
Performance Engineering

Basic skills and knowledge
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Optimizing code: The big Picture
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1 Reduce algorithmic work

2 Minimize processor work

3 Distribute work and data for optimal 
utilization of parallel resources

5 Use most effective 
execution units on chip

4 Avoid slow data paths

6 Avoid bottlenecks
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Programming language influence 
 Programming languages are designed to help with software engineering 

requirements
 Multi-paradigm language (C++, also Fortran 2003 and newer) tend to lead 

to over-engineered solutions.
 Language features do not come for free! C++ performance heavily relies 

on aggressive in-lining. This often fails and makes performance fragile.

Advices:
 Keep it simple stupid! A simpler solution is a better solution.
 Extract numerically intensive tasks into simple kernels.
 Be brave when it comes to refactoring!
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Performance Engineering process

Algorithm/Code 
Analysis

Application 
Benchmarking

HPM performance 
profile

Traces/HW metricsPerformance Model

 Identify performance issues
 Develop performance expectation

Optimize 
implementation

Change runtime 
configuration 

Iteratively

Runtime profile

For every hotspot

Optional
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Runtime profiling with gprof

Instrumentation based with gprof
Compile with –pg switch:
icc -pg -O3 -c myfile1.c

Execute the application. During execution a file gmon.out is generated. 
Analyze the results with:
gprof ./a.out | less

The output contains three parts: A flat profile, the call graph, and an alphabetical
index of routines.

The flat profile is what you are usually interested in.
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Runtime profile with gprof: Flat profile

Output is sorted according to total time spent in routine. 

Time spent in 
routine itself

How often was 
it called

How much time 
was spent per call
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Sampling-based runtime profile with perf

Call executable with perf:
perf record –g ./a.out

Analyze the results with:
perf report

Advantages vs. gprof:
 Works on any binary without 

recompile
 Also captures OS and runtime 

symbols
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Command line version of Intel Amplifier

Works out of the box for MPI/OpenMP parallel applications.

Example usage with MPI:
mpirun -np 2 amplxe-cl -collect hotspots -result-dir myresults -- a.out

 Compile with debugging symbols
 Can also resolve inlined C++ routines
 Many more collect modules available including

hardware performance monitoring metrics
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Application benchmarking preparation
 Discuss and prepare relevant benchmark test case(s)

 Short turnaround time
 Representative of real production runs

 For long term multi-site PE projects you may extract a proxy application
 Simplified version of app (or a part of it) that still captures the relevant 

performance behavior

 Define an application-specific performance metric
 Should avoid “trivial” dependencies on problem parameters (see later)
 Common choice: Useful work performed per time unit
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Application benchmarking components
Performance measurements must be accurate, deterministic and reproducible.

Components for application benchmarking:

Always run benchmarks on an exclusive system!

System 
configuration

DocumentationTiming Affinity control
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Timing within program code
For benchmarking, an accurate wall-clock timer (end-to-end stop watch) is required:
 clock_gettime()  POSIX compliant timing function
 MPI_Wtime() and omp_get_wtime() Standardized programming-model-

specific timing routines for MPI and OpenMP

#include <stdlib.h>
#include <time.h>

double getTimeStamp()
{

struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9;

}

Usage:
double S, E;
S = getTimeStamp();
/* measured code region */
E = getTimeStamp();
return E-S;

https://github.com/RRZE-HPC/TheBandwidthBenchmark/

https://github.com/RRZE-HPC/TheBandwidthBenchmark
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System configuration and clock frequency

Socket

Memory Memory

Socket

Turbo mode
Frequency control

core

Cluster-on-die
Prefetcher settings
Transparent huge pages
Memory configuration
NUMA balancing

Uncore clock
QPI snoop mode

Tool for system state dump (requires Likwid tools):
https://github.com/RRZE-HPC/MachineState

https://github.com/RRZE-HPC/MachineState
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Benchmark planning

Two common variants:
Core count Dataset size

 Measure with one process (to start with)
 Scan dataset size in fine steps
 Verify the data volumes with a HPM tool

Scaling baseline: 
one core

Scale within 
memory domain

Scale across 
sockets Scale across 

nodes

NR

Choosing the right 
scaling baseline
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Graphs: the good, the bad, and the ugly
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http://www.pgroup.com/images/charts/spec_omp2012_chart_big.png

https://xkcd.com/2023/

http://www.pgroup.com/images/charts/spec_omp2012_chart_big.png
https://xkcd.com/2023/
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Runtime or performance scaling?
 Ultimately, the user wants to know 

“How long will my problem take to 
solve?”

 Plotting runtime vs. resources 
answers this question

 However,…
 Scaling behavior hard to visualize
 Hard to generalize to different 

problem size

 Performance is normalized to a 
defined unit of work

 Scaling behavior is easier to read on a 
linear graph

???
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Exposing the relevant effects
 Present data in a way that exposes the interesting correlations and 

ignores “trivial” dependencies
 Example: runtime or performance vs. problem size? 

 Runtime has a trivial dependence of
“larger problem takes longer”

 Performance vs. problem size
shows clearly a fundamental change
with larger problems

 This is highly problem specific!
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The Performance Logbook

 Manual and knowledge collection how to build, configure and run application

 Document activities and results in a structured way

 Learn about best practice guidelines for performance engineering

 Serve as a well-defined and simple way to exchange and hand over performance
projects

The logbook consists of a single markdown document, helper scripts, and directories
for input, raw results, and media files.

https://github.com/RRZE-HPC/ThePerformanceLogbook

https://github.com/RRZE-HPC/ThePerformanceLogbook
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