—1

Hewlett Packard
Enterprise

HLRS Hunter -
Architecture

Christian Simmendinger (HPE)

Januar 2025

Hunter - Stepping Stone System

oHunter will be based on the HPE Cray EX4000 platform
* HPE Cray EX255a (El Capitan blade architecture, MI-300A)
« HPE Cray Slingshot Interconnect

oWork File Systems
* HPE Cray ClusterStor E2000 Lustre Appliance
 FS1: 13PB
 FS2: 13PB

": ;’:::u«) \ A3
|
(EEE

oHome File System: 540TB

HPE Cray Supercomputing EX255A Node Architecture

LOM

X16 PCle® Gen5

X16 PCle® Gen5

X16 PCle® Gen5

X16 PCle® Gen5

2x128 GB/s
6x128 GB/s peer-
to-peer per APU

M.2 NVMe

M.2 NVMe

HPE Cray Supercomputing EX255a Specs

HPE Cray Supercomputing EX255a Hawk Apollo 9000

Form Factor 1U blade for EX4000 and EX2500 1U blade Apollo 9000
Processors AMD MI300A APU EPYC 7742 CPU
Compute Blade Two 4-socket MI300A APU nodes Four 2-socket AMD Rome nodes
Core Count 24 CPU Cores and 228 Compute Cores per APU 64 CPU Cores per CPU,
96 CPU Cores and 912 Compute Cores per node 128 CPU Cores per node
Memory / blade 128GB HBM3 per MIZ00A APU; 512GB HBM3 per node 128GB DDR4 per socket, 256GB per Node
Memory Technology HBM3 ~5,3 TB/s per MIZ00A APU DDR4 ~205 GB/s per CPU socket
Intra Node 6x 128GB/s per APU, 2x 128GB/s Peer-to-Peer 96 GB/s Peer-to-Peer
Local Storage O or 1 local NVMe M.2 SSD per node -
Fabric Option HPE Slingshot 11 Infiniband HDR200 Socket-direct
(4 injection ports per node, 4x 200 Gbps) (1 injection port per node, 1x 200 Gbps)

HPE Cray Slingshot

HPE Slingshot

Dragonfly Network Architecture Source

e Packet-by-packet routing of unordered traffic N
(e.g. MPI/Lustre bulk data) optimally routed at each hop

» Adaptive routing of ordered traffic (e.g. Ethernet)
Each new flow can take an optimal new path

Rosetta Switch

64 port switch, 200 Gb/s

e Advanced adaptive routing
e Congestion control, QoS

Cassini NIC

e MPI hardware tag matching

MPI progress engine

Hardware support for one-sided operations

Hardware support for collective operations
200 Gb/s

—

Destination

https://brandcentral.hpe.com/

Achieving great performance on tightly coupled codes

» Objective: overlap comms and compute

Computation Communication

Acceleration Goals:

* Bypass host for processing communications

* Reduce overhead for message orchestration

* Reduce the number of messages needed

* Simplify writing of codes with “strong progression”

Fabric
Comms

HPC Offloads

Achieving near maximal Bandwidth with fine grained adaptive routing

In-House System (Shandy) Test -
Global Link Load - all-to-all communications

Theoretical maximum per link (200 Gbps)= 25 Gbps

P

Global Link Number

[
o

Bandwidth (GB/sec)
l_\
(62

=
o

“Shandy” in-house system
8 groups, 1024 nodes
Dual CX5 injection per node

25 TB/s aggregate injection BW S
50% global bandwidth taper Destination
12.5 TB/s aggregate global BW

—1

Hewlett Packard
Enterprise

MPI - AMD mi300A

AP

Tim Mattox (HPE)
Christian Simmendinger (HPE)

Januar 2025

MPI Best Practices

GPU-Aware MPI Communication

GPU -Aware MPI and GPUDirect RDMA

GPU-Aware MPI

 Traditionally, only pointers of the host buffers could be passed to MPI calls.

e GPU aware MPI provides the opportunity to pass GPU buffers to MPI calls.

e Without GPU-Aware MPI, GPU buffers have to be staged through host memory with hipMemcpy

e Many MPI implementations including CRAY-MPICH, MVAPICH and OpenMPI support GPU-Aware MP|

GPU Direct RDMA

e GPU Direct RDMA is a technology that provides the opportunity for network adapters to directly access
GPU devices memory and bypass the host

» Note that GPU-Aware MPI refers to support passing GPU buffers to MPI calls in MPI implementations
while GPUDirect RDMA is a technology that enables direct access to GPU memory.

e A GPU-Aware MPI may or may not use GPUDirect RDMA for communication between GPUs.

: MPI Best Practices | 11

GPU -Aware MPI

Allocate memory on host ‘
h_buf=(int*) malloc(sizeof(int)*butrsize); ‘
hipMalloc(&d buf,bufsize*sizeof(int)); Allocate memory on device

if (rank = 0)

{

for (i=0; i<bufsize; i++)
h_buf[i] = 1;
hipMemcpy(d buf, h_buf, (bufsize) * sizeof(int), hipMemcpyHostToDevice);

}

if (rank == 1) Initialize device
{

for (i=0; i<bufsize; i++)
h buf[i] = -1;
hipMemcpy(d_buf, h_buf, (bufsize) * sizeof(int), hipMemcpyHostToDevice);

if (rank == 0) {
MPI_Send(d_buf, bufsize, MPI_INT, 1, 122, MPI_COMM_WORLD); }

 rank { GPU-Aware P2P
1T ran =]]

MPI_Recv(d_buf, bufsize, MPI_INT, 0, 123, MPI_COMM WORLD, &status); } communication

Build Environment

HPE Cray MPI: Building/Compiling

e Load AMD ROCm and Cray MPI modules
o module load craype-accel-amd-gfx942 (if using OpenMP target offload)
o module load rocm (you might want to try a newer version than the default)
o module load cray-mpich (you might want to try a newer version than the default)

e Tell your build system how to link to the MPI and ROCm, in two primary ways

o Use the HPE Cray Wrapper Compilers: cc/CC/ftn
— With either module load PrgEnv-cray or PrgEnv-amd
—Linker flags for the ROCm runtime: -LS{ROCM_PATH}/lib -lamdhip64
 Or specify these compiler and linker flags for your non-wrapped compiler of choice
— Compiler flags: -IS{MPICH_DIR}/include -IS{ROCM_PATH}/include
—Linker flags: -L${MPICH_DIR}/lib —Impi
— Linker flags for faster on-node CPU-side communication: -L/opt/xpmem/lib -Ixpmem
- Linker flags to handle GPU resident message buffers:
S{PE_MPICH_GTL_DIR_amd_gfx942} S{PE_MPICH_GTL_LIBS_amd_gfx942}

—

MPI Best Practices | 14

Affinity - cray-mpich - mi300a (gpu)

i X16 PCle® Gen5
| X16 PCle® Gen5

X16 PCle® Gen5

X16 PCle® Gen5

—
—E

M.2 NVMe

cray-mpich

Affinity check - jobstep

ttps://code.ornl.gov/olcf/hello jobstep

Build & Run

mpirun -ppn 4 -np 8 —--cpu-bind 1ist:0-23:24-47:48-71:72-95 —--gpu-bind 1list:0:1:2:3
./hello jobstep | sort -k2n -kbn
MPI 000 - OMP 000 - HWT 002 - Node x1000c0s2b0On0 - RT GPU ID GPU ID Bus ID

MPI 000 - OMP 001 - HWT 003 - Node x1000c0s2bOn0 - RT GPU ID GPU ID Bus ID
MPT 001 - OMP 000 - HWT 026 - Node x1000c0s2b0On0 - RT GPU ID GPU_ID Bus ID
MPT 001 - OMP 001 - HWT 027 - Node x1000c0s2b0On0 - RT GPU ID GPU_ID Bus ID

cray-mpich

SPMD pinning

export OMP NUM THREADS=22
export OMP PROC BIND=close

mpirun -ppn 4 -np 8 --cpu-bind 1ist:2-23:26-47:50-71:74-95 --gpu-bind 1list:0:1:2:3 ./a.out

MPMD pinning

export OMP_NUM THREADS=24

export OMP PROC BIND=close
mpirun -np 2 --cpu-bind 1ist:0-23:24-47 --gpu-bind 1list:0:1 ./a.out : -np 1 ./a.out

Environment variables and Low Noise Mode (LNM)

NIC binding policies

map process to NIC nearest process’s NUMA domain

e MPICH_OFI_NIC_POLICY=NUMA.

map process to NIC nearest process’s attached GPU

e MPICH_OFI_NIC_POLICY=GPU

user defined mapping

e MPICH_OFI_NIC_POLICY=USER

e Plus: MPICH_OFI_NIC_MAPPING=<nic>:<local process_ids>;

Low Noise Mode

e The Linux OS is generally restricted to run its tasks on core O

e Similarly, inferrupts are mapped to the 1st core of each CCD, leaving 7 per CCD that should be less noisy
e GCD helper tasks can get scheduled on the 2" core of a CCD

» Avoid all these potentially noisy cores

: MPI Best Practices I 18

Environment variables

Rank specific environment - who am|

s32708 x1002c0s0b0n0 2045$ mpirun -ppn 1 -np 1 printenv | grep -e PMI.*RANK

PMI RANK=0
PMI LOCAL RANK=0

Multiple ranks per GPU

mpirun -ppn 8 -np 16 —--cpu-bind 1ist:2:3:26:27:50:51:74:75 —-—-gpu-bind 1list:0:0:1:1:
MPI 000 - OMP 000 - HWT 002 - Node x1000cOslbOn0O - RT GPU ID O - GPU ID O - Bus ID
MPI 001 - OMP 000 - HWT 003 - Node x1000c0OslbOn0O - RT GPU ID O - GPU ID O - Bus ID
MPI 002 - OMP 000 - HWT 026 - Node x1000c0s1bOn0 - RT GPU ID O - GPU ID 1 - Bus ID
MPI 003 - OMP 000 - HWT 027 - Node x1000c0slbOn0 - RT GPU ID GPU_1ID Bus_ID

MPT 004 - OMP 000 - HWT 050 - Node x1000c0slbOn0 - RT GPU ID GPU ID Bus ID
MPT 005 - OMP 000 - HWT 051 - Node x1000c0slbOn0 - RT GPU ID GPU ID Bus ID

MPI Best Practices

MPI Best Practices

e Set (and verify) your process, NIC, and GPU affinities

e Check the MPI error/return codes

e Post non-blocking receives before their matching sends

e Don’t abuse the MPI layer... It isn’t magic
o It can only handle a finite number of “things” at once: Communicators, Tags, and Pending Messages
« Give MPI a chance to make progress

e Avoid unnecessary use of MPI_ANY_SOURCE or MPI_ANY_TAG

e Don’t roll-your-own MPI Collectives
 File a bug if performance is not what you expect (unless you are an HPL developer :-)
« Why not? Roll-your-own won’t take advantage of hardware collective acceleration
« Also, have a look at the “new” non-blocking collectives in MPI-3

: MPI Best Practices | 21

Communication Patterns

A7 WP

How to post non-blocking receives before their matching sends

| put the i-receives before the sends, right? You need to do it across ranks, like this:
for (i = 0; i < dimensions; ++i) { for (i = 0;i < dimensions; ++i) {
MPI_lrecv; MPI_Irecy;
— ? }
MPI_lsend;
B // Do some useful compute here
} . // Maybe do MPI_Barrier here
MPI_Waitall; for (i = 0;i < dimensions; ++i) {
// Okay place for some compute’
Well, not exactly... MPI_lsend;
// Better place for some compute’
}
// Best place for compute overlap’
MPI_Waitall;

: MPI Best Practices I 28

MPI Best Practices, Explanations
Why post non-blocking receives before their matching sends?

e If the MPI_Irecv is already posted when a message arrives:
o The payload can go directly into the destination buffer without needing to make a temporary copy
« Even for larger messages using the rendezvous protocol, the RDMA-read of the payload can start immediately
Note: Counted in the LPE_NET_MATCH_PRIORITY Cassini Performance counter

e Otherwise, the message is put into an “Overflow/Unexpected Message” queue

« For small messages using the eager protocol:

—The payload is copied into a temporary buffer

—The payload is copied again when the matching receive is posted
» For larger messages using the rendezvous protocol:

—The (bulk of the) payload waits at the sender until the matching receive is posted

- This waiting delays getting those bytes onto the wire (effectively averaging in “zero” bandwidth during this delay)
« A non-empty “Unexpected Queue” must be searched for a match any time an MPI receive call is made.

Note: Counted in the LPE_NET_MATCH_OVERFLOW Cassini Performance counter

: MPI Best Practices | 29

How to give MPI a chance to make progress?

Cassini NICs do both tag-matching and progress the rendezvous protocol in hardware!

However, if profiling shows a non-trivial amount of tfime in MPI_Wait, etfc., try one of these two
methods:

Make calls into MPI every so often Set MPICH_ASYNC_PROGRESS=1
« During “computation overlap” code, especially if there e This will spawn an MPI progress thread
are pending non-blocking collectives o That thread will need a CPU core#
« MPI_Testsome is preferred over MPI_Testany » Forces thread-safety to MPI_THREAD_MULTIPLE
 Many MPI calls will guarantee MPI progress’ « Might cause some MPI performance overhead

—MPI_Test (and all its variants)

~MPI_Wait (and all its variants) Avoid this if you can. It is rarely actually needed. With
—MPI_Request_get_status might be a better alternative with Cassini NICs, the only common case that would need
an MPI 4.1 standard implementation this is when using non-blocking collectives and your

code doesn’'t have MPI calls for a long time.
*Note: The MPI 4.1 standard has clarified “progress

guarantees” for several MPI calls. _ .
*Note: It is worth a try if you have spare cores

: MPI Best Practices I 31

Documentation

HPE Cray MPI: Documentation

e man mpiexec
 All about job startup, binding
e man intfro_mpi
e Most useful MPI environment variables are documented here
« Pointers to other useful man pages
e man fi_cxi (The CXI Fabric Provider for libfabrics)
 Cassini (CXI) is the name of the NIC in the Slingshot-11 network
« This man page documents environment variables for libfabrics (FI) that are specific to Cassini NICs
e module show cray-mpich
« Change log and bugs fixed by the currently loaded version

: MPI Best Practices I 34

Performance and Tuning

GPU-to-GPU Communication Options

SDMA engine

» Provides the opportunity to overlap communication with computation
e Each SDMA can provide max communication bandwidth of 49GB/s between GCD

Blit kernels

e Lauch kernel to handle communication

e Higher bandwidth

e Cannot overlap communication with computation
e export HSA_ENABLE_SDMA=0

: MPI Best Practices I 36

Thank you

christian.simmendinger@hpe.com

MPI Best Practices
: © 2025 Hewlett Packard Enterprise Development LP

	Presentation
	Slide 1: HLRS Hunter – Architecture
	Slide 2: Hunter – Stepping Stone System
	Slide 3: HPE Cray Supercomputing EX255A Node Architecture
	Slide 4: HPE Cray Supercomputing EX255a Specs
	Slide 5: HPE Cray Slingshot
	Slide 6: HPE Slingshot
	Slide 7: Achieving great performance on tightly coupled codes
	Slide 8: Achieving near maximal Bandwidth with fine grained adaptive routing
	Slide 9: MPI - AMD mi300A
	Slide 10: GPU-Aware MPI Communication
	Slide 11: GPU –Aware MPI and GPUDirect RDMA
	Slide 12
	Slide 13: Build Environment
	Slide 14: HPE Cray MPI: Building/Compiling
	Slide 15: Affinity - cray-mpich – mi300a (gpu)
	Slide 16: cray-mpich
	Slide 17: cray-mpich
	Slide 18: Environment variables and Low Noise Mode (LNM)
	Slide 19: Environment variables
	Slide 20: MPI Best Practices
	Slide 21: MPI Best Practices
	Slide 27: Communication Patterns
	Slide 28: How to post non-blocking receives before their matching sends
	Slide 29: MPI Best Practices, Explanations
	Slide 31: How to give MPI a chance to make progress?
	Slide 33: Documentation
	Slide 34: HPE Cray MPI: Documentation
	Slide 35: Performance and Tuning
	Slide 36: GPU-to-GPU Communication Options
	Slide 39: Thank you

