
“Simple” performance modeling:
The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks.
Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers.
Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD
thesis (2008)

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/%7Erx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

Analytic white-box performance models

An analytic white-box performance model is a simplified
mathematical description of the hardware and its interaction
with software. It is able to predict the runtime/performance of

code from “first principles.”

(c) NHR@FAU 2023Roofline Model 2

(c) NHR@FAU 2023 3Roofline Model

A simple performance model for loops

Simplistic view of the hardware:

! may be multiple levels
do i = 1,<sufficient>

<complicated stuff doing
N flops causing
V bytes of data transfer>

enddo

Execution units
max. performance

𝑷𝑷𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

Data source/sink

Data path,
bandwidth 𝒃𝒃𝑺𝑺
 Unit: byte/s

Simplistic view of the software:

Computational intensity 𝑰𝑰 = 𝑵𝑵
𝑽𝑽

 Unit: flop/byte

(c) NHR@FAU 2023 4Roofline Model

Naïve Roofline Model
How fast can tasks be processed? 𝑷𝑷 [flop/s]

The bottleneck is either
 The execution of work: 𝑃𝑃peak [flop/s]

 The data path: 𝐼𝐼 � 𝑏𝑏𝑆𝑆 [flop/byte x byte/s]

This is the “Naïve Roofline Model”
 High intensity: P limited by execution
 Low intensity: P limited by data transfer
 “Knee” at 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐼𝐼 � 𝑏𝑏𝑆𝑆:

Best use of resources
 Roofline is an “optimistic” model

(think “light speed”)

𝑃𝑃 = min(𝑃𝑃peak, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)

Intensity

Pe
rfo

rm
an

ce

Ppeak

(c) NHR@FAU 2023 5Roofline Model

The Roofline Model in computing – Basics

Machine properties:

𝑷𝑷𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 4
GF
s

𝒃𝒃𝑺𝑺 = 10
GB
s

Application property: I

double s=0, a[];
for(i=0; i<N; ++i) {

s = s + a[i] * a[i];}

𝑃𝑃 = 2.5 GF/s

𝐼𝐼 = 2 𝐹𝐹
8 𝐵𝐵

= 0.25 ⁄𝐹𝐹 𝐵𝐵

Apply the naive Roofline model in practice

 Machine parameter #1: Peak performance: 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐹𝐹
𝑠𝑠

 Machine parameter #2: Memory bandwidth: 𝑏𝑏𝑆𝑆
𝐵𝐵
𝑠𝑠

 Code characteristic: Computational intensity: 𝐼𝐼 𝐹𝐹
𝐵𝐵

Machine model

Application model

(c) NHR@FAU 2023 6Roofline Model

Prerequisites for the Roofline Model
 Data transfer and core execution overlap perfectly!

 Either the limit is core execution or it is data transfer

 Slowest limiting factor “wins”; all others are assumed
to have no impact
 If two bottlenecks are “close,” no interaction is assumed

 Data access latency is ignored, i.e. perfect streaming mode
 Achievable bandwidth is the limit

 Chip must be able to saturate the bandwidth bottleneck(s)
 Always model the full chip

(c) NHR@FAU 2023 7Roofline Model

Roofline for architecture and code comparison
With Roofline, we can
 Compare capabilities of different machines
 Compare performance expectations for

different loops

 Roofline always provides upper bound – but is
it realistic?
 Simple case: Loop kernel has loop-carried

dependecncies  cannot achieve peak
 Other bandwidth bottlenecks may apply

3D
 2

7p
t s

te
nc

il
SP

D
en

se
 M

VM
 D

P

Sp
ar

se
 M

VM
 D

P

Tensor core peak

No tensor cores

co
m

pu
te

 b
ou

nd

ev
er

yw
he

re

m
em

ory bound
everyw

here

(c) NHR@FAU 2023 8Roofline Model

A refined Roofline Model
1. Pmax = Applicable peak performance of a loop, assuming that data comes from the

level 1 cache (this is not necessarily Ppeak)
 e.g., Pmax = 176 GFlop/s

2. bS = Applicable (saturated) peak bandwidth of the slowest data path utilized
 e.g., bS = 56 GByte/s

3. I = Computational intensity (“work” per byte transferred) over the slowest data path
utilized (code balance BC = I -1)
 e.g., I = 0.167 Flop/Byte  BC = 6 Byte/Flop

Performance limit: 𝑃𝑃 = min 𝑃𝑃max, 𝐼𝐼 � 𝑏𝑏𝑆𝑆 = min 𝑃𝑃max,
𝑏𝑏𝑆𝑆
𝐵𝐵𝐶𝐶

[Byte/s]

[Byte/Flop]

“F
lo

p”
 is

 n
ot

 th
e

on
ly

us

ef
ul

 u
ni

t o
f w

or
k!

(c) NHR@FAU 2023 9Roofline Model

Full Roofline for the sum reduction from the intro

Example: do i=1,N; s=s+a(i); enddo
in single precision on an 8-core 2.2 GHz Sandy Bridge socket @ “large” N

ADD peak
(best possible
code)

no SIMD

3-cycle latency
per ADD if not
unrolled

P (worst loop code)

𝑃𝑃 = min(𝑃𝑃max, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)

See
architecture
intro

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak
(ADD+MULT)
Out of reach for this
code

P
(better loop code)

(c) NHR@FAU 2023 10Roofline Model

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo
in single precision

analysis

Code analysis:
1 ADD + 1 LOAD

architectureThroughput: 1 ADD + 1 LD/cy
Pipeline depth: 3 cy (ADD)

8-way SIMD, 8 cores

measurement

Maximum memory
bandwidth 40 GB/s

Worst code: P = 5.9 GF/s (core bound)
Better code: P = 10 GF/s (memory bound)

5.9 … 141 GF/s

10 GF/s

(c) NHR@FAU 2023 11Roofline Model

Factors to consider in the Roofline Model

Bandwidth-bound
1. Accurate traffic calculation (write-

allocate, strided access, cache reuse,…)
2. Practical ≠ theoretical BW limits
3. Saturation effects  consider full socket

only

Core-bound
1. Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,
execution ports

2. Limit is linear in # of cores

(c) NHR@FAU 2023 12Roofline Model

Complexities of in-core execution (Pmax)

Multiple bottlenecks:

 Decode/retirement throughput
 Port contention

(direct or indirect)
 Arithmetic pipeline stalls

(dependencies)
 Overall pipeline stalls (branching)
 L1 Dcache bandwidth

(LD/ST throughput)
 Scalar vs. SIMD execution
 L1 Icache (LD/ST) bandwidth
 Alignment issues
 …

Skylake

Tool for Pmax analysis: OSACA
http://tiny.cc/OSACA
DOI: 10.1109/PMBS49563.2019.00006
DOI: 10.1109/PMBS.2018.8641578

http://tiny.cc/OSACA
https://doi.org/10.1109/PMBS49563.2019.00006
https://dx.doi.org/10.1109/PMBS.2018.8641578

(c) NHR@FAU 2023 13Roofline Model

Hardware features of (some) Intel Xeon processors

Microarchitecture Ivy Bridge EP Broadwell EP Cascade Lake SP Ice Lake SP

Introduced 09/2013 03/2016 04/2019 06/2021

Cores ≤ 12 ≤ 22 ≤ 28 ≤ 40

LD/ST throughput per cy:

AVX(2), AVX512 1 LD + ½ ST
2 LD + 1 ST 2 LD + 1 ST 2 LD + 1 ST

SSE/scalar 2 LD || 1 LD & 1 ST

ADD throughput 1 / cy 1 / cy 2 / cy 2 / cy

MUL throughput 1 / cy 2 / cy 2 / cy 2 / cy

FMA throughput N/A 2 / cy 2 / cy 2 / cy

L1-L2 data bus 32 B/cy 64 B/cy 64 B/cy 64 B/cy

L2-L3 data bus 32 B/cy 32 B/cy 16+16 B/cy 16+16 B/cy

L1/L2 per core 32 KiB / 256 KiB 32 KiB / 256 KiB 32 KiB / 1 MiB 48 KiB / 1.25 MiB

LLC 2.5 MiB/core
inclusive

2.5 MiB/core
inclusive

1.375 MiB/core
exclusive/victim

1.5 MiB/core
exclusive/victim

Memory 4ch DDR3 4ch DDR3 6ch DDR4 8ch DDR4

Memory BW (meas.) ~ 48 GB/s ~ 62 GB/s ~ 115 GB/s ~ 160 GB/s So
ur

ce
:

ht
tp

s:
//s

of
tw

ar
e.

in
te

l.c
om

/c
on

te
nt

/w
w

w
/u

s/
en

/d
ev

el
op

/d
ow

nl
oa

d/
i

nt
el

-6
4-

an
d-

ia
-3

2-
ar

ch
ite

ct
ur

es
-o

pt
im

iz
at

io
n-

re
fe

re
nc

e-
m

an
ua

l.h
tm

l

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html

(c) NHR@FAU 2023 14Roofline Model

Code balance: more examples

double a[], b[];
for(i=0; i<N; ++i)

a[i] = a[i] + b[i];

BC = 24B / 1F = 24 B/F

I = 0.042 F/B

double a[], b[];
for(i=0; i<N; ++i)

a[i] = a[i]+ s * b[i];

BC = 24B / 2F = 12 B/F

I = 0.083 F/B

Scalar – can be kept in register
float s=0, a[];
for(i=0; i<N; ++i)

s = s + a[i] * a[i];

BC = 4B / 2F = 2 B/F

I = 0.5 F/B
Scalar – can be kept in register

float s=0, a[], b[];
for(i=0; i<N; ++i)

s = s + a[i] * b[i];

BC = 8B / 2F = 4 B/F

I = 0.25 F/B
Scalar – can be kept in register

float s=0, a[], b[];
for(i=0; i<N; ++i)
for(j=0; j<N; ++j)
b[i][j] = a[i][j]

+ a[i-1][j]
+ a[i+1][j];

BC = 16B / 2F or

8B / 2F or even

20 B / 2F

???

Streaming, perfect spatial
locality, no temporal locality
 simple

Possible cache
reuse  tricky!

float s=0, a[], b[];
for(i=0; i<N; ++i)

s = s + a[i]
* b[idx[i]];

And what about this?

We’ll get to it!

(c) NHR@FAU 2023 15Roofline Model

Is there anything to ease the construction of the model?
Code balance 𝐵𝐵𝐶𝐶
 Close inspection and hard thinking
 Simplifying assumptions

 “What is the minimum possible amount of
traffic?”

 “What is the worst case?”

 Tools
 Kerncraft

https://github.com/RRZE-HPC/kerncraft

In-core 𝑃𝑃max
 Inspection of assembly code and

manual modeling
 Simplifying assumptions

 “What is the required minimum number of
arithmetic/load/store instructions?”

 𝑃𝑃max = 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 Tools
 OSACA

https://github.com/RRZE-HPC/OSACA

https://github.com/RRZE-HPC/kerncraft
https://github.com/RRZE-HPC/OSACA

(c) NHR@FAU 2023 16Roofline Model

Refined Roofline model: graphical representation

Multiple ceilings may apply

 Different bandwidths / data paths
 different inclined ceilings
 possibly different 𝐼𝐼 for one kernel

 Different Pmax
 different flat ceilings

In fact, Pmax should always come from
code analysis; generic ceilings are
usually impossible to attain

𝑃𝑃 = min𝑖𝑖,𝑗𝑗 {𝑃𝑃max,𝑖𝑖}, {𝐼𝐼𝑗𝑗 � 𝑏𝑏𝑗𝑗}

(c) NHR@FAU 2023 17Roofline Model

Tracking code optimizations in the Roofline Model

1. Hit the BW bottleneck by
good serial code
(e.g., Ninja C++  Fortran)

2. Increase intensity to make
better use of BW bottleneck
(e.g., spatial loop blocking)

3. Increase intensity and go from
memory bound to core bound
(e.g., temporal blocking)

4. Hit the core bottleneck by
good serial code
(e.g., -fno-alias, SIMD intrinsics)

Core bound

Diagnostic / phenomenological Roofline modeling

Diagnostic modeling
 What if we cannot predict the intensity/balance?

 Code very complicated
 Code not available
 Parameters unknown
 Doubts about correctness of analysis

 Measure data volume 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (and work 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
 Hardware performance counters
 Tools: likwid-perfctr, PAPI, Intel Vtune,…

 Insights + benefits
 Compare analytic model and measurement  validate model
 Can be applied (semi-)automatically
 Useful in performance monitoring of user jobs on clusters

Intensity

Pe
rfo

rm
an

ce

Pmax

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(c) NHR@FAU 2023Roofline Model 20

(c) NHR@FAU 2023 21Roofline Model

Roofline and performance monitoring of clusters
Two cluster jobs…

Which of them is
“good” and which is
“bad”?

(c) NHR@FAU 2023 22Roofline Model

Diagnostic modeling of a complex code (3 kernels)
Kernel 1
 Performance close to memory BW ceiling but far

away from others
 indicates memory bound

Kernel 2
 Performance not near any BW ceiling
 Performance close to scalar peak ceiling
 indicates scalar core-bound peak code

Kernel 3
 Performance not anywhere near any ceiling
 There must be an (as yet) unknown in-core

performance limit 𝑃𝑃max

Intensity

Pe
rfo

rm
an

ce

Ppeak, SIMD

Ppeak, scalar

Pmax

Multiple bandwidth bottlenecks
 need 𝐼𝐼 for each one (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚, 𝐼𝐼𝐿𝐿𝐿, 𝐼𝐼𝐿𝐿𝐿, …)

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝐿𝐿𝐿𝐼𝐼𝐿𝐿𝐿

(c) NHR@FAU 2023 23Roofline Model

Roofline conclusion
 Roofline = simple first-principle model for upper performance limit of data-

streaming loops
 Machine model (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑏𝑏𝑆𝑆,…) + application model (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚,…)
 Conditions apply, extensions exist

 Two modes of operation; per kernel:
 Predictive: Calculate 𝐼𝐼𝑗𝑗, calculate upper limit, validate model, optimize, iterate
 Diagnostic: Measure 𝐼𝐼𝑗𝑗 and 𝑃𝑃, compare with ceilings

 Challenge of predictive modeling: Getting 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐼𝐼 right

	“Simple” performance modeling:�The Roofline Model
	Analytic white-box performance models
	A simple performance model for loops
	Naïve Roofline Model
	The Roofline Model in computing – Basics
	Prerequisites for the Roofline Model
	Roofline for architecture and code comparison
	A refined Roofline Model
	Full Roofline for the sum reduction from the intro
	Input to the roofline model
	Factors to consider in the Roofline Model
	Complexities of in-core execution (Pmax)
	Hardware features of (some) Intel Xeon processors
	Code balance: more examples
	Is there anything to ease the construction of the model?
	Refined Roofline model: graphical representation
	Tracking code optimizations in the Roofline Model
	Diagnostic / phenomenological Roofline modeling
	Diagnostic modeling
	Roofline and performance monitoring of clusters
	Diagnostic modeling of a complex code (3 kernels)
	Roofline conclusion

