
Case study:
Sparse Matrix-Vector Multiplication

(c) NHR@FAU 2023 2Roofline Case Studies | SpMV

Sparse Matrix Vector Multiplication (SpMV)

 Key ingredient in some matrix diagonalization algorithms
 Lanczos, Davidson, Jacobi-Davidson

 Store only Nnz nonzero elements of matrix and RHS, LHS vectors with Nr (number
of matrix rows) entries

 “Sparse”: Nnz ~ Nr

 Average number of nonzeros per row: Nnzr = Nnz/Nr

= + • Nr

General case:
some indirect
addressing
required!

(c) NHR@FAU 2023 3Roofline Case Studies | SpMV

SpMVM characteristics
 For large problems, SpMV is inevitably memory-bound

 Intra-socket saturation effect on modern multicores

 SpMV is easily parallelizable in shared and distributed memory
 Load balancing
 Communication overhead

 Data storage format is crucial for performance properties
 Most useful general format on CPUs:

Compressed Row Storage (CRS)
 Depending on compute architecture

(c) NHR@FAU 2023 4Roofline Case Studies | SpMV

CRS matrix storage scheme

…

column index

ro
w

 in
de

x

1 2 3 4 …
1
2
3
4
…

val[]

1 5 3 72 1 46323 4 21 5 815 … col_idx[]

1 5 15 198 12 … row_ptr[]

 val[] stores all the nonzeros (length
Nnz)

 col_idx[] stores the column index
of each nonzero (length Nnz)

 row_ptr[] stores the starting index
of each new row in val[] (length: Nr)

(c) NHR@FAU 2023 5Roofline Case Studies | SpMV

Case study: Sparse matrix-vector multiply

 Strongly memory-bound for large data sets
 Streaming, with partially indirect access:

 Usually many spMVMs required to solve a problem

 Now let’s look at some performance measurements…

do i = 1,Nr
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))
enddo
enddo

!$OMP parallel do schedule(???)

!$OMP end parallel do

(c) NHR@FAU 2023 6Roofline Case Studies | SpMV

Performance characteristics

 Strongly memory-bound for large data sets saturating performance
across cores on the chip

 Performance seems to depend on the matrix

 Can we explain
this?

 Is there a
“light speed”
for SpMV?

 Optimization?

???

???

10-core Ivy
Bridge, static
scheduling

(c) NHR@FAU 2023 7Roofline Case Studies | SpMV

SpMV node performance model – CRS (1)
real*8 val(Nnz)
integer*4 col_idx(Nnz)
integer*4 row_ptr(Nr)
real*8 C(Nr)
real*8 B(Nc)

Min. load traffic [B]: (8 + 4) 𝑁𝑁𝑛𝑛𝑛𝑛 + 4 + 8 𝑁𝑁𝑟𝑟 + 8 𝑁𝑁𝑐𝑐
Min. store traffic [B]: 8 𝑁𝑁𝑟𝑟
Total FLOP count [F]: 2 𝑁𝑁𝑛𝑛𝑛𝑛

𝐵𝐵𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 =
12 𝑁𝑁𝑚𝑚𝑛𝑛 + 20 𝑁𝑁𝑟𝑟 + 8 𝑁𝑁𝑐𝑐

2 𝑁𝑁𝑛𝑛𝑛𝑛

𝐵𝐵
𝐹𝐹

=

Nonzeros per row (𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 = �𝑁𝑁𝑛𝑛𝑛𝑛
𝑁𝑁𝑟𝑟) or column (𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐 = �𝑁𝑁𝑛𝑛𝑛𝑛

𝑁𝑁𝑐𝑐)

Lower bound for code balance: 𝐵𝐵𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 6 B
F 𝐼𝐼max ≤ 1

6
F
B

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))

enddo
enddo

12 + 20/𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 + 8/𝑁𝑁𝑛𝑛𝑛𝑛𝑐𝑐

2
𝐵𝐵
𝐹𝐹

(c) NHR@FAU 2023 8Roofline Case Studies | SpMV

SpMV node performance model – CRS (2)

𝐵𝐵𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 =
12 + 20/𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 + 8/𝑁𝑁𝑛𝑛𝑛𝑛𝑐𝑐

2
𝐵𝐵
𝐹𝐹

𝐵𝐵𝐶𝐶 (𝛼𝛼) =
12 + 20/𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 + 𝟖𝟖 𝜶𝜶

2
𝐵𝐵
𝐹𝐹

Parameter (𝛼𝛼) quantifies
additional traffic for B(:)
(irregular access):

𝛼𝛼 ≥ �1
𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐

𝛼𝛼𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐 ≥ 1
Consider square matrices: 𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐 = 𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 and 𝑁𝑁𝑐𝑐 = 𝑁𝑁𝑟𝑟
Note: 𝐵𝐵𝐶𝐶 �1 𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 = 𝐵𝐵𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚

do i = 1, Nr
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))

enddo
enddo

•

(c) NHR@FAU 2023 9Roofline Case Studies | SpMV

The “𝜶𝜶 effect”

DP CRS code balance
 α quantifies the traffic

for loading the RHS
 𝛼𝛼 = 0 RHS is in cache
 𝛼𝛼 = 1/𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟 RHS loaded once
 𝛼𝛼 = 1 no cache
 𝛼𝛼 > 1 Houston, we have a problem!

 “Target” performance = 𝑏𝑏𝑆𝑆/𝐵𝐵𝑐𝑐
 Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict 𝛼𝛼?
 Not in general
 Simple cases (banded, block-structured): Similar to layer condition analysis

 Determine 𝛼𝛼 by measuring the actual memory traffic (measured code balance 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

𝐵𝐵𝐶𝐶 (𝛼𝛼) =
12 + 20/𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟+ 8 𝛼𝛼

2
𝐵𝐵
𝐹𝐹

= 6 + 4 𝛼𝛼 +
10
𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

𝐵𝐵
𝐹𝐹

(c) NHR@FAU 2023 10Roofline Case Studies | SpMV

Determine 𝜶𝜶 (RHS traffic quantification)

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the measured overall memory data traffic (using, e.g., likwid-perfctr)
 Solve for 𝛼𝛼:

Example: kkt_power matrix from the UoF collection
on one Intel SNB socket

 𝑁𝑁𝑚𝑚𝑛𝑛 = 14.6 � 106, 𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 = 7.1
 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 258 MB
 𝛼𝛼 = 0.36, 𝛼𝛼𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 = 2.5
 RHS is loaded 2.5 times from memory

𝐵𝐵𝐶𝐶 𝛼𝛼 = 6+4α+
10
𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

B
F

=
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚𝑛𝑛 � 2 F
(= 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

𝛼𝛼 =
1
4

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑚𝑚𝑛𝑛 � 2 bytes

− 6 −
10
𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

𝐵𝐵𝐶𝐶 (𝛼𝛼)
𝐵𝐵𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚

= 1.11

11% extra traffic
optimization potential!

(c) NHR@FAU 2023 11Roofline Case Studies | SpMV

Three different sparse matrices

Matrix 𝑁𝑁 𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 𝐵𝐵𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 [B/F] 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 [GF/s]

DLR1 278,502 143 6.1 7.64
scai1 3,405,035 7.0 8.0 5.83
kkt_power 2,063,494 7.08 8.0 5.83

DLR1 scai1 kkt_power

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, 𝑏𝑏𝑆𝑆 = 46.6 ⁄GB s

 Roofline: 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑏𝑏𝑆𝑆
𝐵𝐵𝐶𝐶,𝑚𝑚𝑚𝑚𝑛𝑛

(c) NHR@FAU 2023 12Roofline Case Studies | SpMV

Now back to the start…
 𝑏𝑏𝑆𝑆 = 46.6 ⁄GB s , 𝐵𝐵𝑐𝑐 = 6 ⁄B F
 Maximum spMVM performance:

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 7.8 ⁄GF s
 DLR1 causes (almost) minimum CRS code

balance (as expected)

 scai1 measured balance:

𝐵𝐵𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 8.5 B/F > 𝐵𝐵𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 (6% higher than min)
 good BW utilization, slightly non-optimal 𝛼𝛼

 kkt_power measured balance:

𝐵𝐵𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 8.8 B/F > 𝐵𝐵𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 (10% higher than min)
 performance degraded by load imbalance,

fix by block-cyclic schedule

scai1, kkt_power upper limit

(c) NHR@FAU 2023 14Roofline Case Studies | SpMV

Investigating the load imbalance with kkt_power

static,2048

static

 Fewer overall instructions, (almost)
BW saturation, 50% better
performandce with load balancing

 CPI value unchanged!

Measurements with likwid-perfctr
(MEM_DP group)

(c) NHR@FAU 2023 15Roofline Case Studies | SpMV

SpMV node performance model – CPU

Intel Xeon Platinum 9242
24c@2.8GHz (turbo)

𝑏𝑏𝑆𝑆 = 122 𝐺𝐺𝐵𝐵/𝑠𝑠

Ba
la

nc
e

[B
/F

] 𝛼𝛼𝑁𝑁𝑚𝑚𝑛𝑛𝑐𝑐

6
B
F

Matrices taken from: C. L. Alappat et al.: ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX.
DOI: 10.1002/cpe.6512

https://doi.org/10.1002/cpe.6512

(c) NHR@FAU 2023 16Roofline Case Studies | SpMV

What about GPUs?
 GPUs need

 Enough work per kernel launch in order to leverage their parallelism
 Coalesced access to memory (consecutive threads in a warp should access

consecutive memory addresses)

 Plain CRS for SpMV on GPUs is not a good idea
1. Short inner loop
2. Different amount of work per thread
3. Non-coalesced memory access

 Remedy: Use SIMD/SIMT-friendly storage format
 ELLPACK, SELL-C-σ, DIA, ESB,…

0

1

2

3

4

5

6

7

8

9

10

11

W
ar

p
th

re
ad

s

(c) NHR@FAU 2023 17Roofline Case Studies | SpMV

CRS SpMV in CUDA (y = Ax)

template <typename VT, typename IT>
__global__ static void
spmv_csr(const ST num_rows,

const IT * RESTRICT row_ptrs, const IT * RESTRICT col_idxs,
const VT * RESTRICT values, const VT * RESTRICT x,

VT * RESTRICT y)
{

ST row = threadIdx.x + blockDim.x * blockIdx.x; // 1 thread per row

if (row < num_rows) {
VT sum{};
for (IT j = row_ptrs[row]; j < row_ptrs[row + 1]; ++j) {

sum += values[j] * x[col_idxs[j]];
}
y[row] = sum;

}
} 𝐵𝐵𝑐𝑐 𝛼𝛼 = 6 + 4 𝛼𝛼 +

6
𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

𝐵𝐵
𝐹𝐹

No write-allocate on GPUs for consecutive stores

(c) NHR@FAU 2023 18Roofline Case Studies | SpMV

SpMV CRS performance on a GPU
CRS (1 thread per row)

NVIDIA Ampere A100
Memory bandwidth 𝑏𝑏𝑆𝑆 = 1400 GB/s

 Strong “𝛼𝛼 effect” – large deviation from
optimal 𝛼𝛼 for many matrices
 Many cache lines touched b/c every thread

handles one row bad cache usage
 Mediocre memory bandwidth usage

(≪ 1400 GB/s) in many cases
 Non-coalesced memory access
 Imbalance across rows/threads of warps

(c) NHR@FAU 2023 19Roofline Case Studies | SpMV

SELL-C-𝜎𝜎
Idea
 Sort rows according to length within sorting scope 𝜎𝜎
 Store nonzeros column-major in zero-padded chunks of height 𝐶𝐶

zero padding

“Chunk occupancy”:

𝛽𝛽 =
𝑁𝑁𝑚𝑚𝑛𝑛

∑𝑚𝑚=0
𝑁𝑁𝑐𝑐 𝐶𝐶 ⋅ 𝑙𝑙𝑚𝑚

𝑙𝑙𝑚𝑚: width of chunk 𝑖𝑖

M. Kreutzer et al.: A Unified Sparse Matrix
Data Format For Efficient General Sparse

Matrix-vector Multiplication On Modern
Processors With Wide SIMD Units, SIAM

SISC 2014, DOI: 10.1137/130930352

https://dx.doi.org/10.1137/130930352

(c) NHR@FAU 2023 20Roofline Case Studies | SpMV

SELL-C-𝜎𝜎 SpMV in CUDA (y=Ax)
template <typename VT, typename IT> __global__ static void
spmv_scs(const ST C, const ST n_chunks, const IT * RESTRICT chunk_ptrs,

const IT * RESTRICT chunk_lengths, const IT * RESTRICT col_idxs,
const VT * RESTRICT values, const VT * RESTRICT x, VT * RESTRICT y)

{
ST row = threadIdx.x + blockDim.x * blockIdx.x;
ST c = row / C; // the no. of the chunk
ST idx = row % C; // index inside the chunk

if (row < n_chunks * C) {
VT tmp{};
IT cs = chunk_ptrs[c]; // points to start indices of chunks

for (ST j = 0; j < chunk_lengths[c]; ++j) {
tmp += values[cs + idx] * x[col_idxs[cs + idx]];
cs += C;

}
y[row] = tmp;

}
}

0

1

2

3

4

5W
ar

p
th

re
ad

s

(c) NHR@FAU 2023 21Roofline Case Studies | SpMV

Code balance of SELL-C-σ (y=Ax)

When measuring 𝐵𝐵𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, take care to use the “useful”
number of flops (excluding zero padding) for work

𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝛼𝛼,𝛽𝛽,𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 =
1
𝛽𝛽

8 + 4
2

+
8𝛼𝛼 + 𝛽𝛽(8 + 4/𝐶𝐶)/𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

2
bytes
flop

=
6
𝛽𝛽

+ 4𝛼𝛼 +
𝛽𝛽(4 + 2/𝐶𝐶)

𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

bytes
flop

LHS update (write only)

chunk index

Matrix data &
column index

Optimal 𝛼𝛼 = 𝛽𝛽
𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟

(c) NHR@FAU 2023 22Roofline Case Studies | SpMV

How to choose the parameters 𝐶𝐶 and 𝜎𝜎 on GPUs?
 𝐶𝐶

 𝑛𝑛 × warp size to allow good utilization of GPU threads
and cache lines

 𝜎𝜎
 As small as possible, as large as necessary
 Large 𝜎𝜎 reduces zero padding (brings 𝛽𝛽 closer to 1)
 Sorting alters RHS access pattern 𝛼𝛼 depends on 𝜎𝜎

(c) NHR@FAU 2023 23Roofline Case Studies | SpMV

SpMV node performance model – GPU
CRS (1 thread per row) SELL-32-128

NVIDIA Ampere A100

𝑏𝑏𝑆𝑆 = 1400 GB/s

(c) NHR@FAU 2023 24Roofline Case Studies | SpMV

Roofline analysis for spMVM
 Conclusion from the Roofline analysis

 The roofline model does not “work” for spMVM due to the RHS traffic uncertainties

 We have “turned the model around” and measured the actual memory traffic to determine the
RHS overhead

 Result indicates:

1. how much actual traffic the RHS generates

2. how efficient the RHS access is (compare BW with max. BW)

3. how much optimization potential we have with matrix reordering

 Do not forget about load balancing!
 Sparse matrix times multiple vectors bears the potential of huge savings in data

volume
 Consequence: Modeling is not always 100% predictive. It‘s all about learning more

about performance properties!

BACKUP

Applying sparse matrix to multiple vectors
(Sparse Matrix Multiple Vectors: SpMMV)

Unchanged matrix applied to multiple RHS (r) vectors to yield multiple LHS (r) vectors

(c) NHR@FAU 2023 27Roofline Case Studies | SpMV

Multiple RHS vectors (SpMMV)

do s = 1,r
do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
C(i,s) = C(i,s) + val(j) *

B(col_idx(j),s)
enddo

enddo
enddo

𝐵𝐵𝑐𝑐 unchanged, no
reuse of matrix data

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(i,s) = C(i,s) + val(j) *

B(col_idx(j),s)
enddo

enddo
enddo

Higher 𝐵𝐵𝑐𝑐 due to max
reuse of matrix data

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(s,i) = C(s,i) + val(j) *

B(s,col_idx(j))
enddo

enddo
enddo

CL-friendly data
structure (row major)

(c) NHR@FAU 2023 28Roofline Case Studies | SpMV

SpMMV code balance
One complete inner (s) loop traversal:
 2𝑟𝑟 flops
 12 bytes from matrix data

(value + index)

16𝑟𝑟
𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟

bytes from the 𝑟𝑟 LHS updates

4

𝑁𝑁𝑛𝑛𝑛𝑛𝑟𝑟
bytes from the row pointer

 8𝑟𝑟𝛼𝛼 𝑟𝑟 bytes from the 𝑟𝑟 RHS reads

do i = 1, Nr
do j = row_ptr(i),row_ptr(i+1)-1
do s = 1,r
C(s,i) = C(s,i) + val(j) *

B(s,col_idx(j))
enddo

enddo
enddo

𝐵𝐵𝑐𝑐 𝑟𝑟 =
1
2𝑟𝑟

12 + 8𝑟𝑟𝛼𝛼 𝑟𝑟 +
16𝑟𝑟 + 4
𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

B
F

=
6
𝑟𝑟

+ 4𝛼𝛼 𝑟𝑟 +
8 + 2/𝑟𝑟
𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

B
F OK so what now???

(c) NHR@FAU 2023 29Roofline Case Studies | SpMV

SpMMV code balance
Let’s check some limits to see if this makes sense!

𝐵𝐵𝑐𝑐 𝑟𝑟 =
6
𝑟𝑟

+ 4𝛼𝛼 𝑟𝑟 +
8 + 2/𝑟𝑟
𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

B
F

𝑟𝑟 = 1
6+4α+

10
𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟

B
F

4𝛼𝛼 𝑟𝑟 +
8

𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟
B
F

reassuring

Can become very small for
large 𝑁𝑁𝑚𝑚𝑛𝑛𝑟𝑟 decoupling from
memory bandwidth is possible!

M. Kreutzer et al.: Performance Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems.
Proc. IPDPS15, DOI: 10.1109/IPDPS.2015.76

6
𝑟𝑟

B
F

http://www.ipdps.org/
http://dx.doi.org/10.1109/IPDPS.2015.76

(c) NHR@FAU 2023 30Roofline Case Studies | SpMV

SELL-C-𝜎𝜎 kernel on CPUs
Example 𝐶𝐶 = 4 without further unrolling

𝐶𝐶 = 4

	Case study:�Sparse Matrix-Vector Multiplication
	Sparse Matrix Vector Multiplication (SpMV)
	SpMVM characteristics
	CRS matrix storage scheme
	Case study: Sparse matrix-vector multiply
	Performance characteristics
	SpMV node performance model – CRS (1)
	SpMV node performance model – CRS (2)
	The “𝜶 effect”
	Determine 𝜶 (RHS traffic quantification)
	Three different sparse matrices
	Now back to the start…
	Investigating the load imbalance with kkt_power
	SpMV node performance model – CPU
	What about GPUs?
	CRS SpMV in CUDA (y = Ax)
	SpMV CRS performance on a GPU
	SELL-C-𝜎
	SELL-C-𝜎 SpMV in CUDA (y=Ax)
	Code balance of SELL-C-σ (y=Ax)
	How to choose the parameters 𝐶 and 𝜎 on GPUs?
	SpMV node performance model – GPU
	Roofline analysis for spMVM
	BACKUP
	Applying sparse matrix to multiple vectors�(Sparse Matrix Multiple Vectors: SpMMV)
	Multiple RHS vectors (SpMMV)
	SpMMV code balance
	SpMMV code balance
	SELL-C-𝜎 kernel on CPUs

