
Case Study:
Dense Matrix-Vector Multiplication

2

Dense matrix-vector multiplication in DP

do c = 1 , NC

do r = 1 , NR

y(r)=y(r) + A(r,c)* x(c)

enddo

enddo

(c) RRZE 2020 Dense MVM analysis

do c = 1 , NC

tmp=x(c)

do r = 1 , NR

y(r)=y(r) + A(r,c)* tmp

enddo

enddo

3

dMVM scaling w/ OpenMP

(c) RRZE 2020 Dense MVM analysis

!$omp parallel do reduction(+:y)
do c = 1 , NC

do r = 1 , NR
y(r) = y(r) + A(r,c) * x(c)

enddo ; enddo
!$omp end parallel do

Intel Xeon E5 2695 v3 (Haswell-EP), 2.3 GHz, CoD mode, Core Pmax=18.4 GF/s,
Caches: 32 KB / 256 KB / 35 MB, PageSize: 2 MB; ifort V15.0.1.133; bS = 32 Gbyte/s

Roofline limit
BC = 4 Byte/Flop
bS = 32 GB/s

Single-core Roofline limit
BC = 4 Byte/Flop
bS (1core) = 14.3 GB/s?

NR=40,000; NC=10,000

4

 Vectorization strategy: 4-way inner loop unrolling
 One register holds tmp in each of its 4 entries (“broadcast”)

 Loop kernel requires/consumes 3 AVX registers
 Extra 3-way unrolling required to overcome ADD pipeline stalls

DMVM (DP) – Reminder on AVX vectorization

(c) RRZE 2020 Dense MVM analysis

do c = 1,NC

tmp=x(c)

do r = 1,NR,4 ! R is multiple of 4

y(r) = y(r) + A(r,c) * tmp
y(r+1) = y(r+1) + A(r+1,c)* tmp
y(r+2) = y(r+2) + A(r+2,c)* tmp
y(r+3) = y(r+3) + A(r+3,c)* tmp

enddo

enddo

5

DMVM (DP) – Single core performance vs. column height

(c) RRZE 2020 Dense MVM analysis

Intel Xeon E5 2695 v3 (Haswell-EP), 2.3 GHz, CoD mode, Core Pmax=18.4 GF/s,
Caches: 32 KB / 256 KB / 35 MB, PageSize: 2 MB; ifort V15.0.1.133; bS = 32 Gbyte/s

Performance drops as number
of rows (inner loop length)
increases.

Does computational intensity
change?

Single-core Roofline limit (BC = 4 B/F)

NR

NC=104

6

DMVM data traffic analysis

Dense MVM analysis

A(r,c)

do c = 1 , NC
tmp=x(c)
do r = 1 , NR

y(r)=y(r) + A(r,c)* tmp
enddo

enddo

NR

y(:) is loaded and stored in each outer
iteration for c>1 update y(:) in cache

A(:,:) is loaded from memory – no
data reuse

y(:) may not fit in innermost cache
more traffic from lower level caches for
larger NR

tmp stays in a register during inner loop

(c) RRZE 2020

= + *

NC

Analysis: Distinguish code
balance in memory (𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚)
from code balance in relevant
cache level(s) (𝐵𝐵𝐶𝐶𝐿𝐿𝐿, 𝐵𝐵𝐶𝐶𝐿𝐿2,…)!

7

Code balance, reloaded!

 Code balance can be defined for any data path:

𝑉𝑉𝑖𝑖 = data volume over data path 𝑖𝑖
𝑊𝑊 = amount of work done with the data

 In principle, the Roofline model can be expressed for
those multiple bottlenecks:

 However, the perfect overlap condition is invalid for
the single-core cache hierarchy
 But code balance is still useful for qualitative analysis…

(c) RRZE 2020 Dense MVM analysis

Registers

L1

L2

L3

Memory

𝐵𝐵𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝑐𝑐𝐿𝐿𝐿

𝐵𝐵𝑐𝑐𝐿𝐿2

𝐵𝐵𝑐𝑐𝑖𝑖 =
𝑉𝑉𝑖𝑖
𝑊𝑊

𝑃𝑃 = min 𝑃𝑃max, min𝑖𝑖 �𝑏𝑏𝑆𝑆
𝑖𝑖

𝐵𝐵𝑐𝑐𝑖𝑖

8

DMVM (DP) – Single core data traffic analysis

(c) RRZE 2020 Dense MVM analysis

size(y(1:NR))
= 160 kB

size(y(1:NR))
= 16 kB

likwid-perfctr
measurements

y Exceeding inner cache size:
 (8+8) Byte for RD + WR on y

𝐵𝐵𝐶𝐶𝐿𝐿𝐿 = 24B/2F

𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 8B/2F

𝐵𝐵𝐶𝐶𝐿𝐿2 = 24B/2F

𝐵𝐵𝐶𝐶𝐿𝐿𝐿 = 8B/2F

NR

9

Reducing traffic by blocking

(c) RRZE 2020 Dense MVM analysis

A(r,c)

do c = 1 , NC
tmp=x(c)
do r = 1 , NR

y(r)=y(r) + A(r,c)* tmp
enddo

enddo

do rb = 1 , NR , Rb
rbS = rb
rbE = min((rb+Rb-1), NR)
do c = 1 , NC
do r = rbS , rbE

y(r)=y(r) + A(r,c)*x(c)
enddo

enddo
enddo

NR

Rb

y(:) may
not fit into
some cache
 more
traffic for
lower level

y(rbS:rbE)
may fit into
some cache if
Rb is small
enough
 traffic
reduction

10

Reducing traffic by blocking

(c) RRZE 2020 Dense MVM analysis

Rb

= + *

 LHS only updated once in some cache level if blocking is applied
 Price: RHS is loaded multiple times instead of once!

 How often? NR / Rb times
 RHS traffic: NC x NR / Rb

 LHS traffic: 2 x NR

 Matrix: NR x NC

 Without blocking: 𝑁𝑁𝑅𝑅 × 𝑁𝑁𝐶𝐶
𝑁𝑁𝑅𝑅

+ 2𝑁𝑁𝐶𝐶 + 𝑁𝑁𝑅𝑅 ≈ 3𝑁𝑁𝑅𝑅2 if 𝑁𝑁𝑅𝑅 ,𝑅𝑅𝑏𝑏 ≫ 1 and 𝑁𝑁𝐶𝐶 = 𝑁𝑁𝑅𝑅

Overall: 𝑁𝑁𝑅𝑅 × 𝐶𝐶
𝑅𝑅𝑏𝑏

+ 2 + 𝑁𝑁𝑅𝑅 ≈ 𝑁𝑁𝑅𝑅2 if 𝑁𝑁𝑅𝑅,𝑅𝑅𝑏𝑏 ≫ 1
and 𝑁𝑁𝐶𝐶 = 𝑁𝑁𝑅𝑅

11

DMVM (DP) – Reducing traffic by inner loop blocking

 “1D blocking” for inner loop
 Blocking factor Rb cache level

 Fully reuse subset of y(rbS:rbE)
from L1/L2 cache

(c) RRZE 2020 Dense MVM analysis

do rb = 1 , NR , Rb

rbS = rb
rbE = min((rb+Rb-1), NR)

do c = 1 , NC
do r = rbS , rbE

y(r)=y(r) + A(r,c)*x(c)
enddo

enddo

enddo

L2 cache
blocking

L1 cache
blocking

NR

NC=104

12

DMVM (DP) – Validation of blocking optimization

(c) RRZE 2020 Dense MVM analysis

Rb= 2000

NR

13

DMVM (DP) – OpenMP parallelization

(c) RRZE 2020 Dense MVM analysis

!$omp parallel do reduction(+:y)
do c = 1 , NC
do r = 1 , NR

y(r) = y(r) + A(r,c) * x(c)
enddo ; enddo
!$omp end parallel do

!$omp parallel do private(rbS,rbE)
do rb = 1 , NR , Rb
rbS = rb
rbE = min((rb+Rb-1), NR)
do c = 1 , NC
do r = rbS , rbE

y(r) = y(r) + A(r,c) * x(c)
enddo ; enddo ; enddo
!$omp end parallel do

plain code

blocked code

14

DMVM (DP) – OpenMP parallelization & saturation

(c) RRZE 2020 Dense MVM analysis

blocking good for
single thread
performance (reduced
in-cache traffic)

memory traffic
unchanged
 saturation
unchanged!

saturation influenced
by serial performance

Intel Xeon E5 2695 v3 (Haswell-EP) CoD
2.3 GHz base clock speed, bS = 32 GB/s

Roofline limit
BC = 4 Byte/Flop
bS = 32GB/s

So, is blocking
useless?
 NO (see later)

Can we do
anything to
improve 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚?
 NO, not here

single-core RL

16

Conclusions from the dMVM example
 We have found the reasons for the breakdown of single-core

performance with growing number of matrix rows
 LHS vector fitting in different levels of the cache hierarchy
 Validated theory by performance counter measurements

 Inner loop blocking was employed to improve code balance in L3
and/or L2
 Validated by performance counter measurements

 Blocking led to better single-threaded performance

 Saturated performance unchanged (as predicted by Roofline)
 Because the problem is still small enough to fit the LHS at least into the L3

cache

(c) RRZE 2020 Dense MVM analysis

	Case Study: �Dense Matrix-Vector Multiplication
	Dense matrix-vector multiplication in DP
	dMVM scaling w/ OpenMP
	DMVM (DP) – Reminder on AVX vectorization
	DMVM (DP) – Single core performance vs. column height
	DMVM data traffic analysis
	Code balance, reloaded!
	DMVM (DP) – Single core data traffic analysis
	Reducing traffic by blocking
	Reducing traffic by blocking
	DMVM (DP) – Reducing traffic by inner loop blocking
	DMVM (DP) – Validation of blocking optimization
	DMVM (DP) – OpenMP parallelization
	DMVM (DP) – OpenMP parallelization & saturation
	Conclusions from the dMVM example

