L3: L3 cache bandwidth in MBytes/s
PreC_Onflgured and e_XtenSIbIe L3CACHE: L3 cache miss rate/ratio
metric groups, list with MEM: Main memory bandwidth in MBytes/s
likwid—per‘fctr‘ -3 TLB: TLB miss rate/ratio
ENERGY: Power and energy consumption
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likwid-perfctr wrapper mode

$ likwid-perfctr -g L2 -C S1:0-3

./a.out

<<<< PROGRAM OUTPUT >>>>

Always

Group 1: L2

| HWThread 38

Configured events
(this group)

----- e s sl

.
| HWThread 39

1393263859 1394342491 1388917034
095261718 2088036330 2075539220 2058287996
2103679392 2121235200 2100479808 2075658144
10476308590 | 10440181650 | 10377696100 | 10291439980
L1D REPLACEMENT 142720376 142481840 142482162 142434419
L2_TRANS_L1D_WB 54986306 54864382 54868339 54815549
ACHE_64B_TIFTAG_MI PMC2 381869 2094 7399 7718
to- - STTETEEETTT R R T Fommmmmm - T +
[.. statistics output omitted ..]
R e T it Fommmmmmm o T R +
| Metric | HWThread 36 | HWThread 37 | HWThread 38 | HWThread 39 |
R e T it Fommmmmmm o T R +
Runtime (RDTSC) [s] 1.0092 1.0092 1.0092 1.0092 ™
Runtime unhalted [s] 0.8751 0.8721 0.8669 0.8597
Clock [MHz] 2384.7406 2356.8484 |  2365.8917 |  2374.2844
CPI 1.4863 1.4987 1.4885 1.4819 )
L2D load bandwidth [MBytes/s] 9050.5857 9035.4589 9035.4794 9032.4518 >>
L2D load data volume [GBytes] 9.1341 9.1188 9.1189 9.1158
L2D evict bandwidth [MBytes/s] 3486.9462 3479.2144 3479.4653 3476.1177
L2D evict data volume [GBytes] 3.5191 3.5113 3.5116 3.5082
L2 bandwidth [MBytes/s] 12561.7480 12514.8061 12515.4139 12509.0589
L2 data volume [GBytes] 12.6777 12.6303 12.6309 12.6245 .
R il LT R e it LT +

Derived
metrics
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likwid-perfctr with MarkerAPI

= The MarkerAPI can restrict measurements to code regions

= The API only reads counters.
The configuration of the counters is still done by 1ikwid-perfctr

= Multiple named regions allowed, accumulation over multiple calls
= |nclusive and overlapping regions allowed

#include <likwid-marker.h>

= Caveat: Marker API can LIKWID MARKER _INIT; // must be called from serial region
cause overhead; do not call

LIkwiD_MARKER_START(“Compute”); // in parallel region
too frequently!

LIKWID MARKER STOP(“Compute”); // in parallel region
LIKWID MARKER START(“Postprocess®); // in parallel region
LIKWID MARKER STOP(“Postprocess™); // in parallel region

LIKWID_MARKER_CLOSE; // must be called from serial region
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likwid-perfctr with MarkerAPIl: OpenMP code (C)

#include <likwid-marker.h> Optional: Prepare data
structures (reduced overhead
int main(...) { on 1st marker call , thread
LIKWID MARKER_INIT; barrier after call required)
#pragma omp parallel
{

LIKWID MARKER_REGISTER(“MatrixAssembly”);

} Call markers in parallel
.o region if data should be
#pragma omp parallel taken on all threads

{
LIKWID MARKER START(“MatrixAssembly”);

#pragma omp for

for(int i=0; i<N; ++i) { /* Loop */ }

LIKWID MARKER STOP(“MatrixAssembly”);
}

LIKWID_MARKER_CLOSE; https://github.com/RRZE-
} HPC/likwid/wiki/TutorialMarkerC
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likwid-perfctr with MarkerAPIl: OpenMP code (Fortran)

program p Optional: Prepare data

use lilfwiq . structures (reduced overhead
call likwid markerInit on 1st marker call, thread
I$omp parallel

o , , barrier after call required)
call likwid markerRegisterRegion(“MatrixAssembly”)
I$omp end parallel

I$omp parallel
call likwid markerStartRegion(“MatrixAssembly”)

I$omp do
do i=1,N

I Loop
enddo Call markers in parallel
I$omp end do region if data should be
call likwid markerStopRegion(“MatrixAssembly?®) taken on all threads

I$omp end parallel

call likwid_markerClose https://github.com/RRZE-
end program p HPC/likwid/wiki/TutorialMarkerF90

Hardware Performance Counters (c) NHR@FAU 2023


https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90
https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90

likwid-perfctr with MarkerAPI: source code transformations

#pragma omp parallel
{

LIKWID MARKER START (“Compute”) ;
#pragma omp parallel for ‘ — —
<loop> #pragma omp for
<loop>

LIKWID MARKER STOP (“Compute”) ;

#pragma omp parallel

{
LIKWID MARKER START (“foo”)

}

some parallel f£f() ‘ some parallel £f()
#pragma omp parallel

{
LIKWID MARKER STOP (“foo”)

}
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Compiling, linking, and running with marker API

Compile:
cc -1 /path/to/likwid.h@WID_PE@-C program.c

_ Activate LIKWID
Link: macros (C only)

cc -L /path/to/liblikwid program.o -o program -1llikwid

RUN: / Activate
un. markers

likwid-perfctr -C <CPULIST> -g <GROUP> ./program

MPI:
likwid-mpirun (-mpi slurm) -np 4 -t <threads> -g <GROUP> -m ./program

One separate block of output for every marked region
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So... what should | look at first?

Focus on resource utilization and instruction decomposition!
Metrics to measure:

Operation throughput (Flops/s) Data volumes and bandwidths to main memory
Overall instruction throughput (IPC,CPI) (GB and GB/s)
Instruction breakdown: Data volumes and bandwidth to different cache

EP instructions levels (GB and GB/s)

loads and stores

branch instructions Useful diagnostic metrics are:
other instructions Clock frequency (GHz)
Instruction breakdown to SIMD width Power (W)

(scalar, SSE, AVX, AVX512 for x86)

All the above metrics can be acquired using performance groups:
MEM _DP, MEM_SP, BRANCH, DATA, L2, L3
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Summary of hardware performance monitoring

Useful only if you know what you are looking for
Hardware event counting bears the potential of acquiring massive amounts of data for nothing!

Resource-based metrics are most useful
Cache lines transferred, work executed, loads/stores, cycles
Instructions, CPI, cache misses may be misleading

Caveat: Processor work !'= user work
Waiting time in libraries (OpenMP, MPI) may cause lots of instructions
—> distorted application characteristic

Another very useful application of PM: validating performance models!
Roofline is data centric = measure data volume through memory hierarchy
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