
Performance Engineering

Basic skills and knowledge

(c) NHR@FAU 2022 2Performance Engineering Basics

Optimizing code: The big Picture

Implementation

Instruction code

Algorithm

core

L1

L2

L3

SIMD
FMA

Memory

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

Memory

1 Reduce algorithmic work

2 Minimize processor work

3 Distribute work and data for optimal
utilization of parallel resources

5 Use most effective
execution units on chip

4 Avoid slow data paths

6 Avoid bottlenecks

(c) NHR@FAU 2022 3Performance Engineering Basics

Programming language influence
 Programming languages are designed to help with software engineering

requirements
 Multi-paradigm language (C++, also Fortran 2003 and newer) tend to lead

to over-engineered solutions.
 Language features do not come for free! C++ performance heavily relies

on aggressive in-lining. This often fails and makes performance fragile.

Advices:
 Keep it simple stupid! A simpler solution is a better solution.
 Extract numerically intensive tasks into simple kernels.
 Be brave when it comes to refactoring!

(c) NHR@FAU 2022 7Performance Engineering Basics

Performance Engineering process

Algorithm/Code
Analysis

Application
Benchmarking

HPM performance
profile

Traces/HW metricsPerformance Model

 Identify performance issues
 Develop performance expectation

Optimize
implementation

Change runtime
configuration

Iteratively

Runtime profile

For every hotspot

Optional

(c) NHR@FAU 2022 8Performance Engineering Basics

Runtime profiling with gprof

Instrumentation based with gprof
Compile with –pg switch:
icc -pg -O3 -c myfile1.c

Execute the application. During execution a file gmon.out is generated.
Analyze the results with:
gprof ./a.out | less

The output contains three parts: A flat profile, the call graph, and an alphabetical
index of routines.

The flat profile is what you are usually interested in.

(c) NHR@FAU 2022 9Performance Engineering Basics

Runtime profile with gprof: Flat profile

Output is sorted according to total time spent in routine.

Time spent in
routine itself

How often was
it called

How much time
was spent per call

(c) NHR@FAU 2022 10Performance Engineering Basics

Sampling-based runtime profile with perf

Call executable with perf:
perf record –g ./a.out

Analyze the results with:
perf report

Advantages vs. gprof:
 Works on any binary without

recompile
 Also captures OS and runtime

symbols

(c) NHR@FAU 2022 11Performance Engineering Basics

Command line version of Intel Amplifier

Works out of the box for MPI/OpenMP parallel applications.

Example usage with MPI:
mpirun -np 2 amplxe-cl -collect hotspots -result-dir myresults -- a.out

 Compile with debugging symbols
 Can also resolve inlined C++ routines
 Many more collect modules available including

hardware performance monitoring metrics

(c) NHR@FAU 2022 12Performance Engineering Basics

Application benchmarking preparation
 Discuss and prepare relevant benchmark test case(s)

 Short turnaround time
 Representative of real production runs

 For long term multi-site PE projects you may extract a proxy application
 Simplified version of app (or a part of it) that still captures the relevant

performance behavior

 Define an application-specific performance metric
 Should avoid “trivial” dependencies on problem parameters (see later)
 Common choice: Useful work performed per time unit

(c) NHR@FAU 2022 13Performance Engineering Basics

Application benchmarking components
Performance measurements must be accurate, deterministic and reproducible.

Components for application benchmarking:

Always run benchmarks on an exclusive system!

System
configuration

DocumentationTiming Affinity control

(c) NHR@FAU 2022 14Performance Engineering Basics

Timing within program code
For benchmarking, an accurate wall-clock timer (end-to-end stop watch) is required:
 clock_gettime() POSIX compliant timing function
 MPI_Wtime() and omp_get_wtime() Standardized programming-model-

specific timing routines for MPI and OpenMP

#include <stdlib.h>
#include <time.h>

double getTimeStamp()
{

struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9;

}

Usage:
double S, E;
S = getTimeStamp();
/* measured code region */
E = getTimeStamp();
return E-S;

https://github.com/RRZE-HPC/TheBandwidthBenchmark/

https://github.com/RRZE-HPC/TheBandwidthBenchmark

(c) NHR@FAU 2022 15Performance Engineering Basics

System configuration and clock frequency

Socket

Memory Memory

Socket

Turbo mode
Frequency control

core

Cluster-on-die
Prefetcher settings
Transparent huge pages
Memory configuration
NUMA balancing

Uncore clock
QPI snoop mode

Tool for system state dump (requires Likwid tools):
https://github.com/RRZE-HPC/MachineState

https://github.com/RRZE-HPC/MachineState

(c) NHR@FAU 2022 17Performance Engineering Basics

Benchmark planning

Two common variants:
Core count Dataset size

 Measure with one process (to start with)
 Scan dataset size in fine steps
 Verify the data volumes with a HPM tool

Scaling baseline:
one core

Scale within
memory domain

Scale across
sockets Scale across

nodes

NR

Choosing the right
scaling baseline

(c) NHR@FAU 2022 18Performance Engineering Basics

Graphs: the good, the bad, and the ugly

200

700

1200

1700

2200

2700

0 10 20 30

Figure 1: Scaling on Meggie

W
ha

t?

What?

Scaling of what??

Nope!

http://www.pgroup.com/images/charts/spec_omp2012_chart_big.png

https://xkcd.com/2023/

http://www.pgroup.com/images/charts/spec_omp2012_chart_big.png
https://xkcd.com/2023/

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

R
un

tim
e

[s
]

nodes

(c) NHR@FAU 2022 20Performance Engineering Basics

Runtime or performance scaling?
 Ultimately, the user wants to know

“How long will my problem take to
solve?”

 Plotting runtime vs. resources
answers this question

 However,…
 Scaling behavior hard to visualize
 Hard to generalize to different

problem size

 Performance is normalized to a
defined unit of work

 Scaling behavior is easier to read on a
linear graph

???

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70

Pe
rfo

rm
an

ce
 [M

flo
p/

s]

nodes

(c) NHR@FAU 2022 21Performance Engineering Basics

Exposing the relevant effects
 Present data in a way that exposes the interesting correlations and

ignores “trivial” dependencies
 Example: runtime or performance vs. problem size?

 Runtime has a trivial dependence of
“larger problem takes longer”

 Performance vs. problem size
shows clearly a fundamental change
with larger problems

 This is highly problem specific!

(c) NHR@FAU 2022 23Performance Engineering Basics

The Performance Logbook

 Manual and knowledge collection how to build, configure and run application

 Document activities and results in a structured way

 Learn about best practice guidelines for performance engineering

 Serve as a well-defined and simple way to exchange and hand over performance
projects

The logbook consists of a single markdown document, helper scripts, and directories
for input, raw results, and media files.

https://github.com/RRZE-HPC/ThePerformanceLogbook

https://github.com/RRZE-HPC/ThePerformanceLogbook

	Performance Engineering
	Optimizing code: The big Picture
	Programming language influence
	Performance Engineering process
	Runtime profiling with gprof
	Runtime profile with gprof: Flat profile
	Sampling-based runtime profile with perf
	Command line version of Intel Amplifier
	Application benchmarking preparation
	Application benchmarking components
	Timing within program code
	System configuration and clock frequency
	Benchmark planning
	Graphs: the good, the bad, and the ugly
	Runtime or performance scaling?
	Exposing the relevant effects
	The Performance Logbook

