LG

Performance Engineering

Basic skills and knowledge

Optimizing code: The big Picture

m Reduce algorithmic work
Implementation
Instruction code

Distribute work and data for optimal
utilization of parallel resources

Minimize processor work

| Avoid slow data paths

Use most effective
execution units on chip

SIMD SIMD SIMD
FMA FMA FMA
core core core

- Avoid bottlenecks

Performance Engineering Basics (c) NHR@FAU 2022

Programming language influence

* Programming languages are designed to help with software engineering
requirements

= Multi-paradigm language (C++, also Fortran 2003 and newer) tend to lead
to over-engineered solutions.

= Language features do not come for free! C++ performance heavily relies
on aggressive in-lining. This often fails and makes performance fragile.

Advices:

= Keep it simple stupid! A simpler solution is a better solution.
= Extract numerically intensive tasks into simple kernels.

= Be brave when it comes to refactoring!

Performance Engineering Basics (c) NHR@FAU 2022

Performance Engineering process

Runtime profile
Algorithm/Code Application HPM performance
Analysis Benchmarking profile
For every hotspot
Performance Model Traces/HW metrics

Iteratively

= ldentify performance issues
= Develop performance expectation
Change runtime Optimize
configuration iImplementation

Performance Engineering Basics (c) NHR@FAU 2022

Runtime profiling with gprof

Instrumentation based with gprof
Compile with -pg switch:
icc -pg -03 -c myfilel.c

Execute the application. During execution a file gmon . out is generated.

Analyze the results with:
gprof ./a.out | less

The output contains three parts: A flat profile, the call graph, and an alphabetical
index of routines.

The flat profile is what you are usually interested in.

Performance Engineering Basics (c) NHR@FAU 2022

Runtime profi

e with gprof: F

at profile

Time spent in
routine itself

How often was
it called

% cumulative self

Each sample coun as 0.01 seé&;ds.

time seconds seconds calls

66.86 26.14 26.14 502

30.77 38.17 12.03 26
1.43 38.73 0.56 1
0.36 38.87 0.14 2850
0.15 38.93 0.06 2850
0.13 38.98 0.05 26
0.10 39.02 0.04
0.08 39.05 0.03 25
0.08 39.08 0.03 1
0.05 39.10 0.02 26
0.00 39.10 0.00 1221559
0.00 39.10 0.00 1221559
0.00 39.10 0.00 131072
0.00 39.10 0.00 1025
0.00 39.10 0.00 502
0.00 39.10 0.00 500
0.00 39.10 0.00 475
0.00 39.10 0.00 26
0.00 39.10 0.00 25
0.00 39.10 0.00 25
0.00 39.10 0.00 25
0.00 39.10 0.00 7
0.00 39.10 0.00 1
0.00 39.10 0.00 1

self

s/call
0.05
0.46
0.56
0.00
0.00
0.00

0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

total

s/call

0.
.46
38.
.00
0.
.00

0

0

0

O O O O OO0 O0O0O0O0OO0O0OO0O OO OO OO

05

46

00

.00
.03
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

was spent per call

How much time

/ name

ForceLJ: :compute (Atom&, Neighbor&, Commé&, int)

Neighbor: :build(Atom&)

Integrate::run(Atom&, Force*, Neighbor&, Commé&, Thermo&, Timer&)
Atom::pack comm(int, int*, double*, int#*)

Atom: :unpack comm(int, int, double*)

Atom: :pbc()

__intel ssse3 rep memcpy

Atom: :sort (Neighbor&)

create atoms(Atom&, int, int, int, double)

Comm: :borders (Atom&)

Atom: :pack border(int, double*, int¥)

Atom: :unpack border(int, double*)

Atom: :addatom(double, double, double, double, double, double)
Timer::stamp(int)

Thermo: :compute (int, Atom&, Neighbor&, Force*, Timer&, Comm&)
Timer: :stamp()

Comm: :communicate (Atom&)

Comm: :exchange (Atom&)

Timer::stamp extra stop(int)

Timer::stamp extra start()

Neighbor: :binatoms (Atom&, int)

Timer::barrier stop(int)

create_box(Atom&, int, int, int, double)

create velocity(double, Atom&, Thermo&)

Output is sorted according to total time spent in routine.

Performance Engineering Basics

(c) NHR@FAU 2022

Sampling-based runtime profile with pertf

Call executable with perf:

perf record —-g ./a.out

Advantages vs. gprof:
= Works on any binary without

recompile
Analyze the results with: = Also captures OS and runtime
perf report symbols
Samples: 30K of event 'cycles:uppp’', Event count (approx.): 20629160088
Overhead Command Shared Object Symbol
64.19% miniMD-ICC miniMD-ICC [.] ForceLJ::compute
31.54% miniMD-ICC miniMD-ICC [.] Neighbor::build
1.47% miniMD-ICC miniMD-ICC [.] Integrate::run
0.67% miniMD-ICC [kernel] [k] irg return
0.40% miniMD-ICC miniMD-ICC [.] Atom::pack comm
0.35% mpiexec [kernel] [k] sysret check
0.21% miniMD-ICC miniMD-ICC [.] create atoms
0.18% miniMD-ICC miniMD-ICC [.] Atom: :unpack comm
0.15% miniMD-ICC [kernel] [k] sysret check
0.15% miniMD-ICC miniMD-ICC [.] Comm::borders
0.10% miniMD-ICC miniMD-ICC [.] intel ssse3 rep memcpy
0.09% miniMD-ICC miniMD-ICC [.] Atom::sort
0.07% miniMD-ICC [«]

miniMD-ICC

Neighbor::binatoms

Performance Engineering Basics

(c) NHR@FAU 2022

10

Command line version of Intel Amplifier

Works out of the box for MP1/OpenMP parallel applications.

Example usage with MPI:

mpirun -np 2 amplxe-cl -collect hotspots -result-dir myresults -- a.out

= Compile with debugging symbols

= Can also resolve inlined C++ routines

= Many more collect modules available including
hardware performance monitoring metrics

Elapsed Time: 8.650s
CPU Time: B.190s
Effective Time: 8.190s
Idle: 0.020s
Poor: £.170s

Ok: 0s
Ideal: 0Os
Over: 0s

Spin Time: Os

Overhead Time: 0Os
Total Thread Count: 2
Paused Time: 0s

Top Hotspots
Function Module CPU Time

ForceLJ: :compute fullneigh miniMD-ICC 4.940s
Neighbor::build miniMD-ICC 2.820s
Integrate::finalIntegrate miniMD-ICC 0.100s
Integrate::initialIntegrate miniMD-ICC 0.060s
__intel ssse3 rep memcpy miniMD-ICC 0.040s
[Others] N/A 0.230s

Performance Engineering Basics

(c) NHR@FAU 2022

11

Application benchmarking preparation

= Discuss and prepare relevant benchmark test case(s)
= Short turnaround time
= Representative of real production runs

= For long term multi-site PE projects you may extract a proxy application

= Simplified version of app (or a part of it) that still captures the relevant
performance behavior

= Define an application-specific performance metric
= Should avoid “trivial” dependencies on problem parameters (see later)
= Common choice: Useful work performed per time unit

Performance Engineering Basics (c) NHR@FAU 2022

12

Application benchmarking components

Performance measurements must be accurate, deterministic and reproducible.

Components for application benchmarking:

System

configuration

Always run benchmarks on an exclusive system!

Performance Engineering Basics (c) NHR@FAU 2022

13

Timing within program code

For benchmarking, an accurate wall-clock timer (end-to-end stop watch) is required:

= clock gettime() POSIX compliant timing function

= MPI_ Wtime () and omp get wtime () Standardized programming-model-
specific timing routines for MPI and OpenMP

#include <stdlib.h> Usage:
#include <time.h> double S, E;
S = getTimeStamp () ;
double getTimeStamp () /* measured code region */
{ E = getTimeStamp () ;
struct timespec ts; return E-S;

clock gettime (CLOCK MONOTONIC, &ts);
return (double)ts.tv_sec + (double)ts.tv nsec * 1l.e-9;

O https://github.com/RRZE-HPC/TheBandwidthBenchmark/

Performance Engineering Basics (c) NHR@FAU 2022 14

https://github.com/RRZE-HPC/TheBandwidthBenchmark

System configuration and clock frequency

Cluster-on-die
Prefetcher settings
Transparent huge pages
Memory configuration
NUMA balancing

Turbo mode

Frequency control

core

Socket Socket

N

Uncore clock
QPI snoop mode

Tool for system state dump (requires Likwid tools):

https: // github. com/RRZE-HPC/MachineState

Performance Engineering Basics

(c) NHR@FAU 2022

15

https://github.com/RRZE-HPC/MachineState

Benchmark planning

Two common variants:
Dataset size

Core count
Scale across ,,:EEE: TN B
sockets \. |Scale across = 2000 o TN]
| ! ! ! ! d | |] I{J{J[_}
N N_|__nodes \ °L
Scale within] o 0 £ - R
memory domain ; 2r 7 g 2l
o | ”:..:'; 8:_ .
il T4 o _ 3 I c=10" :
1) ST NR 10°
15 1|0 1|5 2|0 I1 I2 ;IJ, zll . -)
reoes #nodes » Measure with one process (to start with)
Choosing the right » Scan dataset size in fine steps
scaling baseline = Verify the data volumes with a HPM tool

Performance Engineering Basics (c) NHR@FAU 2022 17

Graphs: the good, the bad, and the ugly

2700

2200

SPEC OMP2012 Performance

& AMD Piledriver 2p/32 cores
30 Intel Sandy Bridge 2p/16 cores without hyperthreading

Intel 13.0

@1: Scaling on Meggie

Scaling of what??

PGl13.a

T T !
85l q0% 95% 100% 105% 110% 115%
SPECompG_bese?02 relative perarmanca a5 measwed by The Portland Group dusing the wass of January 28 and Feburary 4, 2013, The number of OpendP thiesds

wats 5t match the nurmber of cores on each syseem. SPEComp®is a regissered trademark of the Standard Perfomance Evaluation Comporation (SFEG)

http://www.pgroup.com/imaqges/charts/spec

100%

0%

PEOPLE HAVE WISED UP 10 THE “CAREFULLY
CHOSEN Y-AKXIS RANGE" TRICK, S0 WE MISLEADING
GRAPH MAKERS HAVE HAD TO GET CREATIVE.

https://xkcd.com/2023/

omp2012 chart big.png

Performance Engineering Basics

(c) NHR@FAU 2022

18

http://www.pgroup.com/images/charts/spec_omp2012_chart_big.png
https://xkcd.com/2023/

Runtime or performance scaling?

= Ultimately, the user wants to know
“How long will my problem take to
solve?”

= Plotting runtime vs. resources
answers this question

= However,...
= Scaling behavior hard to visualize

= Hard to generalize to different
problem size

= Performance is normalized to a
defined unit of work

= Scaling behavior is easier to read on a
linear graph

3000

2500

N
o
o
o

1500

Performance [Mflop/s]

N
o
o
o

500

0 10 20 30 40 50 60 70
nodes

Performance Engineering Basics

(c) NHR@FAU 2022 20

Exposing the relevant effects

* Present data in a way that exposes the interesting correlations and
ignores “trivial” dependencies

= Example: runtime or performance vs. problem size?

. . . I I
= Runtime has a trivial dependence of
“larger problem takes longer” 200l
_ 10000
= Performance vs. problem size : -
shows clearly a fundamental change = =
with larger problems £ §
c
T 1000} 2 100
_ . « g o
* This is highly problem specific!
100 500 1000 2000 0 500 1000 2000
Problem size Problem size

Performance Engineering Basics (c) NHR@FAU 2022 21

The Performance Logbook

= Manual and knowledge collection how to build, configure and run application
= Document activities and results in a structured way
= Learn about best practice guidelines for performance engineering

= Serve as a well-defined and simple way to exchange and hand over performance
projects

The logbook consists of a single markdown document, helper scripts, and directories
for input, raw results, and media files.

0 https://github.com/RRZE-HPC/ThePerformanceLogbook

Performance Engineering Basics (c) NHR@FAU 2022 23

https://github.com/RRZE-HPC/ThePerformanceLogbook

	Performance Engineering
	Optimizing code: The big Picture
	Programming language influence
	Performance Engineering process
	Runtime profiling with gprof
	Runtime profile with gprof: Flat profile
	Sampling-based runtime profile with perf
	Command line version of Intel Amplifier
	Application benchmarking preparation
	Application benchmarking components
	Timing within program code
	System configuration and clock frequency
	Benchmark planning
	Graphs: the good, the bad, and the ugly
	Runtime or performance scaling?
	Exposing the relevant effects
	The Performance Logbook

