
Node-Level Performance Engineering

Introduction

(c) NHR@FAU 2023 2Node-level Performance Engineering Tutorial

Dimensional gymnastics

 1 cycle = smallest unit of time on a CPU (“heartbeat”)

 Clock speed of typical CPU: 2.4 Gcy/s (or GHz)

 Basic unit of work: Floating-point operation (Flop)

 Typical peak performance of 20-core CPU: Ppeak = 1536 Gflop/s = 1.536 Tflop/s

 How many Flops per cycle per core is that?
1536∙109

𝐹𝑙𝑜𝑝𝑠

𝑠

20 𝑐𝑜𝑟𝑒𝑠 ∙2.4∙109
𝑐𝑦

𝑠

= 32
𝐹𝑙𝑜𝑝𝑠

𝑐𝑦∙𝑐𝑜𝑟𝑒

 Typical duration of a double precision multiply: 4 cycles

› How much time is that?
4 𝑐𝑦

2.4∙109
𝑐𝑦

𝑠

= 1.67 ∙ 10−9𝑠 = 1.67 ns

 Basic unit of traffic: Byte

 Unit of bandwidth: Bytes/s

 Typical memory bandwidth: 160 Gbytes/s = 1.6 ∙ 1011 Bytes/s

 How many bytes per cycle is that?
160∙109

𝐵𝑦𝑡𝑒𝑠

𝑠

2.4∙109
𝑐𝑦

𝑠

= 67
𝐵𝑦𝑡𝑒𝑠

𝑐𝑦

3Node-level Performance Engineering Tutorial

Scalability Myth: Code scalability is the key issue

Prepared for

the highly

parallel era!

!$OMP PARALLEL DO

do k = 1 , Nk

do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo

enddo

!$OMP END PARALLEL DO

Changing only the compile options

makes this code scalable on an 8-

core chip

–O3 -xAVX

(c) NHR@FAU 2023

4Node-level Performance Engineering Tutorial

Scalability Myth: Code scalability is the key issue

!$OMP PARALLEL DO

do k = 1 , Nk

do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo

enddo

!$OMP END PARALLEL DO

Single core/socket efficiency

is key issue!

Upper limit from simple performance

model:

35 GB/s & 24 Byte/update

(c) NHR@FAU 2023

5Node-level Performance Engineering Tutorial

A conversation

From a student seminar on “Efficient programming of modern multi- and manycore processors”

Student: I have implemented this algorithm on the GPGPU, and it solves a system with 26546

unknowns in 0.12 seconds, so it is really fast.

Me: What makes you think that 0.12 seconds is fast?

Student: It is fast because my baseline C++ code on the CPU is about 20 times slower.

(c) NHR@FAU 2023

Questions to ask in high performance computing

 Do I understand the performance behavior of my code?

 Does the performance behave in accordance with a model I have made?

 What is the optimal performance for my code on a given machine?

 High Performance Computing == Computing at a bottleneck

 Can I change my code so that the “optimal performance” gets higher?

 Circumventing/ameliorating the impact of the bottleneck

 My model yields wrong predictions – what’s wrong?

 This is the good case, because you learn something

 Performance monitoring / microbenchmarking may help clear up the situation

