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Warmup survey

= For quizzes and surveys,

= Keep a browser tab open on https://menti.com /‘ k/ilg'ézlig =l

= To join the quizzes and surveys,
enter the number given in the menti.com screen share on the top of the screen

= Alternatively, click on the link in the Zoom chat

= Have fun ;-)
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General outline

Introduction
Programming Models and Optimizations

= MPI + OpenMP on multi/many-core + EXxercises
= MPI + Accelerators

= MPI + MPI-3 shared memory + Exercise
= Optimized node-to-node communication

Conclusions (Summary , Acknowledgements , Conclusions )

)
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Introduction

Hardware and programming models
Hardware Bottlenecks

Questions addressed in this tutorial
Remarks on Cost-Benefit Calculation
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Hardware and programming models

= MPI + threading
: ER- = OpenMP
~GPGPU/Phi s==1
s I - -
[ ] = ]

| PCle | PCle ]

socketll socketll = MPI + MPI shared memory
. o000 .
M| M | = MPI + accelerator

| | - OpenMP offloading
Socket 2 Socket 2
| Multi-core | Multi-core |

CPU CPU [ ]
| | )
= Pure MPI communication

Node Interconnect

= Optimized node-to-node communication

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Introduction - Hardware and programming models 5/280



Options for running code on multicore clusters

Node Node = Which programming model
Socket 1 Socket 1 |S faS'[eSt')

| _Quad-core _ | _Quad-core__ * MPI everywhere? %
CPU CPU
(XX XX )
Socket 2 Socket 2 * FU”y hyb”d
MPI & OpenMP?

| _Quad-core _ | _Quad-core__

CPU CPU *  Something between?
(Mixed model)

l l l l l «  Often hybrid programming
Node Interconnect slower than pure MPI
— Examples, Reasons,
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More Options with accelerators

Hierarchical hardware

‘GPGPU/Phi

= = Many levels
PCle IPCIe - . .
Hierarchical parallel programming

P E = Many options for MPI+X:

. [ X X N J .
'M“S'Fllff"e- -M“S'Fl;ff”e- one MPI process per
Socket 2 Socket 2 " nOde
_Multil—core_ _Multil-core_ " CPU %

CPU CPU : 0o) G/'@

| | = ccNUMA domain A s,

Node Interconnect

[..]

core
hyper-thread
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Dual-CPU ccNUMA + accelerator node architecture

Modern compute node with separate memories for CPUs and GPUs

smallest possible
ccNUMA domain

accelerator
hyper-thread

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Introduction - Hardware and programming models 8/280




Future accelerated node architecture with AMD MI300A APUs

with common shared memory for CPUs and GPUs

- = ;
. AMD Infinity Fabric™, 4% X16 PCle® Gens Slingshot }\
all-to-all connection between the sockets

Skl sesily s :=—1U ou cPu GPU GPU U opu |GPu opu BT
ccNUMA domain 2z 23
G| - — F—
.3 |2 :H 5= 255
Socket 0 JlF Socgket 1 ]
&l i -
z| § . . 2= o
gl = multi-core multi-core 2|e NIC Qo
= 3
g j GPU GPU CPU CPU GPU GPU E» 3 3
NIC =1
= @
= = S
g - <E GPU GPU GPU GPU GPU GPU GPU GPU H> § e g
2] 2 :
53 =a d||L H= H -
25 Socket 2 Socket 3 _ a8
T = atlF
g |l = multi-core multi-core 22
3 GPU GPU CPU CPU GPU GPU H» 3
accelerator _
AMD CCD AMD MI300A socket with
X AMD XCD "CPU cores complex die” + 1 CPU with 24 cores and 6 GPUs
accelerated compute core die with in total 24 cores « together with 128 GB memory (interleaved between HBM stacks)

with 4 input queues per GPU
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Hardware bottlenecks

= Multicore cluster
= Computation

= Memory bandwidth el
= Intra-CPU communication (i.e., core-to-core) KGG -
= Intra-node communication (i.e., CPU-to-CPU) o
= Inter-node communication g’
()
= Cluster with CPU+Accelerators e é
= Within the accelerator NIC---- §
Computation é
Memory bandwidth 3
Core-to-Core communication
= Within the CPU and between the CPUs
See above . —
= Link between CPU and accelerator - 8
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Example: Hardware bottlenecks in SpMV

= Sparse matrix-vector-multiply with stored matrix entries

> Bottleneck: memory bandwidth of each CPU

= SpMV with calculated matrix entries

(many complex operations
per entry)
> Bottleneck: computational
performance of each core _ + .
= SpMV with highly scattered

matrix entries

> Bottleneck: Inter-node
communication
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Questions addressed In this tutorial

What is the performance impact of system topology?

How do | map my programming model on the system to my advantage?
= How do | do the split into MPI+X?
= Where do my processes/threads run? How do | take control?
= Where is my data?
= How can | minimize communication overhead?

How does hybrid programming help with typical HPC problems?
= Can it reduce communication overhead?
= Can it reduce replicated data?

How can | leverage multiple accelerators?
= What are typical challenges?
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Remarks on Cost-Benefit Calculation

Costs — for optimization effort

= e.g., additional OpenMP parallelization
= e.g., 3 person month x 5,000 € =-15,000 € (full costs)

Benefit — from reduced CPU utilization

= e.g., Example 1: 100,000 € hardware costs of the cluster
X 20% used by this application over whole lifetime of the cluster
X 7% performance win through the optimization
= +1,400 € -> total loss =13,600 €

= e.g., Example 2: 10 Mio € system x 5% used x 8% performance win
= +40,000 € -> total win = 25,000 €

Question: Do you want to spend work hours without a final benefit?
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Programming models and optimizations

MPI + OpenMP on multi/many-core +Exercise

MPI + Accelerators

MPI + MPI-3.0 shared memory + Exercise

Optimized node-to-node communication +Exercise

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models 14/280




Programming models — MPI + OpenMP

General considerations

How to compile, link, and run
Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth

Memory placement on ccNUMA systems
Topology and affinity on multicore
Hands-on: Pinning

Case study: Simple 2D stencil smoother
Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Programming models
- MPIl + OpenMP

- c > General considerations
Geﬂ el'al CO nS | d eratl O ﬂ S How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: Simple 2D stencil smoother
Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Potential advantages of MPI1+OpenMP

Simple level

= Leverage additional levels of parallelism
Scaling to higher number of cores
Adding OpenMP with incremental additional parallelization

= Enable flexible load balancing on OpenMP level

Fewer MPI processes leave room for assigning workload more evenly
MPI processes with higher workload could employ more threads
Cheap OpenMP load balancing (tasking, dynamic/guided loops)

= Lower communication overhead (possibly)

Few “fat” MPI processes vs many “skinny” processes
Fewer messages and smaller amount of data communicated

= Lower memory requirements due to fewer MPI processes

Reduced amount of application halos & replicated data
Reduced size of MPI internal buffer space

Advanced level
= Explicit communication/computation overlap
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MPI + any threading model

Special MPI init for multi-threaded MPI processes is required:

int MPI_Init thread( int * argc, char ** argv|[],
int thread level required,
int * thread level provided);
int MPI Query thread( int * thread level provided);
int MPI Is main_thread(int * flag);

may imply higher
latencies due to

 Possible values for thread level required (increasin some internal locks

MPI_ THREAD SINGLE Only one thread will exe
— MPI_THREAD FUNNELED Only main? t will make MPI-calls

MPI THREAD SERIALIZED Mulli reads may make MPI-calls, but only one at a time
MPI_THREAD MULTIPLE Multiple threads may call MPI, with no restrictions

* returned thread level provided may be less or more than thread level required
2> if (thread level provided < thread level required) MPI Abort(..);

1) Main thread = thread that called MPI_Init_thread. recommende_d dlrectly
Recommendation: Start MPI1_Init_thread from OpenMP master thread > OpenMP master = MPI main thread after MPI_Inlt_thread

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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Hybrid MPI1+OpenMP masteronly style

Advantages
£ i i . . :
<5 (heaaieetl | - Simplest possible hybrid model
#pragma omp parallel _
numerical code = Thread-parallel execution and MPI
/*end omp parallel */ communication strictly separate
/* on master only */ = Minimally required MPI thread support level:
MPI_Isend() ; MPI_ THREAD FUNNELED
MPI Irecv(); .
MPI_Waitall(); Major Problems
} /* end fox loop */ = All other threads are sleeping

while master thread communicates!

= Only one thread per process communicating

masteronly style: - possible underutilization of network

MPI only outside of bandwidth
parallel regions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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Masteronly style within large parallel region

#pragma omp parallel
for (iterations) {

MPI calls within omp single

- MPI THREAD SERIALIZED is required
#pragma omp for - -

for (i=0; ...) { = Barrier before MPI required
// ... numerics : .
} // barrier here - May be implicit
#pragma omp single = Prevent race conditions on communication buffer
{ data

MPI_ Isend(); . Between multi-threaded numerics
MPI Irecv();

MPI Waitall(); - and MPI access by master thread

} // Barrier here = Enforce flush of variables
} /* end iter loop */

Barrier after MPI required
= May be implicit
= Numerical loop(s) may need communicated data

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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Programming models
- MPIl + OpenMP

: : General considerations
How to compile, link, and run > How to compile, link, and run

Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: Simple 2D stencil smoother
Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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How to compile, link and run

= Use appropriate OpenMP compiler switch (-openmp, -fopenmp,
-mp, -gsmp=openmp, ...) and MPI compiler script (if available)

= Link with MPI library
= Usually wrapped in MPI compiler script
= If required, specify to link against thread-safe MPI library
- Often automatic when OpenMP or auto-parallelization is switched on
= Running the code
= Highly non-portable — consult system docs (if available...)
= Figure out how to start fewer MPI processes than cores per node
= Pinning (who is running where?) is extremely important - see later
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Compiling from a single source

Make use of pre-defined symbols

#ifdef OPENMP # OPENMP defined with -gopenmp
// all that is special for OpenMP
#endif

#ifdef USE MPI # USE MPI defined with -DUSE_ MPI
// all that is special for MPI
#endif

#ifdef USE MPI
MPI Init(...);
MPI Comm rank(..., &rank);
MPI Comm size(..., &size);
#else # recommended for non-MPI
rank = 0;
size = 1;
#endif
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Compiling from a single source

Handling compilers

mpiicc -DUSE_MPI -gopenmp

= Intel MPI + Intel C  ,__  qopenmp
= Intel MPI + Intel Fortran ~ T®iifort ~fpp -DUSE MPI -qopenmp
ifort -fpp -gopenmp

m OpenMP| + gcc mpicc -DUSE_MPI -fopenmp

gcc -fopenmp
= OpenMP| + gfortl’an mpif90 -cpp -DUSE _MPI -fopenmp
gfortran -cpp -fopenmp
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Examples for compilation and execution

= Cray XC40 (2 NUMA domains w/ 12 cores each), one process (12 threads) per
socket

= ftn -h omp

= OMP_NUM THREADS=12 aprun -n 4 -N 2 \
-d $OMP NUM THREADS ./a.out

= Intel Ice Lake (36-core 2-socket) cluster, Intel MPI/OpenMP, one process
(36 threads) per socket

= mpiifort -qopenmp
= mpirun -ppn 2 -np 4 \
-env OMP NUM THREADS 36

-env I MPI PIN DOMAIN socket \
-env KMR;AFFINITY scatter ./a.out

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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Examples for compilation and execution

= [ntel Ice Lake (36-core 2-socket) cluster, Intel MP1/OpenMP + likwid-mpirun, one
process (36 threads) per socket
= mpiifort -gopenmp
» likwid-mpirun -np 4 -pin S0:0-35 S1:0-35 ./a.out

= Intel Skylake (24-core 2-socket) cluster, GCC + OpenMPI 4.1, one process
(24 threads) per socket
= mpif90 -fopenmp
- OMP NUM THREADS=24 OMP PLACES=cores OMP_ PROC BIND=close \
mpirun --map-by ppr:1l:socket:PE=24 ./a.out

= Dito, two processes per socket (12 threads each)
OMP_NUM THREADS=12 OMP_ PLACES=cores OMP PROC BIND=close \

mpirun --map-by ppr:2:socket:PE=12 ./a.out
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Learn about node topology

= A collection of tools is available
= numactl --hardware (numatools)
= 1stopo --no-io (part of hwloc)
= cpuinfo -A (part of Intel MPI)
= likwid-topology (part of LIKWID tool suite http://tiny.cc/LIKWID)

$ likwid-topology -c -g

CPU name: Intel (R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
CPU type: Intel Xeon IvyBridge EN/EP/EX processor

CPU stepping: 4

KA A A A Ak A AR A A A A AR A A A A A A A A A AR A AR A AR A A A kA kA Ak hk kA Ak ko kA Ak hkhk kA hkhkhkhhAhkhkhkhhkhkhkhkhkhkhkkhkhkhhkkkkkx*k

Hardware Thread Topology

KA A A A Ak A AR A A A A AR A A A A A A AR AR A AR A AR A A A kA kA A kA kA Ak ko kA Ak hkhk kA hkhkhkhhkhkhkhkhhkhkhkhkhhkhkkkhkhhkkkhkx*k

Sockets: 2 VSC-3: 1 node = 2 sockets (Intel lvy Bridge)
Cores per socket: 8 \ with 8 cores + 2 HCAs /
Threads per core: 2

[... Some output omitted ...]
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Learning about node topology

(...cont...)
kA kA hkhkhkhkhkhkhhkhkhkhkhhkhh bk hhhkhk bk kb hk bk hkhk bk hkhkhhkhkhrhkhkhkhk kb hk bk hkhkhkhkhkhhkhkrhkhhkhkhkhkhhkhkhhkhdhkhrhkrrxkxkk

Graphical Topology

Ak hk kA hkhk Ak kA hhkr kA hkhkhhkhkhkhkhhkhkhkhkhhkhkhhkhhkhkhhkhhkhkhhkrhhkhhkrhkhkhhkrhkhkhkhkrhkkhkxkxpkx

Caveat:
Numbering may differ for
different setups of same CPU!

|

A + |

| | 32kB | |

A + |

R + |

| | 256kB | |

R + |
————————————————————————————————————————————————————————————————————————————— + |
[
————————————————————————————————————————————————————————————————————————————— + |
o +
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Learning about node topology

(...cont...)

KRR A A A A AR A A A A A A A A A A A A A A A A A A A A A A A A A A A AR A A A A A A A AR A KA A I A A A A AN A A A A AR AN A A A A A A A A A kKK

Graphical Topology

KRR A A A A A R A A A A A A A A A A A A A A A A A A A A A A A A A A A AR A A A A AR A A A A KA A AR A A A A A AR A A AN A A A A A A A A A Ak kK

Socket 1:

e ettt e L +
| +---—-—-- + +--——— - + - + +-—-—-—- + - + +-—————- + +-——m—— - + +-—-———- + |
|1 824 | | 925 | | 1026 | | 1127 | | 1228 | | 1329 | | 14 30 | | 15 31 | |
| +---—-—-- + +--——— - + - + +-—-—-—- + - + +-—————- + +-——m—— - + +-—-———- + |
| +---—-—-- + +--——— - + - + +-—-—-—- + - + +-—————- + +-——m—— - + +-—-———- + |
| | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | |
| +---—-—-- + +--—m———- + +-———— - + +-—-————- + +--— - + +-—————- + o + +-—-———- + |
| +---—-—-- + +--—m———- + +-———— - + +-—-————- + +--— - + +-—————- + o + +-—-———- + |
| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |
| +---—-—-- + +--—m———- + +-———— - + +-—-————- + +--— - + +-—————- + o + +-—-———- + |
| == e e + |
(| 20MB (|
| === e + |
it Rt e C L L P +
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Programming models
- MPIl + OpenMP

General considerations
H an d S 'O ﬂ #1 How to compile, link, and run
> Hands-on: Hello hybrid!
System topology, ccNUMA, and memory bandwidth
: Memory placement on ccNUMA systems
H el I @) h yb Il d | Topology and affinity on multicore
Hands-on: Pinning
Case study: Simple 2D stencil smoother
Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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Hands-On #1

he-hy - Hello Hybrid! - compiling, starting

1. FIRST THINGS FIRST - PART 1: find out about a (new) cluster - login
node

2. FIRST THINGS FIRST - PART 2: find out about a (new) cluster - batch
jobs

3. MPI+OpenMP: :TODO: how to compile and start an application how to do
conditional compilation

4. MPI+OpenMP: :TODQO: get to know the hardware - needed for pinning

| http/ftiny.cc/MPIX-HLRS |
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Programming models
- MPI| + OpenMP

General considerations
SyStem tO p O | O gy, C C N U MA y How to compile, link, and run
. Hands-on: Hello hybrid!
aﬂ d m em O ry b an dWl d t h > System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems
Topology and affinity on multicore
Hands-on: Pinning
Case study: Simple 2D stencil smoother
Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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What is “topology”?

Where in the machine does core (or hardware thread) #n reside?

o

@oepau] Alowe
al

@oepau| Alows
al
z1

Core #6, HW thread 0

Core #11, HW thread 1

Why is this important?

= Resource sharing (cache,
data paths)

= Communication efficiency
(shared vs. separate caches,
buffer locality)

= Memory access locality
(ccNUMA)
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Compute nodes — caches

VSC-3
Latency € typical 2 Bandwidth e I ~

1-2 ns L1 cache 200 GB/s

3-10 ns L2/L3 cache 50 GB/s [ 1 [ )

\ VSC-3: 1 node = 2 sockets (Intel lvy Bridge) with 8 cores + 2 HCAs /

20 GB/s

100 ns memory (1 core)
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Fat-tree Design Vvsc®

dual rail Intel QDR-80 = 3-level fat-tree (BF: 2:1/4:1)

VSC-3: below numbers only, schematic figure

non-blocking: BF 1:1 blocking: BF down- : up-links
introduces a latency:
packets that would otherwise follow separate paths would eventually have to wait

pmne
-3- spine: B -- -- --=» full cluster @VSC-3: |:| |:|
(BF 4:1)

Leaf
-2- leaf: = island @VSC-
288 nodes

Core

192 cores / MPI processes

VSC-3: 1 node
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Ping-Pong Benchmark — Latency

Intra-node vs. inter-node on VSC-3
= nodes = 2 sockets (Intel lvy Bridge) with 8 cores + 2 HCAs

» inter-node = IB fabric = dual rail Intel QDR-80 = 3-level fat-tree (BF: 2:1/ 4:1)

I_nyID = get_process_ID() Latency MPI_Send(...)
if (myID.eq.0) then (]
targetlID =1 HS
S = get walltime () OpenMPI Intel MPI
call Send message (buffer,N, targetID) intra-socket 0.3 us 0.3 us
call Recelve_?essage(buffer,N,targetID) inter-socket 0.6 us 0.7 us
E = get walltime ()
GBYTES = 2*N/(E-S)/1.d9 ! Gbyte/s rate IB -1- edge 1.2 ys 1.4 us
= - * 1 ;
TIME (E-S)/2*1.d6 ! transfer time B -2- leaf 1.6 s 1.8 s
else
targetID = 0 IB -3- spine 2.1 ps 2.3 us

call Receive message (buffer,N, targetID)
call Send message (buffer,N, targetID)
endif

=>» Avoiding slow data paths is the key to most performance optimizations!
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Ping-Pong 1-on-1 Benchmark — Effective Bandwidth

Intra-node vs.

i 8000 +
inter-node on VSC-3 .
inter-node: § 7000 ¢
IB fabric S
dual rail (2 HCAs) Q 6000 |
Intel QDR-80 =
3-level fat-tree % 5000 |
BF:2:1/4:1 =
2 4000 |
QDR-80 (2 HCas) P
link: 80 Gbit/s 8 3000 |
max 8 Ghytes/s o
eff. 6.8 Ghytes/s %
2> 1 HCA =% (2 HCAS) K]
/EHNO’ ,
0

Intel-MPI: solid / dark
OpenMPI: dotted / light

intra-socket ——

inter-socket —
2000 W 'M// .

il

k!

ot

/

inter-node -1-

inter-node -2- |

[
—

node
D
¥ 10

node I
several

N

102 10°

10*
message length [Bytes]

10° 108 | Not representative
of real applications
- see next slide(s)
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Multiple communicating rings

Benchmark halo_irecv_send_ multiplelinks_toggle.c

See HLRS online courses

= Varying message Size, http://iwww.hlrs.de/training/self-study-materials
. . - Practical > MPl.tar.
= number of communication cores per CPU, and 3 cubdirectory MPYeoase/Clisided!

= four communication schemes (example with 5 communicating cores per CPU)
N [ - 1)

e —
nodi l ] l | ] [E Qlli!t . ]
® || e
no g several cores CPU [ % %—gj ]

\__Intra-CPU: core-to-core / \Intra—node: CPU-to-CPU  /

N (T I 1)

@ [l;”n”l; ][ ] @ P [P]|P|P lel:lhil ] @
[0 ® b‘l’&%@l ] [ CPU ] o (9 @ (emr%rkal ] [0 o o 9 ¢ CPU ]
0| ¢| 9| | ¢ Inter—nOde’ Only ('K KKK/ [ K KJKJK/ Inter-nOde and
\ UUUUU  with one CPU / K JUUUL JUuuu all CjPUs communicate -
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Duplex accumulated ring bandwidth per node

(each message is counted twice, as outgoing and incoming)

1| 2 Haswell Intel Xeon E5-2680v3, 3lslices on next
each with 12 cores. N i .
100000 1 Cray XC40 Aries dragonfly network ;’v . (unskipped) slide
£ _ ;I/ ‘
> X -
c =, N Y
3 ’;(‘/’_)x X
L 8x
10000 - . ‘ 1 0 O oo L 5
] Z /i | o o_-e
J & =0 sl O 0] e -
: / | v
/ 6 . Whatis important?
1000 %J O T .
The limit of accumulated
/ intra-CPU and intra-node
o @ | bandwidth is 8x larger than the
limit of accumulated
node-to-node bandwidth
100 - \ T ! T T 1 T T ! T T 1 1
64 4096 32768 262144 2097152 16777216

message size [bytes]

Intra-CPU 2 cores
Intra-CPU 3 cores/c
—B-Intra-CPU 4 cores/cpu
—Z%=Intra-CPU 6 cores/cpu
—i+—Intra-CPU 8 cores/cpu
—&—Intra-CPU 12 cores/cpu
O Intra-node 1 core/cpu

See HLRS online courses
http://www.hlrs.de/training/self-study-materials

- Practical > MPl.tar.gz
-> subdirectory MPI/course/C/1sided/

Intra-node 2 cores/cpu
Intra-node 3 cores/cpu
—-Intra-node 4 cores/cpu
—Z—Intra-node 6 cores/cpu
—t—Intra-node 8 cores/cpu
—&—|ntra-node 12 cores/cpu
O Inter-node, 1 CPU, 1 core/cpu
Inter-node, 1 CPU, 2 cores/cpu
Inter-node, 1 CPU, 4 cores/cpu@
—Inter-node, 1 CPU, 8 cores/cpu
—&—Inter-node, 1 CPU, 12 cores/cpu
O Inter-node, 2 CPUs, 1 core/cpu
Inter-node, 2 CPUs, 2 cores/cpu
Inter-node, 2 CPUs, 4 cores/cp@
—+—Inter-node, 2 CPUs, 8 cores/cpu
—&—Inter-node, 2 CPUs, 12 cores/cpu

Measurement with
halo_irecv_send_multiplelinks_tog
gle.c on 4 nodes of Cray XC40
hazelhen.hww.de, June 15, 2018,
HLRS, by Rolf Rabenseifner

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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Duplex ring bandwidth per core

bandwidth
[MB/s]

1000

100

Cray XC40 Aries dragonfly network

(each message is counted twice, as outgoing and incoming)

2 Haswell Intel Xeon E5-2680v3,
each with 12 cores.

v

512 4096 32768 262144
message size [bytes]

One must minimize the number of
o inter-node communication links!
2097152

[ Intra-CPU 2 cores/cpu ]
Intra-CPU 3 cores/cpu @
—B-Intra-CPU 4 cores/cpu

If only one core per node

communicates, then nearly

16777216

—i+—Intra-CPU 8 cores/cpu
—&—Intra-CPU 12 cores/cpu
[ © Intra-node 1 core/cpu |
Intra-node 2 cores/cpu
Intra-node 3 cores/cpu
—-Intra-node 4 cores/cpu

—Z—Intra-node 6 cores/cpu

—t—Intra-node 8 cores/cpu
—&—|ntra-node 12 cores/cpu

[ O Inter-node, 1 CPU, 1 core/cpu]
Inter-node, 1 CPU, 2 cores/cpu
Inter-node, 1 CPU, 4 cores/cpu@

—Inter-node, 1 CPU, 8 cores/cpu

—&—Inter-node, 1 CPU, 12 cores/cpu

O Inter-node, 2 CPUs, 1 core/cpu
Inter-node, 2 CPUs, 2 cores/cpu
Inter-node, 2 CPUs, 4 cores/cp@

—+—Inter-node, 2 CPUs, 8 cores/cpu
—&—Inter-node, 2 CPUs, 12 cores/cpu

same bandwidth — similar
to ping-pong!

Measurement with
halo_irecv_send_multiplelinks_tog
gle.c on 4 nodes of Cray XC40
hazelhen.hww.de, June 15, 2018,
HLRS, by Rolf Rabenseifner
(protocol 10)
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{&%umulated — scaling vs. asymptotic behavior

200000 Message size: 16,777,216 bytes
Message size: 262,144 bytes 40000/

175000 W
150000 30000 ‘r

125000
8x

60000
55000
50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

Message size: 4096 bytes

o

100000 2 OOO 0

75000 ——IntrgdtCHU: core-to-core
—+—Intrg-ngde: CPU to CPU
10000 ——Intef-npde, 1 CPU per nod

—l—Inte -npde, all CPUs per ngde

Y - ——
/

ndwidth [MB/s]

bandwidth [MB/s]

a

b

‘I'T

0
o 1 2 3 419y 67 8 9 101112
number of comrhunicatin icati number of conjmunidating cores per CPU

Core-to-core: Node-to-node: Core-to-core & CPU\—to-CPU:
Linear scaling for small One duplex link by Long messages:

to medium size mes- one core already fully Same asymptotic li

sages due to caches saturates the network through memory bandwidth

Result: The limit of accumulated intra-CPU and
intra-node bandwidth is 8x larger than the limit of

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (V LaccumUIated node-to-node bandwidth
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OpenMP barrier synchronization cost

Comparison of barrier synchronization cost with increasing
number of threads

Intel 17.0.4 gcc 6.2.0
7000 | | | | | 20000 | | | | |
= 2x Haswell 14-core (CoD mode) 6000’ + OMP parallel for "II!#L |+ OMP parallel for !{@
.. [~ — OMP for — OMP for
= Optimistic measurements L+ oMP barrer ez} 5000k + OMP barer :
(repeated 1000s of times) >000F ]
= No impact from previous 4000
.. . - 1 10000
activity in cache 3000
. . . 2000 5000
—> Barrier sync time highly dependent —
on system topology & OpenMP 1000r 7
runtime implementation old—L LI ot LI LI
# cores # cores
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Accumulated bandwidth saturation vs. # cores

1000 ~ A(:) = B(:) + C(:) * D(:)
on each core Scalable BW in L1,

E L2, L3 cache
Q0
O
e
5 —-L1
= : |2
< 100 -+ 3
P —<Memory
= e e mmmmmmmmmmmmm—mm—mm——m— =
S [ o ] o [ o o [ o [ e [ e ]
(LR [TPTI P P PP P P [P
L e R o R e e
(@) l L3 i
@) Saturation effect in | — Memoryinterface ]
< memory
10 : : I [ Memory }
1 2 # cores 4 8 Sandy Bridge socket (3 GHz)
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Programming models
- MPIl + OpenMP

General considerations

M em O ry p | aC em ent How to compile, link, and run

Hands-on: Hello hybrid!
O n C C N U MA SyS t e m S System topology, ccNUMA, and memory bandwidth
> Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

Case study: Simple 2D stencil smoother
Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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A short introduction to ccNUMA

= ccNUMA:
= whole memory is transparently accessible by all processors
but physically distributed
with varying bandwidth and latency
and potential contention (shared memory paths)
Memory placement occurs with OS page granularity (often 4 KiB)

[ Memory Memory ] [ Memory Memory ]
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How much bandwidth does non-local access cost?

= Example: AMD “Naples” 2-socket system (s chips, 2 sockets, 48 cores):
STREAM Triad bandwidth measurements [Gbyte/s]

CPU node

Socket 0

Memory node

Highest bandwidth
between memory
and cores of one
NUMA domain

Do you want to run
your application

3 times slower?
(If your appl. is memory
\_ bandwidth bound)

21.9
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Avoiding locality problems

= How can we make sure that memory ends up where it is close
to the CPU that uses it?

= See next slides (first-touch initialization)

= How can we make sure that it stays that way throughout program
execution?

= See later in the tutorial (pinning)

= Taking control is the key strategy!
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Solving Memory Locality Problems: First Touch

= "Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the

processor that first touches it!

= Consequences
= Process/thread-core affinity is decisive!

= With OpenMP, data initialization code becomes important
even if it takes little time to execute (“parallel first touch”)

= Parallel first touch is automatic for pure MPI

= If thread team does not span across NUMA domains, memory mapping is not a
problem

= Automatic page migration may help if memory is used long enough
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Solving Memory Locality Problems: First Touch

= "Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the processor

that first touches it!
= Except if there is not enough local memory available

= Some OSs allow to influence placement in more direct ways
- = libnuma (Linux)

= Caveat: “touch” means “write,” not “allocate” or “read”
= Example:

double *huge = (double*)malloc (N*sizeof (double)) ;
// memory not mapped yet
for (i=0; i<N; i++) // or i+=PAGE SIZE

huge[i] = 0.0; // mapping takes place here!
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Most simple case: explicit initialization

integer,parameter N=10000000
double precision A(N), B(N)

A=0.d0

1SOMP parallel do
doi=1, N

B(i) = function ( A(i) )
end do
1SOMP end parallel do

integer,parameter N=10000000
double precision A(N) ,B(N)

!SOMP parallel
ISOMP do schedule (static)

doi=1, N
A(i)=0.d0

end do

'SOMP end do

1SOMP do schedule(static)
doi=1, N

B(i) = function ( A(i) )
end do

1SOMP end do
1SOMP end parallel =
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Handling ccNUMA in practice

= Solution A
= One (or more) MPI process(es) per ccNUMA domain
= Pro: optimal page placement (perfectly local memory access) for free
= Con: higher number (>1) of MPI processes on each node

= Solution B
= One MPI process per node or one MPI process spans multiple ccNUMA domains
= Pro: Smaller number of MPI processes compared to Solution A

= Cons:

- Explicitly parallel initialization needed to “bind” the data to each ccNUMA domain
—> otherwise loss of performance

- Dynamic/guided schedule or tasking = loss of performance
= Thread binding is mandatory for Aand B! — Never trust the defaults! .
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Conclusions from the observed topology effects

= Know your hardware characteristics:
= Hardware topology (use tools such as likwid-topology)

= Typical hardware bottlenecks
- These are independent of the programming model!

= Hardware bandwidths, latencies, peak performance numbers
= Know your software characteristics
= Typical numbers for communication latencies, bandwidths
= Typical OpenMP overheads
Learn how to take control
= See next chapter on affinity control
= Leveraging topology effects is a part of code optimization!
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Programming models
- MP| + OpenMP

T | d ff 2 t It General considerations
Opo Ogy an a I n I y On m u ICO re How to compile, link, and run
Hands-on: Hello hybrid!
System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems
> Topology and affinity on multicore
Hands-on: Pinning
Case study: Simple 2D stencil smoother
Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Thread/Process Affinity (“Pinning”)

Highly OS-dependent system calls
= But available on all OSs
= Non-portable
Support for user-defined pinning for OpenMP threads in all compilers
= Compiler specific
= Standardized in OpenMP (places)
= Generic Linux: taskset, numactl, likwid-pin

Affinity awareness in all MPI libraries
= Not defined by the MPI standard (as of 4.0)
= Necessarily non-portable feature of the startup mechanism (mpirun, ...)

Affinity awareness in batch scheduler
= Batch scheduler must work with MPI + OpenMP affinity
= Difficult, non-portable, every combination is different
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Anarchy vs. affinity with OpenMP STREAM

600 T I T |

OpenMP-parallel ] =3 [ [ (= [ 2 2 2 2
500_ A(:):A(:)"-S*B(:)__ _ — 'UD I L1D
L _ T A | | | Core-
= 200 _.“_..-- _ | | Memory Interface | I | Memory Interface | memory
?(5 | . T Tl | ( Memory ) ‘[ Memory ]J (%r&lg))
Z 300 . 2
% iV
& 2001 L] .
L L] | |
r ) ) = el Iw.lmce ] | Mm.lmerle
100,_ No pmning 20,\,:3?2_2?)(_2?:3 — FUjitSU [ Memory ] [ Memory ]
N T T S AB4FX CPU ool ]
0 10 20 30 40 50
# cores 700 - ,
There are several reasons for caring about affinity: = r )
3 s00- ]
Eliminating performance variation S af :
3 300/ -
: : e “Compact” pinning
Making use of architectural features ol (fl first CMG firsD)
- . 100 =
Avoiding resource contention ) ‘ o
0 10 0 30 40 0 m
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7 likwid-pin

<
» Binds threads to specific cores without touching code

Directly supports pthreads, gcc OpenMP, Intel OpenMP

Allows user to specify “skip mask” (i.e., supports many different compiler/MPI
combinations)

Replacement for taskset

Uses logical (contiguous) core numbering when running inside a restricted set
of cores

Supports logical core numbering inside node, socket, core

Usage examples:
env OMP NUM THREADS=6 likwid-pin -c 0-2,4-6 ./myApp parameters
= likwid-pin —-c S0:0-2@S1:0-2 ./myApp
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OMP_PLACES and Thread Affinity (see OpenMP-4.0 page 7 lines 29-32, p. 241-243)

A place consists of one or more processors. Srocessor is the smallest
Pinning on the level of places. unit to run a thread or task
Free migration of the threads on a place between the processors of that place.

= OMP_PLACES=threads
- Each place corresponds to the single processor of a single hardware thread (hyper-thread)
= OMP_PLACES=cores
- Each place corresponds to the processors (one or more hardware threads) of a single core
"= OMP_PLACES=sockets
- Each place corresponds to the processors of a single socket (consisting of all hardware threads of one or more cores)
= OMP_PLACES=abstract_name(num_places)

- In general, the number of places may be explicitly defined
<<lower-bound>:<number of entries>[:<stride>]—>

= Or with epriCit numbering, e.g. 8 places, each cggffsting of%essors:

CAUTION:
= setenv OMP_PLACES "{0,1,2,3},{4,5,977},{8,9,)00,11}, .. {28,29,] The numbers highly depend on hardware
. " . . . . " and operating system, e.g.,
setenv OMP_PLACES "{0:4},{4:4},{8:4}, .. {28:4} {0.1) = hyper-threads of 15 core of 15 socket, or
= setenv OMP_PLACES "{0:4}:8:4" {0,1} = 15t hyper-thread of 15t core

of 1stand 2nd socket, or ...
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OMP_PROC_BIND variable / proc_bind() clause

Determines how places are used for pinning:

Lo bt b eieaning

FALSE Affinity disabled
TRUE Affinity enabled, implementation defined
strategy
CLOSE Threads bind to consecutive places
SPREAD Threads are evenly scattered among
places
MASTER Threads bind to the same place as the

master thread that was running before the
parallel region was entered

Used for
nested
OpenMP
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Some simple OMP_PLACES examples

= Intel Xeon w/ SMT, 2x36 cores, 1 thread per physical core, fill 1 socket
OMP_NUM_THREADS=36
OMP_PLACES=cores
OMP_PROC_BIND=close

= |ntel Xeon Phi with 72 cores,
32 cores to be used, 2 threads per physical core

OMP_NUM_THREADS=64
OMP_PLACES=cores (32)
OMP_PROC_BIND=close # spread will also do

= Intel Xeon, 2 sockets, 4 threads per socket (no binding within socket!)
OMP_NUM_THREADS=8
OMP_PLACES=sockets
OMP_PROC_BIND=close # spread will also do

= Intel Xeon, 2 sockets, 4 threads per socket, binding to cores

OMP NUM THREADS=8
- .= Always prefer abstract places

OMP_PLACES=cores .
— |
OMP_PROC_BIND=spread instead of HW thread IDs! m
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O pe n M P p I aceS an d p rO C_b I n d (see OpenMP-4.0 pages 49f, 239, 241-243)

setenv OMP PLACES "{O0},{1},{2}, .. {29},{30},{31}" or
setenv OMP_PLACES threads (example with P=32 places)

" setenv OMP NUM THREADS "8,2,2"
setenv OMP PROC BIND "spread, spread,close" 1 l \

= Master thread encounters nested parallel regions:
fpragma omp parallel - uses: num_threads(8) proc_bind(spread)
uses: num_threads(2) proc_bind(spread)

fpragma omp parallel =
uses: num_threads(2) proc_bind(close)

#fpragma omp parallel >

Only one place is used After first #pragma omp parallel: )
reads in a team, each on a partitioned place list with 32/8=4 place
— |

—
outside of first parallel region: master thread has-a place list with all 32 places

Sparse distribution of the 8 threads among the 32 places; partitioned place lists.

spread:
close: New threads as close as possible to the parent’s place; same place lists.
master: All new threads at the same place as the parent.
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Goals behind OMP_PLACES and proc_bind

Example:|4 sockets{x|6 cores x[2 hyper-threads] = 48 processors
Vendor’'s numbering: round robin over the sockets, over cores, and hyperthreads

setenv OMP PLACES threads (={0},{24},{4},{28},{8},{32},{12},{36},{16},{40},{20},{44},{1},{25}, ..., {23},{47})
- OpenMP threads/tasks are pinned to hardware hyper-threads
setenv OMP_PLACES cores (= {0,24}, {4,28}, {8,32}, {12,36}, {16,40}, {20,44}, {1,25}, ..., {23,47} )

- OpenMP threads/tasks are pinned to hardware cores
and can migrate between hyper-threads of the core
setenv OMP_PLACES sockets (= {0,24, 4,28, 8,32, 12,36, 16,40, 20,44}, {1,25,..},{..},{....23,47} )
- OpenMP threads/tasks are pinned to hardware sockets
and can migrate between cores & hyper-threads of the socket

Examples should be independent of vendor’s numbering!

= Without nested parallel regions:
#pragma omp parallel num_threads(4*6) proc_bind(spread) - one thread per core
= With nested regions:
#pragma omp parallel num_threads(4) proc_bind(spread) —> one thread per socket
#pragma omp parallel num_threads(6) proc_bind(spread) = one thread per core
#pragma omp parallel num_threads(2) proc_bind(close) -> one thread per hyper-thread
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Pinning of MPI processes

= Highly system dependent!

= Intel MPI: env variable I_MPI PIN DOMAIN

= OpenMPI: choose between several mpirun options, e.g.,
-bind-to-core, -bind-to-socket, -bycore, -byslot ...

= Cray’s aprun: pinning by default

= Platform-independent tools: likwid-mpirun
(likwid-pin, numactl)
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Anarchy vs. affinity with a heat equation solver

2000
P P P P
1500 ﬁ % a 4 : s . :3 " el : = . L: . )
z f— e — g S T S— ‘,5
% ﬁ (1] 111
g 1000 — E — { Memory } [ Memory J
-§ @ 1 2x 10-core Intel lvy Bridge, OpenMPI
ook No a.u"finity _set_tings i
E -> high variation 2000
0 ‘ lS ‘ 1|0 I l‘S ‘ 2|0
# MPI processes 1500 —
- - . =
Reasons for caring about affinity: S ol .
= Eliminating performance variation 3 With affinity, physical cores
500 o ’ , ! =
= Making use of architectural features filling |ef£jsczicl§et first: .
r mpirun -bina-to-core -byslo
= Avoiding resource contention . . | ‘ | . | |

5 10 15
# MPI processes
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Qee/ Topology (“mapping”) with MPI+OpenMP:
£ Lots of choices — solutions are highly system specific!

e

] i
M| Mg| Mgl Mgli 1 Mg| Mp) Mg Mg My My Mgy My My my)my

One MPI process per nOde b ty| o ta|i i t4) t5| Bg ‘75 to Ty ta| ta|il Ly| 15| tg| 17

( ) ( ) ( ) ( /)

mg| mg| mg| mgli | my| my| my|[m,ji g mo| mg| myli | ma| ma| ma| mgl;

One MPI process per socket ottt ) ot taf ) o] ] e ) o] ] e[ 1)

OpenMP threads pinned “round robin” e RREE SR RER
across cores in node ——— ————

Two MPI processes per socket R EEE R
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likwid-mpirun: 1 MPI process per node

likwid-mpirun -np 2 -pin N:0-11 ./a.out

Intel MPl+compiler:

KEEEEEE\

[32ke | [32«B | [32¢8 | [ 32kB | [32x8 | [ 32x8 |

|256kB | [256KB | [256KB | |256kB | [256kB | |256KB |

l 12 MB l

\. J

(EEEEEE\

[ 328 | [ 32« | [32x8 | [ 32«8 | [32x8 | [s2xs |

[256KkB | [256kB | |256kB | |256KB | [256KB | [256KB |

| 12 MB |
- J

Network

,EEEEEE\

[32ke | [32xB | [ 328 | [ 32k8 | [32x8 | [ 32x8 |

[256Kk8 | [256KB | [256KB | |256kB | [256KB | |256KB |

l 12 MB I
. J

(EEEEEE\

[32k8 | [32k8 | [22k8 | [ 328 | [32k8 | [ 32k8 |

[256kB | [256kB | [256k8 | |256KB | [256K8 | [256KE |

| 12 MB |
- J

OMP_NUM THREADS=12 mpirun -ppn 1 -np 2 —env KMP AFFINITY scatter ./a.out

Node

Node
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likwid-mpirun: 1 MPI process per socket

likwid-mpirun -np 4 -pin S0:0-5 S1:0-5 ./a.out

Rank O

Rank 2

Intel MPI+compiler:

[ S

[32kB | | 32kB | | 32kB | | 32kB | [ 32kB | | 32kB |

[256kB | [256KB | |256Kk8 | [256kB | [256KB | [256KE |

| 12 MB |

>y

.

32kB 32kB 32kB 32kB 32kB 32kB

|256kB | |256kB | [256KB | |256KB | [256KB | [256KE |

| 12 MB |

/

32kB 32kB 32kB 32kB 32kB 32kB

[256kB | [256kB | [256Kk8 | [256kB | [256KB | [256KB |

| 12 MB I

vy

o

| el el e el
e e | R

32kB 32kB 32kB 32kB 32kB 32kB

[256kB | [256KB | [256kB | [256kB | [256KB | [256K8 |

| 12 MB |

vy

OMP_NUM THREADS=6 mpirun -ppn 2 -np 4 \
—env I MPI PIN DOMAIN socket —-env KMP AFFINITY scatter ./a.out

Rank 1

Rank 3
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MPI1/OpenMP affinity: Take-home messages

Learn how to take control of hybrid execution!

= Almost all performance features depend on topology and thread placement! (especially if
SMT/Hyperthreading is on)

Always observe the topology dependence of
= Intranode MPI performance
= OpenMP overheads
= Saturation effects / scalability behavior with bandwidth-bound code
Enforce proper thread/process to core binding, using appropriate tools (whatever
you use, but use SOMETHING)
Memory page placement on ccNUMA nodes

= Automatic optimal page placement for one (or more) MPI processes per ccNUMA domain
(solution A)

= Explicitly parallel first-touch initialization only required for multi-domain MPI processes
(solution B) m
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Programming models
- MPIl + OpenMP

General considerations
H an d S 'On #2 How to compile, link, and run
Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

P| nn | N g Topology and affinity on multicore
> Hands-on: Pinning
Case study: Simple 2D stencil smoother

Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

—E Hands-on: Taskloop-based hybrid Jacobi
http://tiny.cc/MPIX-HLRS Main advantages, disadvantages, conclusions
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Programming models
- MPI| + OpenMP

CaS e Stu d y : General considerations
Simple 2D stencil smoother b

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Topology and affinity on multicore
Hands-on: Pinning

> Case study: Simple 2D stencil smoother

Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Stencil smoother with ghost cell exchange

2D domain distributed to ranks
(here 4 x 3), each rank gets
one tile

Each rank’s tile is surrounded

After each sweep over a tile, perform i
ghost cell exchange, i.e., update :
ghost cells with new values of :

neighbor cells

Possible implementation:

1. copy new data into contiguous send buffer (possibly optional)
2. send to corresponding neighbor, receive new data from same neighbor

3. copy received new data into ghost cells

1 ] 1
1 1 1 1
by ghost cells, representing the ~ MPI_Sendrecv( | 1 r | MPI_Sendrecv (
. sb, .., 3, [ 11 I sb, .., i,
cells of the neighbors . l I ' :
A n rbr e J ) : I/ g :, I : rb, .., 1, )
1 1
! | step2  b-mmme-o- I O A step 2
1 1
1 1
: ! ghost cells < <b
1
1
e il rb b
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Jacobi 2D — 1D decomposition

Simple benchmark: 1D decomposition of grid along outer dimension

By I =
o : for (int iter = 0; iter < n_iterations; ++iter) ({
: // ghost cell xchg
< exchange (domain, src_grid);
. 11-1 // domain update
':?t' = relax (domain, src_grid, dst_grid);
———— : swap (src_grid, dst_grid);
. }
m———{ ]
.
void relax(...) {

#fpragma omp parallel for
for (int y = start y; y < end_y; ++y)
for (int x = start x; x < end_x; ++x)
dst[y][x] = 0.25 * (src[y][x-1] + srcly] [x+1]
+ src[y-1][x] + srcl[y+1l]([x]);

= _{___1

1
I
1 1

| P ——
-
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Jacobi 2D — 1D decomposition

Simple benchmark: 1D decomposition of grid along outer dimension

void exchange(...) {
// top neighbor xchg
if (domain->comm rank + 1 < domain->comm size) {
int top = domain->comm rank + 1;
MPI Isend(&src[dim y-1][0], dim x,..., &requests[0]);
MPI Irecv(grid->ghost_cells top, dim x, &requests[l]);
}
// bottom neighbor xchg
if (domain->comm rank > 0) {
int bottom = domain->comm rank - 1;
MPI Isend(&src[0][0], dim x,..., &requests[2]) ;
MPI Irecv(grid->ghost cells bottom, dim x, &requests[3]);
}
MPI Waitall (4, requests, MPI_STATUSES IGNORE) ;

h
H

o
*+

r---‘ r---‘ r---‘

T
i
-II

No buffer copying necessary (halos are contiguous in memory)

r
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Jacobi 2D — Benchmarking

Benchmark case

= Cluster: “Fritz” at NHR@FAU

= 2x 36¢ Intel Ice Lake CPU per node
Sub-NUMA Clustering (18 cores per NUMA domain)

= Memory BW ~ 160 GB/s per socket (2 NUMA domains)
= HDR-100 fat-tree interconnect
= Intel compiler, Intel MPI

= Problem size 8000x8000 (working set ~ 1 GB)
= Message size 64000 byte
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Jacobi 2D — Benchmarking

= Up to 8 nodes (32 NUMA domains) ® veiony @ nyons
= MPI only vs. MP1+OpenMP T . = do9
= Hybrid: 18 OpenMP threads per r

process, one process per NUMA
domain

100000

MLUP/s

50000

= Code behaves according to memory

BW limitation on one NUMA domain . 5 N T I S |
= MPIl-only scales better e
. Why?’?? Parallel efficiency e(N) = P’ where
P(N) = performance with N NUMA
domains
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Jacobi 2D — Benchmarking

Intel Trace Analyzer view of MPI-only run (4 nodes, 288 processes)

o AR ™ ™ ™I IMP MPI_W
- crs e e ——

NUMA domain (18)

All processes (288)

1477 660 5 11.476 660 5 11.479 000 s 11.480 000 s 11.481 60 5 " 11.482 000 5
11477 500 11474 500 s 11.479 500 11480 500 5 11.481 500 5

16 cores actively running code per NUMA domain
- memory BW saturated!

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Case study: Simple 2D stencil smoother 75/280




Jacobi 2D — Benchmarking

Intel Trace Analyzer view of hybrid run (4 nodes, 16 processes)

L APRAPLAPLADLAPRAD]/ r r T L APLARRARLARKAPKAPLAPLARK |/ r | ADLADE P

8.181 s 8.103 s 8.105 s

Some skew across processes, but overhead is
exposed - memory BW not saturated!
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So why is pure MPI faster with the Jacobi code?

= The execution bottleneck is main memory bandwidth
= The execution is desynchronized across processes (no lock-step)
= As long as enough processes are actively working on a NUMA domain, the
bottleneck is fully utilized - optimal performance
= |f a few cores spend time in MPI, nobody cares
= MPI waiting times are overlapped with useful work across cores
= OpenMP forces the cores on a NUMA domain into lock-step - no
desynchronization possible
= MPI time is exposed as overhead - memory bandwidth not fully utilized
= Interested? More info:

= Afzal et al., DOI: 10.1007/978-3-030-50743-5 20
= Afzal et al., DOI: 10.1109/TPDS.2022.3221085, and references therein
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https://doi.org/10.1007/978-3-030-50743-5_20
https://dx.doi.org/10.1109/TPDS.2022.3221085

Programming models
- MPI| + OpenMP

CaS es t u d y . General considerations
: H ile, link, and
The Multi-Zone el it
NAS Paral I el B enc h mar kS System topology, ccNUMA, and memory bandwidth

Memory placement on ccNUMA systems
Topology and affinity on multicore
Hands-on: Pinning
Case study: Simple 2D stencil smoother
>  Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Case study: MZ NAS PBM 78/280



ﬁLoad Balancing with hybrid programming

= On same or different level of parallelism

= OpenMP enables
= cheap dynamic and guided load-balancing
= via a parallelization option (clause on omp for / do directive)

= without additional software effort #pragma omp parallel for schedule (dynamic)
= without explicit data movement for (i=0; i<n; i++) {
/* poorly balanced iterations */ ..
= On MPI level }

= Dynamic load balancing requires moving of parts of the data structure through the network
= Significant runtime overhead
= Complicated software -> rarely implemented

= MPI & OpenMP

= Simple static load balancing on MPI level, medium-quality,
dynamic or guided on OpenMP level cheap implementation
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The Multl-Zone NAS Parallel Benchmarks

set up zones MPI/ Seq Nested
OpenMP OpenMP
Time step sequential sequential sequential
initialize zones

inter-zones | MPI Processes | direct access OpenMP

»
P

A 4

exchange exchange direct
boundaries boundaries Call MPI OpenMP
timestep
intra-zones OpenMP sequential OpenMP
zZonhes
Multi-zone versions of the NAS Parallel Benchmarks
v LU,SP, and BT
verify ® Two hybrid sample implementations
® Load balance heuristics part of sample codes
® https://www.nas.nasa.gov/publications/npb.html
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MPI1/OpenMP BT-MZ structure

call omp set numthreads (weight)
do step = 1, itmax subroutine zsolve (u, rsd,..)
call exch gbc(u, gbc, nx,..) o
'SOMP PARALLEL
DEFAULT (SHARED)
1$OMP& PRIVATE (m,i,j,k...)
do k = 2, nz-1
'SOMP DO
do j =2, ny-1

call mpi_send/recv

do zone = 1, num zones .
- do i =2, nx-1

dom=1, 5

if (iam .eq. pzone_id(zone)) then
call zsolve(u,rsd,..)

u(m,i,j, k)=
end if
end do dt*rsd(m,i,j,k-1)
end do
end do end do
end do
'SOMP END DO NOWAIT
end do

'SOMP END PARALLEL
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=’ Benchmark Characteristics

= Aggregate sizes:
= Class D: 1632 x 1216 x 34 grid points

) ) Expectations:
= Class E: 4224 x 3456 x 92 grid points
P MPI: Load-
= BT-MZ: (Block tridiagonal simulated CFD application) (ba|;rrliing pr08|aem51]
= Alternative Directions Implicit (ADI) meW Good candidate forJ
\_ MPI+OpenMP

= #Zones: 1024 (D), 4096 (E)

= Size of the zones varies widely:
- large/small about 20
- requires multi-level parallelism to achieve a good load-balance

= #Zones: 1024 (D), 4096 (E) gf'h':c‘)' 'Izve('ainf’ol::ﬁt')\lpi
- Size of zones identical —F =
- no load-balancing required

= SP-MZ: (Scalar Pentadiagonal simulated CFD application) [ Load-balanced on J
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NPB-MZ Class E Scalablility on Lonestar

10000 With thread pinning:
9000 Needed if OpenMP
mBT-MZ spans multi-sockets. |
8000 = — 1
mSP-MZ _—
7000 -
m BT-MZ fixed
45000
&000 | - indeed,
o BT-MZ profits
4000 - from hybrid —f"
3000
2000
1000 -
0 -
Ry R N S SN I S I
(f?b A rf;a‘b 41} Q¥ q(?b (19@ qPI‘X é\(ll\’/l Pff?‘b /vé/b(b Q’Qbﬁb \Q‘L"‘ & éo
H_JH_/\ )\ v /R(./
64 128 2!6 512 1024
nodes nodes nodes nodes nodes =]
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MMPHOpenMP memory usage of NPB-MZ

1.2
1.0 Always same
BT-MZ number of
0.8 +— —_—
cores

. M SP-MZ //\

0.4 +—

02 I

0_0 l
64%*4 32*8

256*1 128*2
MPI * OpenMP

Relative Memory Usage
to MPI

Using more OpenMP threads reduces the memory usage substantially,
up to five times on Hopper Cray XT5 (eight-core nodes).

Hongzhang Shan, Haogiang Jin, Karl Fuerlinger, Alice Koniges, Nicholas J. Wright:

Analyzing the Effect of Different Programming Models Upon Performance and Memory Usage on Cray
XT5 Platforms.

Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.
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Hybrid Programming — MPI+X = Programming models > MPI + OpenMP - Case study: MZ NAS PBM NERSC, LBLN 84/280



Programming models
- MPIl + OpenMP

General considerations
H an d S 'O ﬂ #3 How to compile, link, and run
Hands-on: Hello hybrid!
System topology, ccNUMA, and memory bandwidth
- - Memory placement on ccNUMA systems
M aSte r O n | y h y b r I d ‘] aC O b I Topology and affinity on multicore
Hands-on: Pinning

Case study: Simple 2D stencil smoother

Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
> Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Example: MP1+OpenMP-Hybrid Jacobi solver

= Source code: See http://tiny.cc/MPIX-HLRS

=  This is a Jacobi solver (2D stencil code) with domain decomposition and halo exchange

=  The given code is MPI-only. You can build it with make (take a look at the Makefile) and run it with something like this (adapt to local
requirements):

$ <mpirun-or-whatever> —-np <numprocs> ./jacobi.exe < input

Task: parallelize it with OpenMP to get a hybrid MPI+OpenMP code, and run it effectively on the given hardware.

= Notes:
= The code is strongly memory bound at the problem size set in the input file
= Learn how to take control of affinity with MPI and especially with MP1+OpenMP
= Always run multiple times and observe performance variations
= If you know how, try to calculate the maximum possible performance and use it as a “light speed” baseline

| http/ftiny.cc/MPIX-HLRS |
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Example cont'd

=  Tasks (we assume N, cores per CPU socket):

= Run the MPI-only code on one node with 1,...,N,,...,2*N, processes (1 full node) and observe the

achieved performance behavior
= Parallelize appropriate loops with OpenMP

= Run with OpenMP and 1 MPI process (“OpenMP-only”) on 1,...,N,...,2*N, cores,
compare with MPI-only run

= Run hybrid variants with different MPI vs. OpenMP ratios
= Things to observe

= Run-to-run performance variations
= Does the OpenMP/hybrid code perform as well as the MPI code? If it doesn't, fix it!

| http://tiny.cc/MPIX-HLRS | (D] see aiso login-slides

INIT

<
A 4

halo exchange

A 4

update
subdomain

convergence
or max iter?
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login_all.ppt#1. Login from PC
login_all.ppt#1. Login from PC
http://tiny.cc/MPIX-HLRS

Programming models
- MPIl + OpenMP

General considerations

Ove r I ap p | n g How to compile, link, and run

. . . Hands-on: Hello hybrid!
CO m m U ﬂ | C a.t| O n an d CO m p u tatl O n System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems
Topology and affinity on multicore
Hands-on: Pinning
Case study: Simple 2D stencil smoother

Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

> Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions
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Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Overlapping communication and computation 88/280



Sleeping threads with masteronly style

for (iteration ...)
{

#pragma omp parallel
numerical code
/* end parallel */

/* on master only */
MPI_ Send (halos) ;
MPI Recv (halos) ;

} /*end for loop*/

ode

Socket 1

Master
lthread

. \QQ:
zQ’Q
>

S| 1T —

Node Interconnect

ode

Socket 1

’hAaster
thread

Problem:
= Sleeping threads are wasting CPU time
Solution:

= QOverlapping of computation and
communication

Limited benefit:

= Best case: reduces communication
overhead from 50% to 0%
—> speedup of 2x

= Usual case of 20% to 0%
—> speedup of 1.25x

= Requires significant work - later
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Nonblocking vs. threading for overlapped comm.

= Why not use nonblocking calls?

= Nonblocking communication is important to prevent serializations and deadlocks, but
asynchronous progress is not guaranteed

= Options (implementation dependent):
- Communication offload to NIC
- Additional internal progress thread (MPI_ASYNC... with MPICH)
= Intranode and internode communication may be handled very differently

= Using threading for communication overlap
= One or more threads/tasks handles communication, rest of team “do the work”
= How to organize the work sharing among all threads?
- Non-communicating threads
- Communicating threads after communication is over
= Not all of the work can usually be overlapped - see next slide

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> Overlapping communication and computation 90/280



Using threading/tasking for comm. overlap

MPI_Init MPI_Init
MPI process MPI process MPI process MPI process MPI process MPI process
OpenMP | 1 1
threads : : :
Y VIV A\ 4 Y VIV A\ 4 Y VIV A\ 4 \ A A 4 ‘ v v Y ‘ v vV Y ‘
I I 1 MPI v v v
; ; icomm
V.. V. VY v.. V.V VY v Y v Y
\ A A A 4 v Y VY V..V VY \ 4 v \4
MPI_Finalize
\ 4 V‘ \4
MPI_Finalize
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Explicit overlapping of communication and computation

The basic principle appears simple:

#pragma omp parallel j%f
{ y/
// ... do other parallel work :5;
if (thread ID < 1) { ya
MPI Send/Recv ... // comm. halo data /;/
} else {
// Work on data that is independent .

// of halo data

}
} // end omp parallel

// Now work on data that needs the =
// halo data (all threads)
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Overlapping communication with computation

Three problems:

= Application problem: separate application into
- code that can run before the halo data is received
- code that needs halo data

. May be hard to do if (my thread ID < 1) {
.. ; MPI_Send/Recv
= Thread-rank problem: distinguish } else {

comm. / comp. via thread ID

= Work sharing and
load balancing is ha

rder
- Options /
- Fully manual work distribution
- Nested parallelism b
- Tasking & taskloops
- Partitioned comm (MPI1-4.0)

= Optimal memory placement on ccNUMA may be difficult 0

my thread range=(high-low-1) / (num_threads-1)+1;
my thread low=low+ (my thread ID-1)*my thread range;
my thread high=low+ (my thread ID-1+1)
*my thread range;
my thread high=min (high, my thread high);
for (i=my_ thread low; i<my thread high; i++) {

error-prone & clumsy
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Example: sparse matrix-vector multiply (spMVM)

- b 1 1 50% efficiency with
. —— (a) vector mode ¢ 47| respect to best = SpMVM on Intel Westmere cluster (6 cores/socket
60 / Y
| without overlap - | single-node “ ” - : :
 —.. (b) vector mode with, M performance » “task mode” == explicit communication overlap
- L 7 . .
50 naive overlap » ,." T using dedicated thread
F == (c) task mode ,* 7Dl . -r1ap: . ,
_ - - | | Scaling until = “vector mode” == MASTERONLY
v 40 best Cray , . ~8 nodes . .
3 - 7 With tack mode = “naive overlap” == non-blocking MPI
o 30r | | overap: = Memory bandwidth is already saturated by 5 cores
- Scaling until
20 F r/ = ~24 nodes
i w2 ——F— | 3 x better scaling
10 F one MPI process |
i per node
o é . 1'6 . 2'4 . 3'2 It's not just the saved
#nodes communication time; scaling

I |
G. Schubert, H. Fehske, G. Hager, and G. Wellein: Hybrid-parallel sparse matrix-vector multiplication with may be much |mproved.

explicit communication overlap on current multicore-based systems. Parallel Processing Letters 21(3), 339-358
(2011). DOI: 10.1142/S0129626411000254
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Programming models
- MPIl + OpenMP

General considerations

CO m m u n I Catl O n Overlap How to compile, link, and run

Hands-on: Hello hybrid!
W I t h O p en M P taS kl 0]0) p S System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems
Topology and affinity on multicore
Hands-on: Pinning

Case study: Simple 2D stencil smoother

Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
> Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

Main advantages, disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)

Hybrid Programming — MPI+X - Programming models - MPI + OpenMP - Overlapping communication and computation - Taskloop 95/280



OpenMP taskloop Directive — Syntax

= |Immediately following loop executed in several tasks

= Not a work-sharing directive! A task can be run by any thread, across NUMA nodes
- Should be executed only by one thread! > ® perfect first touch impossible!
= Fortran:

1SOMP taskloop [clause[[,]clause]...] ;%‘;F;)gﬁ;a;'n‘infem‘iﬁtese

dO_|OOp can be executed in
[ 'Y$SOMP end taskloop [nowait]] | paralel
= If used, the end do directive must appear immediately after the end of the loop
= C/C++:
#pragma omp taskloop [clause[[, ] clause]... ] new-line
for-loop

= The corresponding for-loop must have canonical shape - next slide
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OpenMP taskloop Directive — Detalls

= clause can be one of the following:

if ([ taskloop: ] scalar-expr)

shared (list)

private (list), firstprivate (list) [a do/for clause]
lastprivate (list) [a do/for clause]
default (shared | none| ..)

collapse(n) [a do/for clause]
grainsize (grain-size) ?| Mutually

num_tasks (num-tasks) exclusive

untied, mergeable

final ( scalar-expr ), priority ( priority-value )
nogroup

reduction (operator:list) [a do/for clause]

= do/ for clauses that are not valid on a taskloop:

schedule (type[,chunk] ), nowait
linear (list[: linear-step] ), ordered [(Nn)]

[a task clause]
[a task clause]
[a task clause]

[a task clause]

[a task clause]

[a task clause]

Since
OpenMP 5.0!
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OpenMP single & taskloop Directives

@ C/C++:

#fpragma omp parallel
{

#pragma omp single
[ {
A lot more tasks #pragma omp taskloop
than threads may . . .
be produced to for (i=0; i<30; i++)
achieve a good a[i] = b[i] + £ * (i+1);
load balancing

- }
} /*omp end single*/
} /*omp end parallel*/

[

Tasks are queued and then
serviced by team of threads

/

b))

b(i)+...

[
single /
= 1= Vi: ;i:
0.4 5,9 10,14 15719
a(iy= a()= a(i)= a(i)=
b))+ b(i)+... o] () 19 b(i)+...
I I
1= =
20,24 25,29
a()= a(i)=
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WOpenMP single & taskloop Directives

M Fortran:

!SOMP PARALLEL

[ !SOMP SINGLE

A lot more tasks
than threads may
be produced to
achieve a good
load balancing

1$SOMP TASKLOOP

do i=1,30

a(i) =b(i) + £ * i

o

end do
1SOMP END TASKLOOP
'SOMP END SINGLE

!SOMP END PARALLEL

[

Tasks are queued and then
serviced by team of threads

/

B(i)+:

b(i)+...

[
single /
= 1= Vi: ;i:
1,5 6,10 11,15 16;20
a(iy= a()= a(i)= a(i)=
b))+ b(i)+... o] () 19 b(i)+...
I I
1= =
21,25 26,30
a(= a(i)=
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Comm. overlap with task & taskloop Directives — C/C++

@ #pragma omp parallel
{

#fpragma omp single
{
#pragma omp taskl | | |
{ // MPI halo communication: Single
MPI_ Send/Recv... X AT
Number of // numerical loop using halo data: N
tasks may — #pragma omp taskloop NS Loop \ Loop Eoop
be for (i=0; i<100; i++) W‘ portion bc(tion portion
influenced afi] = b[i] +b[i-1]+b[i+1]+b[i-2]..; Haloy|  ithout  [ithod  |withou
with } /*omp end of halo task */ CORNN halo halo halo
grainsize or - N
num_tasks // numerical loop without halo data: '—1:710 el Loop Loop
clauses #pragma omp taskloop W't' Hy (NM~Jwitind  portion
for $1=100;_1<100(_)0; l++)- _ R T V655 o
af[i] = b[i] +b[i-1]+b[i+1 ]+b[i-2]..; withid  MiRIRl ke halo
... T I I ]
} /*omp end single */ [
} /*omp end parallel*/

1) Adding a priority (1) clause may help that the MPI communication is not
delayed by some numerical tasks generated by #pragma omp taskloop.
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ﬁ Tasking example: dense matrix-vector multiply with
«*/ communication overlap

=
Data distribution across processes:

c = +

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + OpenMP -> Overlapping communication and computation 101/280




<> Dense matrix-vector multiply with communication overlap via
&/ tasking

7~

Computation/communication scheme:

h >y

Stepl: MVM on
diagonal blocks

= +
Ring shift of

vector r
h rrnnnnnns
Step2: MVM on _ +

next subdiag blocks -
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()
oe®

#ipragma omp parallel
{
int tid = omp_get thread num() ;
int n_start=rank*my size+min(rest,rank), cur_size=my size;
// loop over RHS ring shifts

for(int rot=0; rot<ranks; rot++) { Asynchronous
#pragma omp single communication
{ (ring shift)

if (rot!=ranks-1) {
#pragma omp task
{

MPI Isend(buf[0], .., r_neighbor, .., &request[0])

MPI Irecv(buf[l], .., 1_neighbor, .., &request[l]);

MPI Waitall (2, request, status); Current block of MVM
} (chunked by 4 rows)

}
for(int row=0; row<my_ size; row+=4) {
#fpragma omp task
do_local mvm block(a, y, buf, row, n_start, cur_size, n);

}
}
#pragma omp single

tmpbuf = buf[l]; buf[l] = buf[0]; buf[0] = tmpbuf;
n_start += cur_size;
if (n_start>=size) n_start=0; // wrap around
cur_size = size_of rank(l_neighbor, ranks,size);

}
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Partitioned Point-to-Point Communication

= New in MPI-4.0:
Partitioned communication is “partitioned” because it allows for multiple
contributions of data to be made, potentially, from multiple actors (e.g., threads or
tasks) in an MPI process to a single communication operation.

= A point-to-point operation (i.e., send or receive)
= can be split into partitions,
= and each partition is filled and then “sent” with MPI Pready by a thread,

= same for receiving
= Technically provided as a new form of persistent communication.

= Further informationd e.g.,
= Grant, Ryan. MPI Partitioned Communication. United States: N. p., 2020. Web.
https://www.osti.gov/biblio/1762584 and https://www.osti.qgov/servilets/purl/1762584
= Further analysis / publications: = Thomas Gillis et al., 2023, https:/doi.org/10.1145/3605573.3605599
= Matthew G.F. Dosanjh et al., 2021, nhttps:/doi.org/10.1016/j.parco.2021.102827
= Yiltan Hassan Temucin et al., 2022, nttps://doi.org/10.1145/3545008.3545088

T ,
Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien) ) Courtesy of Tobias Haas, HLRS.
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Programming models
- MPIl + OpenMP

General considerations
H an d S -O N #4 How to compile, link, and run
Hands-on: Hello hybrid!

System topology, ccNUMA, and memory bandwidth
Memory placement on ccNUMA systems

Taskloop-based hybrid Jacobi Topalogy and Aty erimulicore
Hands-on: Pinnin
Case study: Simf)le 2D stencil smoother

Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops

—E > Hands-on: Taskloop-based hybrid Jacobi
http://tiny.cc/MPIX-HLRS Main advantages, disadvantages, conclusions
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Programming models
- MPIl + OpenMP

General considerations

M a.l n advantag eS y How to compile, link, and run

Hands-on: Hello hybrid!
d I Sad van tag es System topology, ccNUMA, and memory bandwidth
) Memory placement on ccNUMA systems
Topology and affinity on multicore

ConCI USIOnS Hands-on: Pinning
Case study: Simple 2D stencil smoother
Case study: The Multi-Zone NAS Parallel Benchmarks (skipped)
Hands-on: Masteronly hybrid Jacobi

Overlapping communication and computation
Communication overlap with OpenMP taskloops
Hands-on: Taskloop-based hybrid Jacobi

> Main advantages, disadvantages, conclusions
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MPI+OpenMP: Main advantages

Increase parallelism
= Scaling to higher number of cores
= Adding OpenMP with incremental additional parallelization

= Lower memory requirements due to smaller number of MPI processes
= Reduced amount of application halos & replicated data
= Reduced size of MPI internal buffer space
= Very important on systems with many cores per node

Lower communication overhead (possibly)
= Few multithreaded MPI processes vs many single-threaded processes
= Fewer number of calls and smaller amount of data communicated
= Topology problems from pure MPI are solved (if only one MPI process per node)
(was application topology versus multilevel hardware topology)
Provide for flexible load-balancing on coarse and fine levels
= Smaller #of MPI processes leave room for assigning workload more evenly
= MPI processes with higher workload could employ more threads

Additional advantages when overlapping communication and computation:

= No sleeping threads
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MPI+OpenMP: Main disadvantages & challenges

= Non-Uniform Memory Access:
Not all memory access is equal: ccNUMA locality effects
Penalties for access across NUMA domain boundaries
First touch is needed for more than one NUMA domain per MPI process

Alternative solution:
One MPI process on each NUMA domain (i.e., chip)

= Multicore / multisocket anisotropy effects
Bandwidth bottlenecks, shared caches
Intra-node MPI performance: Core «<» core vs. socket < socket
= OpenMP loop overhead

= Amdahl’s law on both, MPI and OpenMP level
= Complex thread and process pinning

Masteronly style (i.e., MPI outside of parallel regions)

= Sleeping threads

Additional disadvantages when overlapping communication and computation:

= High programming overhead

= OpenMP is only partially prepared for this programming style - taskloop directive
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Questions addressed in this tutorial

= What is the performance impact of system topology?
It's massive

= How do | map my programming model on the system to my advantage?

- How do | do the split into MPI+X? i Problem
- Where do my processes/threads run? How do | take control? dependent

- Where is my data? | T Process/thread
= How can | minimize communication overhead? | touch placement affinity

= How does hybrid programming help with typical HPC problems?
= Can it reduce communication overhead?
= Can it reduce replicated data?

= How can | leverage multiple accelerators?
= What are typical challenges?
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Programming models
- MPI + Accelerator

General considerations

OpenMP offloading for accelerators

Case study: Accelerated stencil smoother
Advantages & main challenges, conclusions
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Accelerator programming: Bottlenecks reloaded

Example: 2-socket AMD “Zen3” (2x64 cores) node

with eight NVIDIA A100 GPGPUs (PCle 4) + NVLINK
(“Alex” at NHR@FAU)

| perGPGPU per CPU 2
Qo

DP peak Bx &
performance 9'0 713'|;1:|F0p/ S &= 2-001;fo/’Fp/ S S 2_—3 ?'_32’
eff memory . N . achine balance § §
bandwigtn L300 Gbyte/s ¢<==160 Gbyte/s Q :
inter-device BW Z T
(PCle) ~ 25 Gbyte/s (max.) S' %
inter-device BW =z S
(NVIink) > 500 Gbyte/s °
Network BW )
(4X 100 Gbit/S) 2X 25 Gbyte/S (theOI‘.) )

- Speedups can only be attained if communication
overheads are under control

- Basic estimates help
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Accelerator + MPI: How does the data get from Ato B?

dijdjidjidl|d
N O

dddddddhdddddd
I I | | | I

djldfidfidijldid]d difdfld|dijldijdfd

djdjidfidijld(d]d diid|fdfdid]|d]|d
NN D T O

dijdfidfidfid|fd(ffd]| [d
N

Communication network
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Questions to ask

Is the MPI implementation CUDA/GPU aware?

= Yes: Can use device pointers in MPI calls

= No: Explicit DtoH/HtoD buffer transfers required

= Copying to consecutive halo buffers may still be necessary
Is NVLink available?

= Yes: Direct GPU-GPU MPI communication with MPI
- Supported by: P100, V100, A100, H100

= NO: copies via host (even with NVIDIA GPUDirect)
Unified Memory or explicit DtoH/HtoD transfers?
= UM: Transparent sharing of host and device memory

Actual bandwidths and latencies?
= Highly system and implementation dependent! =
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Never forget: hardware is not enough

" SpMV on NVI DIA Aloo I ginkgo_coo [ ginkgo_csr [l ginkgo_ell [l ginkgo_hybrid

-zgi(l)1kgo_sellp I cusparse_coo ] cusparse_csr ] cusparse_gcsr2

Different data formats and libraries
2800 matrices (SuiteSparse Matrix Pope =233 L olp g
. IS Bl
Collection) 200 s
o 150 ] :
. . . o
Optimal matrix storage formatis 2
. . (©]
highly matrix and system b
dependent!
50
H. Anzt, et al; 2020 IEEE/ACM Performance Modeling, Benchmarking 86 ’ P
and Simulation of High Performance Computer Systems (PMBS), No ’LQ’
DOI: 10.1109/PMBS51919.2020.00009.
#nonzeros
s}
Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
114/280

Hybrid Programming — MPI+X - Programming models - MPI + Accelerator - General considerations


https://dx.doi.org/10.1109/PMBS51919.2020.00009

Options for hybrid accelerator programming

multicore host accelerator

MPI CUDA

MPI+MPI3 shmem ext. SYCL, Kokkos, ... (C++)

MPIl+threading
(OpenMP, pthreads, TBB,...) OpenACC
OpenMP offloading (4.0++)

threading only
PGAS (CAF, UPC,...) ¥) special purpose

Which model/combination is the best???
—> the one that allows you to address the relevant hardware bottleneck(s)

*) PGAS = Partitioned Global Address space languages, CAF = Coarray Fortran, UPC = Unified Parallel C a
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Programming models
- MPI + Accelerator

OpenMP offloading for accelerators
(Slides adapted from material by M. Wittmann, NHR@FAU)

General considerations
> OpenMP offloading for accelerators
Case study: Accelerated stencil smoother
Advantages & main challenges, conclusions
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OpenMP offloading

= OpenMP 4.0++ supports offloading of loops and regions of code from a
host CPU to an attached accelerator in C, C++, and Fortran

= Set of compiler directives, runtime routines, and environment variables
=  Simple programming model for using accelerators (GPGPUs and other many-core chips)

= Memory model:

= Host CPU + Device may have completely separate memory; Data movement between host and device
performed by host via runtime calls; Memory on device may not support memory coherence between
execution units or need to be supported by explicit barrier

=  Execution model:;

= Compute intensive code regions offloaded to the device, executed as kernels ; Host orchestrates data
movement, initiates computation, waits for completion; Support for multiple levels of parallelism
(teams, threads, SIMD)
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Introduction

= Execute code on a device, typically
an accelerator

= OpenMP tries to abstract from the

targeted device's architecture host
device

1

device,
target

= target: device where code and data
is offloaded to

= execution always starts on the host
device r
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target construct

target [clauses..]
<structured block>

= execute associated structured
block on the device

= on the target:

= execution is initially single threaded
= on the host:

= wait until offloaded code completes

= target construct cannot be nested
Inside another target construct

int a[1024], b[1024];
/* init a and b */
#pragma omp target
{
for (int i = 0; i < 1024; ++i)
a[i] += b[i];
} /* wait until complete */

host device

l

omp target |= == = == P

| for (..)
1 a[i] += b[i]
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Generating Parallelism

= target construct alone does not
generate parallelism

visualization idea based on: Using OpenMP 4.5 Target Offload for Programming
Heterogeneous Systems, NASA Advanced Supercomputing Division, Mar 20, 2019

#pragma omp target
for (int i = 0; i < 1024;
a[i] += b[i];

on the
device

/l iterations |

++i)

team
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Generating Parallelism

#pragma omp target teams
" teams construct for (int i = 0; i < 1024; ++i)

= generate league of teams afi] += b[i];

= a team has only one initial thread

= each team executes the same code

= how many teams: impl. defined | HH HH HH

- num_teams (n) clause

on the
device

team

#pragma omp target teams distribute

= distribute construct for (int i = 0; i < 1024; ++i)
istri i i i] += b[il];
= distributes iteration space of alil] [1]

associated loop(s) over teams

visualization idea based on: Using OpenMP 4.5 Target Offload for Programming E
Heterogeneous Systems, NASA Advanced Supercomputing Division, Mar 20, 2019
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Generating Parallelism

#pragma omp target teams distribute \
= parallel construct parallel
) : : : for (int i = 0; i < 1024; ++i)
gen. parallel region with multiple a[i] 4= b[i],

threads inside each team

<400 00 0
<400 00 0|

\A

#pragma omp target teams distribute \
parallel for

= worksharing loop for (int i = 0; i < 1024; ++i)

= distribute team's iteration space over )| = )
all threads inside a team

I |
[e][e][e][e][e]
visualization idea based on: Using OpenMP 4.5 Target Offload for Programming
Heterogeneous Systems, NASA Advanced Supercomputing Division, Mar 20, 2019 v J,
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Generating Parallelism

= simd construct

= use SIMD lanes in each thread #pragma omp target teams distribute \
parallel for simd
for (int i = 0; i < 1024; ++i)
a[i] += b[i];

= how each directive maps to a GPU entity depends on the compiler
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Generating Parallelism

= for GPUs what construct maps to what entity depends on the compiler
= might be that teams - threadblock/work group
= might be that parallel [simd] = threads/work item

= from OpenACC, OpenMP, Offloading and GCC GNU Tools Cauldron 2022; Tobias Burnus, Thomas Schwinge, Andrew Stubbs; 2022-09-18;
https://gcc.gnu.org/wiki/cauldron2022talks?action=AttachFile&do=get&target=OpenMP-OpenACC-Offload-Cauldron2022-1.pdf :

= GCC: teams, parallel, simd

- SIMD loop - thread/work item

- teams + parallel - warps/wavefront
LLVM/Clang: teams, parallel

- under development: team, parallel, simd
AMD: teams, parallel
HPE/Cray: teams, parallel or simd
Nvidia: teams, parallel
Intel: teams, parallel, simd
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Generating Parallelism

= some possible combinations

omp
omp
omp
omp
omp
omp
omp
omp
omp
omp

sb:
1ln:

target
target
target
target
target
target
target
target
target
target

<sb>

parallel <sb>
parallel for/do <Iln>

parallel for/do simd <ln>
simd <I1n>

teams
teams
teams
teams
teams

<sb>

distribute
distribute
distribute
distribute

structured block
loop nest

<ln>

parallel for/do <ln>
parallel for/do simd <Iln>

simd <1n>

not covered: section, loop construct
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ﬁ target teams CONSIruct

= each team has a new initial thread #pragma omp target teams

target teams mustbe a
compound construct or
directly nested

= teams are loosely coupled R \
= in contrast to the parallel construct

#pragma omp target/

= no synchronization across teams

#pragma omp teams

{ .}
clauses: » if (expr) clause
* num_teams (expr) clause = evaluate to true: create teams
= no. of teams to create = evaluate to false: create only 1 team
= if unspecified gen. no. of teams is * shared, private, firstprivate, default:
implementation defined - usual meaning
= thread limit (expr) clause = reduction clause:

= max. nho. of active threads in a team
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y distribute construct

= distribute iterations of associated loop over teams

= must be strictly nested inside #pragma omp target teams distribute
a teams construct <loop> distribute mustbea
. . compound construct or
= iteration space must be the same strictly nested
for all teams #pragma omp target teams
. . . #pragma omp distribute/
= no implicit barrier at the end <loop>

" dist schedule(static[,chunk size]) clause

= if unspecified: implementation defined

= W/O chunk_size: each team gets one equally sized chunk
= collapse(n) clause

= same as for for/do construct

= associate and collapse iteration space of n nested loops
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y distribute construct

= private, firstprivate, lastprivate clauses:
= order clause: not handled here

= reproducible schedule:
= order (reproducible)

= dist_schedule(static[,chunk size]) order(...
contain unconstrained

= avoid data races with lastprivate

= lastprivate variables should not be accessed
between end of distribute and teams construct

usual meaning

) where order does not

#pragma omp target teams
{
#pragma omp distribute \
lastprivate (1p)
{ <loop> }
/* other code */
/* do not access 1lp */
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Data Mapping

* host and device memory can be separate int a[1024], b[1024];

/* init a and b */

= mapping of variables ensures #pragma omp target
= a variable is accessible on the target, e.g. by { o _ _
. for (int i = 0; i < 1024; ++i)
copy or allocation a[i] 4= b[i]: N
= a consistent memory view R e [
mapping attributes
= what can be mapped: cause variables to
. . be mapped, note
= variables, array sections, members of a[1024], b[1024]
structures _
i host device
= mapping causes a presence check |
= copy to device only if not already present p—— g{iggj}- .

mapping attributes can be
= implicit or explicit

for (..)
af[i] += b[i]

|
|
|
|
—_ — = - a[1024] _
r- b[1024]
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<’ Device Data Environment (DDE)

= exists for each device

int a[1024], b[1024];

/* init a and b */

= exists beyond a single target region

= contains all variables accessible by {
threads running on the device

= mapping ensures a variable is in a

for (int i

= 0; i < 1024;

#pragma omp target

a[i] += b[i];

device's DDE host
a[1024]
original | _—"] b[1024]
variable
\ 4
omp target

i..__

} /* wait until complete */

device

DDE

a[1024]

++i)

b[1024] —_|

a[1024] _
b[1024]

corresponding
variable

for (..)

a[i] += b[i]

_a[1024] _

b[1024]
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<%/ Data Mapping Attributes

= explicit:
= referenced in private, firstprivate, is_device ptr Clause: private
= declared inside target construct: private
= referenced in a map clause: selected map-type

= scalar variable: firstprivate

= except if target .. defaultmap (tofrom:scalar)
- then map-type tofrom

* non-scalar variable: map-type tofrom int a[1024], bl10241;
= entry: copy to device, exit: copy back /* init a and b */

#pragma omp target

{

. : . . for (int i = 0 : .

= C/C++: pointer variable in pointer O:[i(?n::b[i]; i< on; ++i)

based array section: private }
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map clause

= map clause
map ( [<mtm>, ] <map-type>: <variables>)

= map-type: how a variable is mapped
tofrom  default, copy to device on entry of target region
and back at the end
to copy to device on entry of target region

from allocate on entry of target region,
copy from device to host on exit of target region

alloc on entry, allocate on device, but do not initialize

int a[1024], b[1024];
/* init a and b */
#pragma omp target map (a) map(to:b)

{

for (int i = 0; i < 1024; ++i)
a[i] += b[i];
} /* wait until complete */

host device
l to: b
a[1024] 4;
omp tlarget 7b[1024]
for (..)

release counterpartto alloc

tofrom

delete  removes variable from device (independent of
RC)

F

a[i] += b[i]

(default): a \:X-a[lozq- —*

= mtm: map-type-modifier: always, close, present

"force" update even if
variable is already on
the device
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Allocating on the Device

tmp allocated on the device

" map-type alloc
= allocate variable/array on device int tmp[1024];

= no initialization is performed #pragma omp target map(alloc:tmp)
= N0 copy back to host {

= useful, e.g. when an array is only
used on the device

for (int i = 0; i < 1024; ++i)
tmp[i] = compute (i) ;

for (int i = 0; 1 < 1024; ++i)
work (tmp[i]) ;

for (int i = 0; 1 < 1024; ++i)
work2 (tmp[1i]) ;

}
I tmp not copied back
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How to map dynamically allocated arrays in C/C++

= map dynamically allocated arrays via array section syntax

array|[ [lower-bound] : length]

double * a = malloc(sizeof(double) * n el);
double * b = malloc(sizeof(double) * n el);
/* init a */

#pragma omp target map(to:a[:n el]) \
map (alloc:b[:n _el])
for (int i = 0; 1 < n_el; ++i) {
b[i] = a[i];
}
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<>’ DDE and Reference Counts

= every variable is inside a device data environment (DDE)
= exists only once
= has a reference count (RC) associated

= an existing variable in a DDE has always RC = 1

var. on map enter: var. on a map—exit:
= if RC=0: var. newly allocated * if map-type in from|tofrom and
= +4+RC (RC=1 || mtm=always)
» if map-type in to|tofrom and = copy value of var. from device to host
(RC=1 || mtm=always): " --RC
- copy value of var. from host to device = fmap-type = delete and RC!=~
= else: = RC=0
= no copy to the device takes place = jf RC=0: remove var. from DDE

mtm = map-type-modifier
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target data construct

#pragma omp target data map(to:a[:n]) \
map (from:b[:n])

target data [clauses] { #pragma omp target
<block> for (int i = 0; i < n; ++i)

. { b[i] = 2.0 * a[i]; }
= map data for the duration of the

associated block to the DDE #pragma omp target .
_ for (int i = 0; i < n; ++i)
= <block> still executed on host { b[i] += a[i]; }
= <block> typically includes multiple }
target regions host device
= clauses: target data 201y ;EE}
= map () with to, from, tofrom, alloc target >
= not covered: device, if, use device_ addr, : fof,[i(]")= 2.0 * a[i];
use device ptr > Y
target >

1 for (..)
1 b[i] += a[i];

&
<«

end target data [¢-b[:n] ---------
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target update Construct

target update [clauses] #pragma omp target data map(to:a[:n]) \
map (from:b[:n])
: {
= copy data between host and device #pragma omp target
for (int i = 0; i < n; ++i)
= FUNS ON the hOSt { b[i] = 2.0 * a[i]; }
= cannot appear inside a target construct #pragma omp target update from(b[:n])
= copy is always performed /* do something with b */
- In contrast t0 target map(..) #pragma omp target

for (int i = 0; 1 < n; ++1i)
{ b[i] += a[i]; }

= clauses
= to(var-1list) copy vars. to device
- from(var-list) copy vars. to host
= not covered: device, if, nowait, depend
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enter datal/exit data directives

target enter data map(..) [clauses] — map data
target exit data map(..) [clauses] —— unmap data
allowed: to, alloc
= unstructured
= can be called at any point on host double * vec_allocate(int

{
double * a = malloc(..);

#pragma omp target gnter data \
map (alloc:a[:n_el])
return a;

at exit data: listed variables not present !

on the device are ignored void vec free(double * a)

{
#pragma omp target exit data \

map (release:a[:n_el])
clauses not covered: device, if, free(a) ;

. }
depend, nowalit allowed: from, release, delete
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target data use device ptr directive

target data use device ptr(<list>)
<structured-block>

* Indicates that list item is pointer to object
with corresponding storage on device

= References to list items in structured block
are converted to local pointer with device

addl’e.SS . double * p = malloc(n);
= “In this block, use device addresses
_ ; #pragma omp target data map(p[:n])
for these pointers {

. . // call host func with device ptr
- UserI |f funCtlonS nGEd tO be handEd #pragma omp target data use device ptr(p)

device pointers (e.g., GPU-aware MPI) , 2ecsi-fenelp)f
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Programming models
- MPI + Accelerator

Case study: Accelerated stencil smoother

General considerations

OpenMP offloading for accelerators
> Case study: Accelerated stencil smoother
Advantages & main challenges, conclusions
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Accelerating an MPI/hybrid Jacobi 2D smoother

Domain sweep with offload directive (in relax () function):

#pragma omp target teams distribute parallel for collapse(2) \
map (src[:n_cells]) map(dst[0:n_cells])
for (int y = start y; y < end y; ++y)
for (int x = start x; x < end x; ++x)
dst[y * dim x + x] =
0.25 * (src[y*dim x+x-1] + srcly*dim x+x+1]
+ src[(y-1) *dim x+x] + src[(y+1)*dim x+x]);

executed
on device

= This alone would be sufficient to run the loop nest on the GPU

= map clause (in this form) copies arrays src[] and dst[] to the device before
the loop and then back after

* Prize question: What is the expected performance in LUP/s (lattice site updates per
second)? (Hint: it's abysmal)

= How can we do better?
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Accelerating an MPI/hybrid Jacobi 2D smoother

Better solution: Copy the arrays to the device before the iteration loop and
then back after

#pragma omp target enter data \
map (to:src[:n_cells]) map(to:dst[:n_cells])
for (int iter = 0; iter < n_iterations; ++iter) ({
exchange (domain, src_grid); executed
relax(domain, src_grid, dst grid);
swap (src_grid, dst grid);
}
#pragma omp target exit data \
map (from:src[:n cells]) map(from:dst[:n_cells])

on host

= Entire “algorithm™ is now on the GPU. Can we do even better?

= What about the halo communication?
= |Is the MPI implementation GPU aware?
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Accelerating an MPI/hybrid Jacobi 2D smoother

Halo exchange without GPU-aware MPI. Update boundary cells from device (halos to
device) before (after) communication

void exchange(...) {

#pragma omp target update \
from(src[(dim y - 1) * dim x:dim x],src[0:dim x])
// top neighbor xchg

if (domain->comm rank + 1 < domain->comm_ size) { h
int top = domain->comm_ rank + 1;
MPI Isend(&src[dim y-1][0], dim x,..., &requests[0]);

MPI Irecv(grid->ghost cells top, dim x, &requests[l]);
}
// bottom neighbor xchg > executed
if (domain->comm rank > 0) { on host
int bottom = domain->comm rank - 1;
MPI Isend(&src[0][0], dim x,..., &requests|[2]) ;
MPI Irecv(grid->ghost cells bottom, dim x, &requests[3]):;
}
MPI Waitall (4, requests, MPI_STATUSES_ IGNORE) ; ~
#pragma omp target update \
to(grid->ghost_cells top[:dim x],grid->ghost cells bottom[:dim x])
}
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Accelerating an MPI/hybrid Jacobi 2D smoother

Halo exchange with GPU-aware MPI: Tell compiler to use device pointers in the
region

void exchange(...) {

double *gct = grid->ghost_cells_top, *gcb=grid->ghost_cells bottom;
#pragma omp target data \
use_device_ptr(src, gct, gcb)
{ N
// top neighbor xchg
if (domain->comm rank + 1 < domain->comm size) {
int top = domain->comm_ rank + 1;
MPI Isend(&src[dim y-1][0], dim x,.
MPI Irecv(gct, dim x, &requests[l]);

., &requests[0])

}

_ executed
// bottom neighbor xchg >
if (domain->comm rank > 0) { on host
int bottom = domain->comm rank - 1;
MPI Isend(&src[0][0], dim x,..., &requests[2]) ;

MPI Irecv(gcb, dim x, &requests[3]);
}
MPI Waitall (4, requests, MPI_STATUSES_ IGNORE) ;
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J2D smoother multi-GPU scaling

“Alex” node (8x A100 40GB), nvhpc 23.7, OpenMP1 4.1.6

Hybrid J2D on A100 (non-CUDA-aware MPI) Hybrid J2D on A100 (GPU-aware MPI)

® 20kx 20k x 20k iter @ 40k x 20k x 10k iter @ 80K X 20Kk x 5K iter == == |deal @® 20kx20k x 20k iter @ 40k x 20k x 10k iter @ 80k x 20k x 5k iter == == |deal

600 g 600
1-GPU performance: R
500 76.5 GLUP/s _- 500
- 1.22 Thyte/s - OK
400 400
5 &
2 300 2 300
0] O]
200 200
100 100
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
# GPUs # GPUs 5|

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - MPI + Accelerator - Case study: Accelerated stencil smoother 145/280




PCle transfers

= Why is there no perfect scaling even at large problem sizes?
= Runtime at problem size 80k x 20k with 5k iterations: 15 s

= Transfer time of grids to and from accelerator: Residual deviation: 1.7%
6 Ideal 8-GPU performance
80 X 20 X 10® X 2 X 16 byte o
Ttransfer = ~2s e
bPCI
590
- 13% of runtime a 70 8 GPUs
goes into PCle transfers \ﬁf 80k x 20k
530
20000 40000 60000 80000
# iterations =]
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#pragma acc parallel present(val[0:numNonZeros], \

colInd[0:numNonZeros], \
rowPtr[0:numRows+1], \
x[0:numRows], \
y [0 :numRows] ) \
loop
for (int rowID=0; rowID<numRows; ++rowlID) {

double tmp = y[rowID];

// loop over all elements in row

for (int rowEntry=rowPtr[rowID];
rowEntry<rowPtr[rowID+1] ;
++rowEntry) {

tmp += val[rowEntry] * x[ colInd[rowEntry] ]
}
y[rowID] = tmp;
}
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Example: Sparse MVM (SELL-C-o format)

#pragma acc parallel present(val[0 : capacity],colInd[0 : capacity],\
chunkPtr[0 : numberOfChunks], chunkLength[0 : numberOfChunks], \
x[0 : paddedRows],y[0 : paddedRows]) vector length(chunkSize) loop
// loop over all chunks
for (int chunk=0; chunk < numberOfChunks; ++chunk) ({
int chunkOffset = chunkPtr[chunk];
int rowOffset = chunk*chunkSize;
#pragma acc loop vector
for (int chunkRow=0; chunkRow<chunkSize; ++chunkRow) ({
int globalRow = rowOffset + chunkRow;
// £ill tempory vector with values from y
double tmp = y[globalRow] ;
// loop over all row elements in chunk
for (int rowEntry=0;
rowEntry<chunkLength [chunk] ;
++rowEntry) {
tmp += val [chunkOffset + rowEntry*chunkSize + chunkRow]
* x[colInd[chunkOffset + rowEntry*chunkSize + chunkRow] ];
}
// write back result of y = alpha Ax + beta y
y[globalRow] = tmp;

sorted

sorted

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R.
Bishop: A unified sparse matrix data format for efficient general
sparse matrix-vector multiplication on modern processors with
wide SIMD units. SIAM Journal on Scientific Computing 36(5),
C401-C423 (2014). DOI: 10.1137/130930352
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y Example: Sparse MVM CRS vs. SELL-128-8192 on Kepler K20

GFlop/s N | .
\ \ w
20 § § §
B I
§ § § Sb gll tCFI’;Jh(tXp (Ijvly rr?t dge DDR3-1866)
10 § §\§ & k\ §
S |
N\l N A

pwtk ML_Geer DLR1 kkt _power Hamrle3

# GPU plain CSR o« GPU SELL-C-sigma ®mCPU plain CSR  mCPU SELL-4-8192
a
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Programming models
- MPI + Accelerator

Advantages & main challenges, conclusions

General considerations
OpenMP offloading for accelerators
Case study: Accelerated stencil smoother
> Advantages & main challenges, conclusions
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Conclusions from the accelerated J2D example

OpenMP offloading glosses over many intricacies of the underlying
hardware and software

= |t is good to have a performance model at hand

= See also Performance Analysis with NVIDIA Tools on YouTube

Data transfers are still the #1 performance limiter

= Abstractions can easily lead to excessive overhead

Observing performance behavior when varying parameters is useful
= Problem size, number of iterations, resources, domain decomposition,...
= “shake it and see what happens”

GPU/CUDA-aware MPI can boost scalability

= However, the future holds shared memory between host and device
- GPU awareness will be obsolete
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MPIl+Accelerators: Main advantages

= Hybrid MPI/OpenMP and MPI/OpenACC can leverage accelerators and
yield performance increase over pure MPI on multicore

= Compiler/pragma-based API provides relatively easy way to use
Coprocessors

= OpenACC targeted toward GPU-type coprocessors
= OpenMP extensions provide flexibility to use a wide range of

heterogeneous coprocessors (GPU, APU, heterogeneous many-core
types)
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Hybrid Programming — MPI+X - Programming models - MPI + Accelerator - Conclusions 152/280




MPI+Accelerators: Main challenges

= Considerable implementation effort for basic usage,
depending on complexity of the application

= Efficient usage of pragmas requires good understanding of
performance issues

Performance is not only about code; data structures can be
decisive as well

= Support for accelerator pragmas still restricted to certain

environments
NVIDIA GPUs have best support

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien) Goto > Tools chapter IE
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Questions addressed In this tutorial

= What is the performance impact of system topology?

= How do | map my programming model on the system to my advantage?
= How do | do the split into MPI+X?
= Where do my processes/threads run? How do | take control?
= Where is my data?
= How can | minimize communication overhead?

= How does hybrid programming help with typical HPC problems?
= Can it reduce communication overhead?
= Can it reduce replicated data?

= How can | leverage multiple accelerators? Data structures are decisive,

- What are typical challenges? inter-device communication
support varies
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Future accelerated node architecture with AMD MI300A APUs

Programming model & options: = 1 MPI process per GPU
6 MPI processes per ccNUMA domain

24 MPI processes / node
Smallest possible AMD Infinity Fabric™, each MPI process with < 4 threads
ccNUMA domain all-to-all connection between the sockets

21 GB per MPI process + GPU

X = = 1 MPI process per GPU input queue

Slingshot

)
)

B = cru cpPu cPu GPu| | GPU GPU [6PU GPU I =ik _
EEJ ha‘i = 24 MPI processes per ccNUMA domain
e Socket 0 l:; Socket 1 o H > - 96 MPI processes / node

?E:I - - Fﬂ? 2 - MPI processes are single-threaded

g s GPU GPU multi-core multi-core GPU GPU 2 g (o)

=5 cPu cPu =: 5 - 5.3 GB per MPI process + ¥s GPU
— L — @

— ) [ — [N o - . . .

EE 1 6pu 6ru GPU GpU ||| GPu GPu Gpu Gpu jf - § Optimization areas:

S| 2 ERE

oole d||E Shs n . -to- -to-

i:=| Socket 2 “ Socket 3 [= IF 3} Socket tq S(_)cket and Node-to-node
;Eﬂ . . k%; communication

o] muiti-core multi-core ]

EE _J 6PU GPU epy cy GPU GPU L = - pure MPI / The Topology Problem

accelerator opU cores o 00D AVD MI300A socket = Minimizing memory consumption
AMD XCD with in total 24 cores » 1 CPU with 24 cores and 6 GPUs 9 MPI Shared memory

« together with 128 GB memory

"accelerated compute core die*
(interleaved between HBM stacks)

with 4 input queues per GPU
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Programming models
- MPI + MPI-3 shared memory

General considerations & uses cases

Re-cap: MPI_Comm_split & one-sided communication
How-to

Exercise: MPI_Bcast

Quiz 1

MPI memory models & synchronization

Shared memory problems

Advantages & disadvantages, conclusions

Quiz 2
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Hybrid MPI + MPI-3 shared memory

What is it?
= Addon to pure message passing
= MPI processes can share memory segments within a node

Use cases/advantages

= A: Reducing replicated data - Reduced memory requirements
= B: Reducing intra-node message passing -> Reduced intra-node communication time

. MPI process

E = Shared memory

Direct loads & stores,
| no library calls

Using MPI

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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Hybrid MPI + MPI-3 shared memory

* Further advantages
= Using only one parallel programming model

= No OpenMP problems (e.g., thread-safety isn’t an issue)

= Major Problems
= Communicator must be split into shared memory islands
= No increase in exploitable parallelism

= None of the “automatic” advantages of MPI+OpenMP

- Exploiting advantages requires programming effort See MPI+OpenMP
summary
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Use case A: Reducing memory requirements

[R] = Replicated data
! in each MPI process

Subdomain
halo
halo-communication

i Example: Cluster of SMP nodes
rwithout using MPI shared memory methods

EEI = Shared memory
> replicated data only once
within each SMP node

i \\| Direct loads & stores, no library calls

1
1
1
1
A !
1
1
1
1
1

. Using MPI
................. . shared memory methods

MPI-3.0 shared memory can be used
to significantly reduce the memory needs for replicated data.
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Use case B: Reducing intra-node message passing

1 SMP node with 4 cores

= MPI on each core (not hybrid)
= Halos between all cores
= MPI uses internally shared memory and cluster communication protocols

= MP1+OpenMP
= Multi-threaded MPI processes
= Halos communication only between MPI processes

= MPI cluster communication + MPI shared memory communication

= Same as “MPI on each core”, but

= within the shared memory nodes, halo communication through

= MPlinter-node communication direct copying with C/Fortran/Python statements
— MPI intra-node communication
- -» Intra-node direct Fortran/C copy

=+> Intra-node direct neighbor access = MPI cluster comm. + MPI shared memory access
= Similar to “MPI1+OpenMP”, but

% shared memory programming through work-sharing between the MPI
processes within each SMP node

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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Programming models
- MPI + MPI1-3.0 shared memory

Re-cap
. M P I_CO m m_S p I | t General considerations & uses cases

> One-SIdEd Communlcatlon >Eixjs: MPI_Comm_split & one-sided communication
Exercise: MPI_Bcast
Quiz 1
MPI memory models & synchronization
Shared memory problems
Advantages & disadvantages, conclusions
Quiz 2
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New sub-communicators with MPlI_Comm_ split

= New sub-communicators via MPI_Comm_ split
- Each process must specify a color & MPI_Comm_split_type ‘—‘ New in

. - shared memory MPI-3.0
= Processes with same color are put together '
iIn new sub-communicators

Old/existing communicator

same color value within each
sub-communicator

Each process gets only its new
sub-communicator
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Example: MPI_Comm_split()

@ int MP1_Comm_split (MPl_Comm commw(nt key,

MPI_COMM_SPLIT (comm, color, key, newcomm, ierror)

TYPE(MPI_Comm) :: comm, newcomm
INTEGER :: color, key;
INTEGER, OPTIONAL :: ierror

mpi & mpif.h: INTEGER comm, color, key, newcomm, ierror

mpi_f08:

Example: int my rank, mycolor, key, my newrank;

MPI_Comm *newcomm Creation is collective in the old communicator.

Each process
gets only its own
sub-communicator

PI Comm newcomm; Always 4 process get same color = grouped in an own newcomm

AMPI Comm rank (MPI/COMM WORLD, &my rank);
mycolor = my_rank/4;| key==0 - ranking in newcomm is sorted as in old comm

key = 0; | key # 0 = ranking in newcomm is sorted according key values

MPI Comm split (MPI COMM WORLD, mycolor, key, &newcomm);
MPI Comm rank (newcomm, &my newrank); \
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15.. MPI COMM WORLD

elolaidersaidersIaiceroracyereye)

All processes with
same color are
grouped into
separate sub-
communicators

newcomm newcomm newcomm newcomm newcomm
mycolor == mycolor == mycolor == mycolor == mycolor == m
Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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Re-cap: One-sided Communication

= Communication parameters for both the sender and receiver
are specified by one process (origin)
= User must impose correct ordering of memory accesses

Origin Process Target Process

put

The window is a memory
portion accessible from the
other processes

get
\ Y V) \ Y V)
A process in the role of an origin process A process in the role of a target process
accesses the window through exposes its window
Remote Memory Access (RMA) routines to origin processes m
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Typically, all processes are both, origin and target processes

One MPI process

Software

Comen )

Data

—

put

-

/ oca \
snd buf

_/

Full protection of

the memory of
each MPI

process against

accesses from

—get L

-

4 oca ) )
|

I/

With a collective

MPI_Win_create(),

each process

provides a memory
portion (= window)

other MPI . .
that is now accessible
processes .
from outside
with [put] [get] .. .
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One-sided Operations

Three major sets of routines:

= Window creation or allocation
= Each process in a group of processes (defined by a communicator)
= defines a chunk of own memory — named window,
= which can be afterwards accessed by all other processes of the group.

= Remote Memory Access (RMA, nonblocking) routines Shared memory:

= Access to remote windows: put, get, accumulate, ... direct loads and stores

] ] instead of MPI_Put/Get
= Synchronization

= The RMA routines are nonblocking and

= must be surrounded by synchronization routines, which guarantee
- that the RMA is locally and remotely completed
- and that all necessary cache operation are implicitly done
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Sequence of One-sided Operations

Window creation/allocation
Synchronization

Remote Memory Accesses

ﬂ RMA operations must be surrounded
(RMA)

by synchronization calls

To start and finish
exposure and access epochs

Remote Memory Accesses RMA epoch

Local load/store Local load/store epoch

Remote Memory Accesses ™ Local load/store epochs must be separated from RMA epochs

by synchronization calls
x It looks like that additionally local load/store epochs
\ are also surrounded by synchronizations

But correct is: only RMA epochs must be surrounded
by synchronization calls

) )

Local load/store

"

Remote Memory Accesses ——

\

Window freeing/deallocation
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Synchronization Calls (1)

= Active target communication
= communication paradigm similar to message passing model
= target process participates only in the synchronization

= fence or post-start-complete-wait
MPI_Win_fence is like a barrier

= Passive target communication

= communication paradigm closer to shared memory model
= only the origin process is involved in the communication
= lock/unlock

origin target
load/store —

SyNc. ==== SYNC.

put/get

sync. .... Ssync.
load/store —
[ window

originl  origin2 target

lock

put/get ————

unlock

lock

put/get —
unlock ’
l window
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Programming models
- MPI + MPI1-3.0 shared memory

How-to

General considerations & uses cases

Re-cap: MPI_Comm_split & one-sided communication
> How-to

Exercise: MPI_Bcast

Quiz 1

MPI memory models & synchronization

Shared memory problems

Advantages & disadvantages, conclusions
Quiz 2
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MPI| shared memory

= Split main communicator into shared memory islands (automatically)
= MPI_Comm_split_type
= Define a shared memory window on each island

= MPI_Win_allocate_shared
= Result (by default): contiguous array, directly accessible by all processes of the island

= Accesses and synchronization
= This is normal memory: Language-based expressions and assignments
= MPI_PUT/GET still allowed, but this is not the spirit!
= Normal MPI one-sided synchronization, e.g., MPI_WIN_FENCE

= Caution:

= Memory may be already completely pinned to the physical memory of the process with rank 0,
i.e., the first touch rule (asin openmp) does not apply!

(First touch rule: a memory page is pinned to the physical memory of the processor that first writes a byte into the page)
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Splitting & shared memory allocation

Cont' ous shared memor window within each SMP node |<_>| local_window_count
Ig\ y doubles

TTLL LLLL LT LLL T b

OOOO OOOO OOOO OOO Sub-communicator

comm_sm

0 1 3 1 2 3 1 2 3 for one SMP node
my_rank_sm my_rank_sm my_rank_sm my_rank_sm Sequential
comm_all | rankingin
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 .. my_rank a comm_all

MPI_Aint /*IN*/ local_window_count=10; double /*OUT*/ *base_ptr;

MPI_Comm comm_all, comm_sm; int my_rank_all, my_rank_sm, size_sm, disp_unit;

MPI_Comm_rank (comm_all, &my_rank_all); Sequence in Comm_sm]

MPI_Comm_split_type (comm_all, MPI_COMM_TYPE_SHARED, 0; asin _comm_all
MPI_INFO_NULL, &comm_sm);

MPI_Comm_rank (comm_sm, &my_rank_sm); MPI_Comm_size (comm_sm, &size_sm);

disp_unit = sizeof(double); /* shared memory should contain doubles */ ______Mwindow size in bytes ]

MPI_Win_allocate_shared ((\VIP|_Aint) local_window_count*disp_unit, disp_unit,
MPI_INFO_NULL, comm_sm, &base_ptr, &win_sm);

[Caution: If local_window_count is 0, some MPI libraries return]
{E} This mapping is based on the ranking in comm_all. a null pointer instead of pointing to next process’ base.
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Shared-memory allocation in Fortran uses C pointer!

W New in MPI-3.0 In all three Fortran support methods I/

o float *buf; MPI_Win win; int max_length; max_length = ... /* = array size in elements */;
MPI_Win_allocate_shared( (MPI_Aint)(max_length*sizeof(float)), sizeof(float), MPI_INFO_NULL, comm_shm, &buf, &win);
/l the window elements are buf[0] .. buff[max_length-1]

M USE mpi_f08
USE, INTRINSIC :: ISO_C_BINDING

INTEGER :: max_length, disp_unit
INTEGER(KIND=MPI_ADDRESS_KIND) :: Ib, size_of_real
REAL, POINTER, ASYNCHRONOUS :: buf(:)

TYPE(MPI_Win) :: win

INTEGER(KIND=MPI_ADDRESS_KIND) :: buf_size, target_disp
TYPE(C_PTR) :: cptr_buf

max_length = ...

CALL MPI_Type_get_extent(MPI_REAL, Ib, size_of_real)
buf_size = max_length * size_of_real
disp_unit = size_of_real
CALL MPI_Win_allocate_shared(buf_size, disp_unit, MPI_INFO_NULL, comm_shm, cptr_buf, win) Translates C pointer
CALL C_F_POINTER(cptr_buf, buf, (/max_length/) ) | to std Fortran pointer
buf(0:) => buf ! with this code, one may change the lower bound to O (instead of default 1)

! The window elements are buf(0) .. buf(max_length-1)

Fortran for Scientific Computing — a course in FutureLearn,

. . . a good Intro to Fortran / but without C_F_POINTER.
Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien) Trailer: https://www.youtube.com/watch?v=l6pEaUttWoS
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Within each shared-memory island: essentials

| L1 = The allocated shared memory is contiguous across process ranks,
X = |.e., the first byte of rank i starts right after the last byte of rank i-1.
Ol = Processes can calculate remote addresses’ offsets with local information

= Remote accesses through load/store operations,
= i.e., without MPI RMA operations (MPI_Get/Put, ...)

i
OO O

= Caution:
Although each process in comm_sm accesses the same physical memory,
the virtual start address of the whole array may be different in all processes!

- linked lists only with offsets in a shared array,
but not with binary pointer addresses!

Following slides show only the shared memory accesses, i.e., communication between the SMP nodes is not presented.
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Splitting into smaller shared memory islands

= e.g., splitting into NUMA nodes or sockets

comm_sm_large,
e.g., one ccNUMA node

01230123012301230123
comm_sm comm_sm comm_sm comm_sm comm_sm

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 .. comm_all

. Subsets of shared memory nodes, e.g., one comm_sm on each socket with
size_sm cores (requires also sequential ranks in comm_all for each socket!)

MPI_Comm_split_type (comm_all, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &comm_sm_large);
MPI_Comm_rank (comm_sm_large, &my rank sm_large); MPI_Comm_size (comm_sm_large, &size_sm_large);

MPI_Comm_split (comm_sm_large, /*color*/ my_rank_sm_large / size_sm, 0, &comm_sm);
. f Here I
MP'_WIn_allocate_ShaFEd (..., com m_Sm, -..); [Or (Size_sm_large /number_of_sockets) lor2
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Splitting into smaller shared memory islands

= Most MPI libraries have an non-standardized method
to split a communicator into NUMA nodes (e.g., sockets):

= see also Current support for split types in MPI implementations or MPI based libraries

= OpenMPI: choose split_type as OMPI_COMM_TYPE_NUMA May not

= HPE: MPI_Info_create (&info); MPI_Info_set(info, "shmem_topo", "numa"); // or "socket" work with
MPI_Comm_split_type(comm_all, MPI_COMM_TYPE_SHARED, 0, info, &comm_sm); | Intel-MP!I

= mpich:split_type=MPIX_COMM_TYPE_NEIGHBORHOOQOD, info_key="SHMEM INFO_KEY* and
value= "socket", "package”, "numa", "core", "hwthread", "pu", "l1cache", ..., or "I5cache"

= Two additional standardized split types; —1 New in MPI-4.0 | May be fixed in MPI-4.1
. MPI_COMM_TYPE_HW_GUIDED—”‘i Drawback: no standardized key values
- MPI_COMM_TYPE_HW_UNGUIDED Drawback:

- MPI_COMM_TYPE_RESOURCE_GUIDED | " "0 spifts are needed

: : + 18t with MPI_COMM_TYPE_SHARED
/ and MPI_Get_hw_resource_info(&hw_info) « ond with MPI COMM TYPE HW UNGUIDED
New in MPI-4.1 o T T Ama

i » problematic if number of NUMA domains is not
= See also Exercise 3. identical in all shared memory islands of 1st split
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Shared memory access example

Contlguous shared memory window within each SMP node

local_window_count
doubles

base_ptr

T LI LLLL LI

OOOO OOOO OOOO OOO for one SMP node

3
my_rank_sm my_rank_sm my_rank_sm my_rank_sm
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 .. my_rank_all

MPI_Aint /*IN*/ local_window_count; double /*OUT*/ *base_ptr;
MPI_Win_allocate_shared ((MPI_Aint) local_window_count*disp_unit, disp_unit,
MPI_INFO_NULL, comm_sm, &base_ptr, &win_sm);

barrier-like %MPI_Win_fence (0, win_sm); /*local store epoch W Local stores |
synchronization . . . . . - . .
for (i=0; i<local_window_count; i++) base_ptr[i] ="... /* fill values into local portion */
barrier-like
synchronization }MPI_Win_fence (0, win_sm); /* local stores are completed, remote load epoch can start */
if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lf \n", base_ptr[-1] );
S

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %If \n", & - Tcad accecs
base_ptr[local_window_count] @remot?_window
portion

In Fortran, before and after the synchronization, on must add: CALL MPI_F_SYNC_REG (buffer)
to guarantee that register copies of buffer are written back to memory, respectively read again from memory: Such out of bound
. addressing is only available

The buffer should be declared as ASYNCHRONOUS, see course Chapter 10, slide “Fortran Problems with 1- I AlEl S
Sided”.<see High Performance Computing Center Stuttgart (HLRS)] |
- Self-Study Materials > MPI-Course material > end of
Rolf Rabenseifner (HLRS), GeorgL hapter 4 (https://www.hirs.de/training/self-study- materlals)Jen)
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Alternative: Non-contiguous shared memory

= Using info key "alloc_shared_noncontig"

= MPI library can put processes’ window portions

= into the local ccNUMA memory domain

- (internally, e.g., each window portion is one OS shared
memory segment)

= 0N page boundaries,

- (internally, e.g., only one OS shared memory segment
with some unused padding zones)

Pros: Faster local data accesses especially on
ccNUMA nodes

Cons: Higher programming effort for neighbor
accesses: MPI_WIN_SHARED_QUERY

NUMA effects?
Significant impact of
alloc_shared_noncontig

|-~ MPI_INFO_NULL
—+— alloc shared noncontig

A
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Further reading:

Torsten Hoefler, James Dinan, Darius
Buntinas, Pavan Balaji, Brian Barrett,
Ron Brightwell, William Gropp, Vivek
Kale, Rajeev Thakur:

MPI + MPI: a new hybrid approach to
parallel programming with MPI plus
shared memory.
http://link.springer.com/content/pdf/10.1
007%2Fs00607-013-0324-2.pdf
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W Non-contiguous shared memory allocation

<

Non-contiguous shared memory window within each SMP node local_window_count

AAARARARARARARR D

OOOO OOOO OOOO OOO Sub-communicator

for one SMP node
my_rank_sm my_rank_sm my_rank_sm my_rank_sm

MPI_Aint /*IN*/ local_window_count; double /¥*OUT*/ *base_ptr;
disp_unit = sizeof(double); /* shared memory should contain doubles */
MPI_Info info_noncontig;

MPI_Info_create (&info_noncontig);
MPI_Info_set (info_noncontig, "alloc_shared_noncontig", "true");

MPI_Win_allocate_shared ((\VPI_Aint) local_window_count*disp_unit, disp_unit, info_noncontig,
comm_sm, &base_ptr, &win_sm);
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Neighbor access through MP1_WIN_SHARED QUERY

= Each process can retrieve each neighbor’s base ptr
with calls to MPI_ WIN_SHARED QUERY If only one process allocates the

] ) whole window
= Example: only pointers to the window memory | 5 to get the base_ptr, all processes

of the left & right neighbor call MPI_WIN_SHARED_QUERY

E if (my_rank_sm > 0) MPI_Win_shared_query (win_sm, my_rank_sm - 1,
&win_size_left, &disp_unit_left, &base_ptr_left);

if (my_rank_sm < size_sm-1) MPI_Win_shared_query (win_sm, my_rank_sm + 1,
&win_size_right, &disp_unit_right, &base_ptr_right);

base_ptr_left base_ptr_right

MPI_Win_fence (0, win_sm); /* local stores are completed, remote load epoch can start */

if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lIf \n",
base_ptr_left[ win_size_left/disp_unit_left—11);

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %lf \n",
base_ptr_right[0] );

. . . Thank ffen Weise (TU Frei f
Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien) tes?i?\gsatr?dsf:irrirltinzliﬁe( ega;,%f;egiﬁe";
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Whole shared memory allocation by rank O in comm_sm

Contiguous shared memory window within each SMP node s local_window_count

Lo =1 doubles
first_base_ptr
MPI process Sub-communicator
 —— comm_sm
©O®0) [@ [@@)@@ [@@@MforoneSMPnode
my_rank_sm my_rank_sm my_rank_sm my_rank_sm [ win_size in bytes] Undefined it
if (my_rank_sm==0) win_size = local window count*disp unit*size sm else win_size = 0;/ win_size==0
MPI_Win_allocate_shared (win_size, disp_unit, MPI_INFO_NULL, comm_sm, &base_ptr, &win_sm);
MPI_Win_shared_query (win_sm, /*rank=*/ 0, &win_size, &disp_unit, &first_base_ptr);

[ Describes the whole array ]

first_base_ptr
base_ptr

first_base_ptr to define the
win_size = local_window_count*disp_unitsize—ss; recv_buf array in Exercise 2

MPI_Win_allocate_shared (win_size, disp_unit, MPI_INFO_NULL, comm_sm, &base_ptr, &win_sm);
MPI_Win_shared_query (win_sm, /*rank=*/ 0, &win size,v&disp unit,, &first_base_ptr))
[ Describes only first portion ] \

CAUTION: Aliasing may be forbidden in your programming language, =]
i.e., within one process, do not access the same window element

only for Python, we use this J

through two different pointers. Recommendation here: useRto access
Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien) | the own window portion, and use¥ to access remote elements.
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Other technical aspects with MPl_Win_allocate shared

Caution: On some systems

= the number of shared memory
windows, and

If MPI shared memory support is based on

POSIX shared memory:

, = Shared memory windows are located in

: th_e total size of shared memory memory-mapped /dev/shm or /run/shm
windows = Default: 25% or 50% of the physical memory

may be limited. = Root may change size with:

mount -0 remount,size=6G /dev/shm
Some OS systems may provide options, Maximum of ~2043 windows!

= e.g., atjob launch, or \‘ due to default limit of
. text IDs in mpich
= MPI process start, On some systems: No limits. comiet = I mpie

to enlarge restricting defaults. On a system without virtual memory you have to
reserve a chunk of address space when the node
is booted (at job script launch).

Thanks to Jeff Hammond and Jed Brown (ANL), Brian W Barrett
(SANDIA), and Steffen Weise (TU Freiberg), for input and discussion.
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Establish comm_sm and comm_heads{

Goal: in addition to my_rank_orig,
each process should be characterized
by my_node_rank and my_rank_sm

my_node_rank

Establish a communicator
comm_sm with
ranks my_rank_sm
on each SMP node

Due to key=0,

comm_heads
/combining all heads, i.e.,
processes with

0 1 2 3 my_rank_sm==
000000000 OO0 O e

o 123 01 23 01 2 3 01 2 3 comm_sm

my_rank_sm my_rank_sm my_rank_sm my_rank_sm comm_orig

0 1 8 12 2 3 45 6 91314 7 10 11 15 .. my_rank_orig
Input

——MPI_Comm_split_type (comm_orig, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &comm_sm);
MPI_Comm_size (comm_sm, &size_sm); MPI_Comm_rank (comm_sm, &my_rank_sm);

if (my_rank_sm==0) { color=0; } else { color=MPI_UNDEFINED; Processes with color==MPI_UNDEFINED

the sequence of the
my_node_rank is
according to the ranks of
the head-processes in
comm_orig, here 0, 2, 6,7

Bcast from my_rank_sm==
to all other processes
within comm_sm

will not be part of a subcommunicator and

MPI_Comm_split (comm_orig, color, 0, &comm_heads); comm_heads will be MPI_COMM_NULL.
if (my_rank_sm==0)——| i.e. comm_heads exists

{ MPI_Comm_size (comm_heads, &num_nodes); Now, all processes within each comm_sm, i.e., within each

[ MPI_Comm_rank (comm_heads, &my_node_rank); e, (e ol . . .
*my_rank_sm within their comm_sm and its size_sm
} *num_nodes, i.e., how many nodes exist,

*the my_node_rank of their SMP node
although only the heads (i.e., processes with my_rank_sm==0)
may communicate through comm_heads

— MPI_Bcast (&num_nodes, 1, MPI_INT, 0, comm_sm);
MPI_Bcast (&my_node_rank, 1, MPI_INT, 0, comm_sm); ——
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Questions addressed in this tutorial
Where we

are?
= What is the performance impact of system topology?

= How do | map my programming model on the system to my advantage?

= How do | do the split into MPI1+X?
= Where do my processes/threads run? How do | take control?

= Where is my data?
= How can | minimize communication overhead?

= How does hybrid programming help with typical HPC problems?

= Can it reduce communication overhead?
MPI-3 shared memory as a real alternative to OpenMP

= Can it reduce replicated data? :
shared memory, especially when OpenMP hard to be used

= How can | leverage multiple accelerators?
= What are typical challenges?

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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Process 0 store some Programmlng mOdels
dm""é?ni?f;’é?fh?s“%%‘l - MPI + MPI-3.0 shared memory
Exercise:

MPI_Bcast into shared memory islands

T ‘m EomoE

R

Direct loads & stores,
no library calls

Broadcast to all other nodes

EYp— d
http://tiny.cc/MPIX-HLRS (by only one process per node)
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Exercise: MP| Bcast into shared memory

= Now illustrated as in the previous slides
= Each | | represents such a replicated memory @ within an island

= — — MPI_Bcast within comm_head
| | | | | | —— Contiguous shared

|
TN\ ’N\\ N\ — &Hank __ within dach SMP node
b NN
QC)OO]QOOO]@OOO]@OO

1 2 3 0 0 0o 1 2
rank_shm rank_shm rank_shm rank_shm

MPI process

Shared memory
sub-communicator

3

/_ MPI_COMM_WORLD
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15.. rank_world

= Application: We’'ll store numbers 1, 2, ... into the green array by process 0
= And then bcast it to all other shared memory islands
= At the end, each process calculates the sum of all numbers within its shared memory
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Exercise steps:
(1-2) The allocation of the shared memory within each node

Contiguous shared memory window within each SMP node , arrSize (1) of

= ' long/INTEGER*8 elements
| | | | | | | | shm_buf_ptr (2b+c)
arr (2d)

rank_wor|d==0

N N N
\ \\}e(nm head\-l-\;\kk;head (2e-|\f\\\

—

S
%i‘n't:adzo \k\\ MPI process
?anr?k_shm==0 Q O O O] @ O O O] O O Sub-communicator

@OC)O]

comm_shm (2a)

0 0 1 2 3 for one SMP node
k rank_shm rank_shm rank_shm rank_shm (2a) /_ MPI_COMM_WORLD (1)
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15.. rank_world (1)
1stexercise | (1) Given: arrSize, MPI_COMM_WORLD -> rank_world
S—,”me:p?iztg(g | (2a) MPI_Comm_split_type(key=0) > comm_shm - MPI_Comm_rank() - rank_shm
(2b) if (rank_shm ==0) then individualShmSize = arrSize else individualShmSize =0
2nd exergtigg 1 (2c) MPI_Win_allocate_shared (comm_shm = win & shm_base_ptr (but only if rank_shm== 0))
Finesotecse | (2d) MPI_Win_shared_query (win & rank 0 = arr, i.e., the base pointer on all processes);
310 exercise (2e) if (rank_shm ==0) then color=0 else color=MPI_UNDEFINED
~step|  (2f) MPI_Comm_split(MPI_COMM_WORLD, key=0, color > comm_head ) 2 rank_head
CHinesprining) | and in all processes with color==MPI_UNDEFINED - MP|_COMM_NULL
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Exercise steps:
(3-6) The usage of the shared memory

Contiguous shared memory window within each SMP node , arrSize (1) of

= " long/INTEGER*8 elements
(12345 .. [112345 .. |[12345 .. [112345 .. [

N =0 2N AT arr (2d)

( ) AN TNSS.
[\b\\\g{\nm\head\\:\%head (ZeA\;\\\\ \\ko\\o

MPI process

Sub-communicator
comm_shm (2a)

for one SMP node
/_ MPI_COMM_WORLD (1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15.. rank_world (1)

N\ AN \ AN N\
(o[e]e)e)| e[eYe)e)| ele)e)e)
o 123 0123 0123 01 2 3
rank_shm rank_shm rank_shm rank_shm  (2a)

Time step loop with index it and only 1 iteration
(3-4) Store epoch: we store the replicated data in all shared memories
(don’t forget MPI_Win_fence() within all comm_shm/win before starting the store epoch for arr)

4t exerctise (3) Process with rank_world==0 stores numbers into ist green arr
step

(5 ines of code (4) All processes in comm_head MPI_Bcast() the data from rank_head==0 to all others
(5) Localload epoch: each process reads the data and locally calculates the sum
(don’t forget MPI_Win_fence() within all comm_shm / win before starting the local load epoch)
L (6) Printtheresults
5 exercise [ End of time step loop
step 1 (7) Finishthelocal load epoch = MPI_Win_fence() // free the window - MPI_Win_free()

(~1lines of code) ~
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login_all.ppt#1. Login from PC
login_all.ppt#1. Login from PC

Exercise: MPI_Bcast into shared

Preparation
= Directories in your personal account:

o HY- Y%% /data-rep/C-data-rep:

data-rep_base.c
data-rep_exercise.c
data-rep_base_}3S _2x16.sh/_ %38 sh (using 2 and 4 nodes)

data-rep_exercise_V=G _2x16.sh (using only 2 nodes during the exercise)
data-rep_solution_Y8S_2x16.sh/ _$48.sh (again with 2 and 4 nodes)
data-rep_exercise_orig.c (only for: diff data-rep_exercise_orig.c data-rep_exercise.c)

(already together with all solution files)

M HY- Y%% /data-rep/F-data-rep: mp| f08 module is used - substitute, e.g.,

:: comm_shm by
TYPE(MPI_Comm) :: comm_shm

data-rep_base_30.f90

data-rep_exercise_30.f90

data-rep_......._coeeve_cene sh (ditto., see above)
data-rep_exercise_orig_30.f90 (only for: diff data-rep_exercise_orig_30.f90 data-rep_exercise_30.f90)

(already together with all solution files)
= data-rep_base.c/ _30.f90 is the original MPI program
» data-rep_exercise.c/ _30.f90 is the basis for this shared memory exercise
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Exercise: MPI_Bcast into shared memory

~ (Preparation, 10 Minutes)
= data-rep_base.c/ 30.f90 is the original MPI program:lﬂ%

= |t copies data from the process rank 0 in MPI_COMM_WORLD to all processes.
= On all processes it uses the data: in this example, just the sum is calculated.

. Complle it and run it:
module load intel intel-mpi
mpiicc -0 data-rep_base data-rep_base.c
mpiifort -o data-rep_base data-rep_base_30.f90 )
or how you compile and run

sbatch data—rep_base_Y%%_leB.sh (will use 2 nodes with only 16 processes [on 2 CPUs x 8 cores] ] your application on your system

per node and 4 nodes with all 2x24 = 48 cores per node)
sq (show queue)
sinfo | grep idle (if you do not have a reservation) -

= Qutput will be written to: slurm-*.out

= Output from only 2 nodes (each with 16 MPI processes):
it: 0, rank (world: 31/32):  sum(i=0...i=99999999) = 4999999950000000} - 1stime step

it: 0, rank (world: 1/32): sum(i=0...i=99999999) = 4999999950000000 * output from 3 processes

it: 0, rank (world: 0/32): sum(i=0...i=99999999) = 4999999950000000 per communicator:
¢ ranks 0, 1 & last rank
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Exercise: MPI_Bcast into shared memory

= data-rep_exercise.c/ _30.f90 is the skeleton for all steps of this exercise
Please edit and change it from step to step!

= Step 2a:
= Declare variables comm_shm, size_shm, rank_shm (2 lines of code)

Split MPI_COMM_WORLD into shared memory island communicators comm_shm (use key == 0) (1 line of code)

Query size_shm, rank_shm (2 lines of code)

After this splitting: print and stop (3 lines of code, copy print statement from end of your source file)
/*TEST*/ // To minimize the output, we print only from 3 process per SMP node

/*TEST*/ if ( rank shm == || rank shm == || rank shm == size shm - 1 )
printf ("\t\t rank ( world: %i, shm: %i)\n", rank world, rank shm);
/*TEST*/ if (rank world==0) printf ("ALL finalize and return !!!.\n"); MPI Finalize(); return 0;

Expected output from 2 islands, each with 16 processes:

rank ( world: 0/32, shm: 0/16)

ALL finalize and return !!. \ Output from
rank (world: 16/32, shm: 0/16) " 1 island
rank ( world: 1/32, shm: 1/16) 77- 2nd island

rank ( world: 17/32, shm: 1/16)
rank ( world: 15/32, shm: 15/16)
rank ( world: 31/32, shm: 15/16)
. diff data-rep_exercise.c data-rep_sol_2a.c
After ~10 Minutes: /‘diff data-reE:exercise_30.f90 data-reg:soIZZa_30.f90
compare with solution; data-rep_sol 2a.c/ _30.f90 "
In case of problems you may also look at the solution slide: =
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Exercise: MPI_Bcast into shared memory

= Steps 2b-d:
= Declare needed variables (s Loc)
(2b) if (rank_shm == 0) then individualShmSize = arrSize else individualShmSize =0 (4LOC)
(2c) MP1_Win_allocate_shared (comm_shm - win & shm_base_ptr (but only if rank_shm==0)) (1 LOC)
(2d) MP1_Win_shared_query ( win & rank 0 - arr, i.e., the base pointer on all processes); (1 LOC)

= After this splitting: print and stop (3 lines of code) Output from
« 1stisland

« 2 jsland

= Expected output from 2 islands, each with 16 processes:

rank ( world: 0/32, shm: 0/16) arrSize 100000000 arrSize_ 80000000
ALL finalize and return !l
rank ( world: 16/32, shm: 0/16) arrSize 100000000 arrSize_ 800200400 /siim_buf_ptr = 0x2b2489dfb000, arr_ptr =0x2b24894fb000
rank ( world: 1/32, shm: 1/16) arrSize 100000000 arrSize_ 800009000 /shim_buf ptr = arr_ptr = Ox2aef69d3a000

rank ( world: 31/32, shm: 15/16) arrSize 100000000 arrSize_ 800000000 shm_buf pt arr_ptr = 0x2b4dcb0%¢000

rank ( world: 15/32, shm: 15/16) arrSize 100000000 arrSize_ 800000000 shm_buf pt arr_ptr = 0x2b56e7916800

rank ( world: 17/32, shm: 1/16) arrSize 100000000 arrSize_ 800000000 shm_buf ptr = Arr_ptr = 0x2b42516bb

- After ~20 Minutes:

compare with solution: data-rep_sol_2d.c/ _30.f90 [Processes e e e = )

In case of problems you may also look do not get a buffer pointer from
@ MPI_Win_allocate_shared

buf_ptr = 0x2b1738903000, arr_ptr =0x2b1738903000

Each process within an
island has different virtual
addresses for the same
shared memory array

at the solution slide:
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Exercise: MPI_Bcast into shared memory

= Steps 2e-f:

= Declare needed variables (3 Loc)
(2e) if (rank_shm ==0) then color=0 else color=MPI_UNDEFINED (2 LOC)
(2f) MPI_Comm_splittMPI_COMM_WORLD, key=0, color > comm_head ) - rank_head (8 LOC)
and in all processes with color==MPI_UNDEFINED - MPI_COMM_NULL E __1 Slide on creating comm_head

After this splitting: print and stop (3 Loc)

Expected output from 2 islands, each with 16 processes:
rank (world: 1/32, shm: 1/167head: -1/-1) axSize 100000000 arrSize_ 800000000 shm_buf_ptr = (nil), arr_ptr = 0x2abc98db8000
rank ( world: 0/32, shm: 0/46, head: 0/2) arrS\ze 100000000 arrSize_ 800000000 shm_buf ptr = 0x2ab..., arr_ptr = 0x2ab4acc56000

ALL finalize and return !}.
rank (world: 16/32, shm{0/16, head: 1/2) arrSjze 100000000 arrSize_ 800000000 shm_buf_ptr = 0x2ad..., arr_ptr = 0x2adbc5fe6000
rank (world: 15/32, shm:\15/16, head: -1/-1) arfSize 100000000 arrSize_ 800000000 shm_buf_ptr = (nil), arr_ptr = 0x2af4c52e5000
rank (world: 17/32, shm: N16, head: -1/-1) ai¥Size 100000000 arrSize_ 800000000 shm_buf_ptr = (nil), arr_ptr = 0x2b702ad9b000
rank (world: 31/32, shm: arrSize 100000000 arrSize_ 800000000 shm_buf_ptr = (nil), arr_ptr = 0x2b6e54bdf000

After ~10 Minutes:

compare with solution: data-rep_sol_2f.c/ _30.f90
In case of problems you may also look at the solution inde:Eg

= Whole exercise steps 2a-f: 40 Minutes % Finished earlier? ]

. . - Go to advanced exercise on next slide
= Online course: please come back to the main room
= Advanced exercise on a copy of your data-rep_exercise.c/ _30.f90: Split your shared memory islands into NUMA domains
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Advanced Exe: Breaking the world into NUMA islands

= Steps 2a-f: We split MPI_COMM_WORLD into ccNNUMA islands, each with 2 CPUs
= Step 2a--NUMA:
= Copy your result or data-rep_sol_2f.c/ _30.f90 into data-rep_exercise_ NUMA.c / _30.f90

- For this advanced exercise, switch from Intel-MPI to OpenMPI4 Prepared for VSC only |
module purge
module load openmpi
mpicc -0 data-rep_exercise_openmpi data-rep_exercise_ NUMA.c
mpifort -0 data-rep_exercise_openmpi data-rep_exercise_ NUMA_30.f90
sbatch data-rep_exercise_VSC_2x16_OpenMPI.sh

= Split MPI_COMM_WORLD into NUMA islands - you expect the double amount of comm_shm

Use the non-standardized method for OpenMPI

= Expected result: 4 shared memory islands, each consisting of the MPI processes running on a CPU

it: 0, rank (world: 0/32, shm: 0/8, head: 0/4 ): sum(i=0...i=994

it: 0, rank (world: 1/32, shm: 1/8, head: -1/-1):  sum(i=0...i=9

it: 0, rank (world: 7/32, shm: 7/8, head: -1/-1):  sum(i=0...i999999999)
it: 0, rank (world: 8/32, shm: 0/8, head: 1/4 ): sum(i=0...i#99999999) =
it: 0, rank (world: 9/32, shm: 1/8, head: -1/-1):  sum(i=0...i
it: 0, rank (world: 15/32, shm: 7/8, head: -1/-1): sum(i=0..
it: 0, rank (world: 24/32, shm: 0/8, head: 3/4):  sum(i=0..}
it: 0, rank (world: 16/32, shm: 0/8, head: 2/4):  sum(i=0...
it: 0, rank (world: 25/32, shm: 1/8, head: -1/-1): sum(i=0... S
it: 0, rank (world: 31/32, shm: 7/8, head: -1/-1): sum(i=O0...i world ranks 0,2,4,6,8,10,12,14 (bold=printed).

it: 0, rank (world: 17/32, shm: 1/8, head: -1/-1):  sum(i=0...i=% Add MPI_Bcast(&rank_head, 0, MPI_INT, 0, comm_shm)
it: 0, rank ( world: 23/32, shm: 7/8, head: -1/-1): sum(i=O0...i=99 7 9 to show which processes belong to same comm_shm.

= Compare with solution: data-rep_sol_2f NUMA_OpenMPl.c/ _30.f90

You may also play with different options in the batch script!
E.g., without --rank-by core, the first CPU will have the

COO0O0O0O0DODOOO0O00O
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Exercise: MPI_Bcast into shared memory

= Steps 3-6 (6 lines of code)
(3-4) Store epoch: we store the replicated data in all shared memories
(don’t forget MPI_Win_fence() within all comm_shm/win before starting the store epoch for arr)
(3) Process with rank_world==0 stores numbers into its green arr
(4) All processes in comm_head MPI_Bcast() the data from rank_head==0 to all others

(5) Local load epoch: each process reads the data and locally calculates the sum
(don’t forget MPI_Win_fence() within all comm_shm / win before starting the local load epoch)
(6) Print the results

= Expected output from 2 islands:

it: 0, rank ('world: 0/32, shm: 0/16, head: 0/2): sum(i=0...i=99999999) 54999999950000000
it: 0, rank (world: 16/32, shm: 0/16, head: 1/2):  sum(i=0...i=99999999) = 4999999950000000
it: 0, rank (world: 1/32, shm: 1/16, head: -1/-1):  sum(i=0...i=99999999) = 4999999950000000
it: 0, rank (world: 17/32, shm: 1/16, head: -1/-1 ): sum(i=0...i=99999999) = 4999999950000000
it: 0, rank (world: 31/32, shm: 15/16, head: -1/-1 ): sum(i=0...i=9999999N = 4999999950000000
it: 0, rank (world: 15/32, shm: 15/16, head: -1/-1 ): sum(i=0...i=99999999) 24999999950000000

= After ~10 Minutes:
compare with solution: data-rep_sol_3-6.c/ _30.f90
In case of problems you may also look at the solution slide: @g

Same data in
the shared

memory arrays
of both SMP
nodes
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Exercise: MPI_Bcast into shared memory

Step 7 (6 lines of code)
(7) Finish the local load epoch 2> MPI_Win_fence() // free the window - MPI_Win_free()

Expected output from 2 islands (same as after Step 6, but now without premature stop):

it: 0, rank ( world: 0/32, shm: 0/16, head: 0/2): sum(i=0...
it: 0, rank ( world: 16/32, shm: 0/16, head: 1/2):  sum(i=0...
it: 0, rank ( world: 1/32, shm: 1/16, head: -1/-1):  sum(i=0...

it: 0, rank ( world: 17/32, shm: 1/16, head: -1/-1): sum(i=0...
it: 0, rank ( world: 31/32, shm: 15/16, head: -1/-1 ): sum(i=0...

i=99999999) = 4999999950000000
i=99999999) = 4999999950000000
i=99999999) = 4999999950000000
i=99999999) = 4999999950000000
i=99999999) = 4999999950000000

For a shared memory window,
there is in principle no difference
between accesses to local and
remote window portions because
both can be implemented with
local loads and stores.

The rules for MPI_Win_free
require that all remote accesses

it: 0, rank ( world: 15/32, shm: 15/16, head: -1/-1 ): sum(i=0...i=99999999) = 4999999950000000 are finished through an RMA

synchronization, e.g.,
MPI_Win_fence.

Normally, MPI_Win_free contains
a barrier, but this barrier may be
removed for optimization
purposes in some use-cases.

Therefore, it is highly recom-
mended to add this call to
MPI_Win_fence.

After ~5 Minutes, in the solution directory:

compare with solution: data-rep_sol_7.c/_30.f90
In case of problems you may also look at the solution slide: E&

And add-on: data-rep_solution.c / _30.f90 with additional analysis and output:
The number of shared memory islands is: 2 islands

The size of each shared memory islands is: 48 processes

Whole exercise steps 3-6 & 7: approx. 20 Minutes

Q & A & Discussion
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Quiz on Shared Memory

A. Before you call MPI_Win_allocate_shared, what should you do?

B. If your communicator within your shared memory island consists of 12 MPI processes,
and each process wants to get an own window portion with 10 doubles (each 8 bytes),

a. which window size must you specify in MPl_Win_allocate_shared?

b. And how long is the totally allocated shared memory?

c. The returned base_ptr, will it be identical on all 12 processes?

d. Ifall 12 processes want to have a pointer that points to the beginning of the totally allocated shared memory, which MPI
procedure should you use and with which major argument?

e. If you do this, do these 12 pointers have identical values, i.e., are identical addresses?

C. Which is the major method to store data from one process into the shared memory window portion of another process?
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Programming models
- MPI + MPI1-3.0 shared memory

MPI Memory Models & Synchronization

General considerations & uses cases
Re-cap: MPI_Comm_split & one-sided communication
How-to
Exercise: MPI_Bcast
Quiz 1
> MPI memory models & synchronization
Shared memory problems
Advantages & disadvantages, conclusions
Quiz 2
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How to achieve even lower latencies

A key feature for
strong scaling?

Outlook

= Use of MPI shared memory without (slow) MPI one-sided synchronization
methods (e.g., win_fence)

= To do this, use memory variables for synchronization together with
memory fences (C++11 or MPI based)

Alternative:
= Fast MPI point-to-point sync together with memory fences
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Two memory models

= Query for new attribute to allow applications to tune for
cache-coherent architectures
= Attribute MPI_WIN_MODEL with values

MPI_WIN_SEPARATE model
MPI_WIN_UNIFIED model on W

= Shared memory windows always
use the MPI_WIN_UNIFIED model

= Public and private copies are eventually

put,acc get

public copy

ynchronization

Process

store load

put,acc et
N i

synchronized without additional RMA synchronization calls Process 3/
(MPI-3.1/MPI-4.0, Section 11/12.4, page 435/592 lines 43-46/42-45) | private/public copy |
= For synchronization without delay: MPI_WIN_SYNC() store load

(MPI-3.1/-4.0 Section 11/12.7: "Advice to users. In the unified memory model...”
in U5 on page 456/613f, and Section 11/12.8, Example 11/12.21 on pages 468f/626f)

= or any other RMA synchronization:
“A consistent view can be created in the unified memory model (see Section 11.4) by utilizing the window synchronization
functions (see Section 11.5) or explicitly completing outstanding store accesses (e.g., by calling MPI_WIN_FLUSH).”

(MPI-3.1/-4.0, MPI_Win_allocate_shared, page 408/560, lines 43-47/22-26) o
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“eventually synchronized” — the problem

= The problem with shared memory programming using libraries is:

X is a variable in a shared window initialized with O.

Process Process
Rank O Rank 1
Or with any other X=1

process-to-process
synchronization, e.g.,
using shared memory MPI_Send(empty msg to rank 1) — MPI_Recv(from rank 0)
stores and loads for
synchronization purpose

printf ... X

/

X can be still 0,
because the “1” will eventually be visible to the other process,
i.e., the “1” will be visible but maybe too late ® ® ®
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“eventually synchronized” — the Solution

= A pair of local memory fences is needed:

X is a variable in a shared window initialized with O.

Process Process
Rank O Rank 1
X=1

[ local memory fence |
MPI_Send(empty msg to rank 1) —> MPI_Recv(from rank 0)
[Iocal memory fence ]
printf ... X

Now, it is guaranteed that
the “1” in X is visible in this process

©00
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“eventually synchronized® — Last Question

Several options & heavy discussions in the MPI| Forum

How to make the [ local memory fence ]’?

= C++11 atomic_thread_fence(order)

- Advantage: one can choose appropriate
order = memory_order_release, or ..._acquire

to achieve minimal latencies before ... arhﬂer

the synchronization

MPI_Win_sync
- Advantage: works also for Fortran

X is a variable in a shared memory
window initialized with 0

X=1
[ local memory fence |
MPI1_Send(empty msg)—> MPI_Recv
[ local memory fence |
printf ... X

Disadvantage: may be slower than C11 atomic_thread fence with appropriate order

see next slide

= Using RMA synchronization with integrated local memory fence<‘ 5 sync methods,

instead of MPI_Send - MPI_Recv

- Advantage:
May prevent double fences

Disadvantage: X=1
The synchronization itself may be

slower

X'is a variable in a shared memory window initialized with O

MPI_Win_fence( s st — MPI_Win_fencel s ee™)

printf ... X
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General MPI shared memory synchronization rules

(based on MPI-3.1/4.0, MPI_Win_allocate_shared, page 408/560, lines 43-47/22-26: “A consistent view ...")

' . .
Defining Proc 0 Proc 1 being MPI_Win_post) MPI_Win_startl)\
Sync-from —a Syncto < or MPI_Win_completell MPI_Win_wait?
or MPI_Win_fenced <«—» MPI_Win_fence?

or MPI_Win_sync
Any-process-sync? — Any-process-sync?
MPI_Win_sync

L or MPI_Win_unlockY == Mp| win_lockd N

and the lock on process 0 was granted first
and A, B, C are shared variables

1) Must be paired according to the general one-sided
synchronization rules.

2) "Any-process-sync" may be done with methods from
MPI

(e.g. with send->recv as in MPI-3.1/MPI-4.0 Example
11/12.21, but also with some synchronization through
MPI shared memory loads and stores, e.g. with C++11
atomic loads and stores).

and having ... then it is guaranteed that ...

A=val_1

SynC_f_rom\> 1 ... the load(A) in P1 loads val_1
Sync-to (this is the write-read-rule)
load(A)

load(B)

Sync-from—a Sync-to L —, ... the load(B) in PO is not affected by the store of val_2 in P1

B=val 2 J (read-write-rule)
C=val_3 ' — |
Sync-from=—» Sync-to | ... that the load(C) in P1 loads val_4 | See next side!
vaal 4 (write-write-rule) ~ TToTTooes
Ioad(C_)
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“Any-process-sync” & MPI_Win_sync on shared memory

X is part of a shared memory window
and should be the same memory
location in both processes.

1

™

Process A
MPI_WIN_LOCK_ALL(

DO...
D e

MPI_MODE_NOCHECK,win) MPI_MODE_NOCHECK,win)

Process B
MPI_WIN_LOCK_ALL(———

DO ...

[A new value is written in X

MPI_F_SYNC_REG(X)"

MPI_Send

Message telling
that X is read out
and can be refilled

At begin of next
iteration:
Next write of X

A\

-
 MPIRecy €4===""

MPI_Win_sync(win)—

Message telling
that X is filled

—'For MPI_WIN_SYNC, a passive target epoch )
is established with MPI_WIN_LOCK_ALL.

—Data exchange in this direction, therefore

‘t MPI_Recv
MPI_Win_sync(win)

o

MPI_Win_sync is needed in both processes:

Write-read-rule .

MPI_WIN_SYNC acts only locally as a
processor-memory-fence.

C MPI_F_SYNC_REG(X) "
= |ocal_tmp = X

-

‘>

X'is read out
MPI_F_SYNC_REG(X)"
MPI_Win_sync(win) Ve

== MPI_Send

print local_tmp

< MPI_Win_sync(win)
MPI_F_SYNC_REG(X) ")
™ END DO

MPI_WIN_UNLOCK_ALL(win) MPI_WIN_UNLOCK_ALL(win)

") Fortran only.

END DO

j; nd pair of MPI_Win_sync is needed to
guarantee the read-write-rule

| )

Is missing in MPI-3.1/MPI-4.0, pages 468/626f,

Example 11/12.21 (i,.e., page 469/627, line 31/14).
Fixed in MPI-4.1.
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Halo communication benchmarking

See HLRS online courses http://www.hlrs.de/training/self-study-materials
- Practical > MPl.tar.gz - subdirectory MPI/course/C/1sided/

= Goal:

= Learn about the communication latency and bandwidth on your system

= Method:
) * Make a diff from one version to the next
= cp MPIl/course/C/lsided/halo* version of the source code
= On a shared or distributed memory, run and compare: » Compare latency and bandwidth

halo_irecv_send.c
halo_isend_recv.c
halo_neighbor_alltoall.c
halo_1sided_put.c

halo_1sided put alloc_mem.c Different memory allpcation methods
halo_1sided put_win_alloc.c

Different communication methods

= And run and compare on a shared memor
halo_1sided_store_win_alloc_shared.c

halo_1sided_store win_alloc_shared_query.c (with alloc_shared_noncontig)
- halo_1sided_store_win_alloc_shared_pscw.c Different communication methods

halo_1sided_store win_alloc_shared_othersync.c
halo_1sided_store_win_alloc_shared_signal.c
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login_all.ppt#1. Login from PC
login_all.ppt#1. Login from PC
http://www.hlrs.de/training/self-study-materials

MPI communication inside of SMP nodes:
Benchmark results on a Cray XE6 — 1-dim ring communication on 1 node with 32 cores

Duplex bandwidth per process and neighbor [MB/s] (C e S A e
onclusion: best latency an anawi

5000,00
-<0--halo_neighbor_alltoall 20.f90 5 2 9 s Latency with shared memory store together with
-A- halo_irecv_send_20.f90 - 1.7 us point-to-point synchronization
4000,00 -©-halo_isend_recv_20.f90 - 2.8 us <
-+ha|0 1sided_store_win_alloc_shared_othersync_ 2@%0 > 2.9 us Further opportunities by
halo_1sided_store_win_alloc_shared_query_20 vy-’a éray fQCTF purely synchronizing
—E—halo 1sided_store_win_alloc_shared_20 wa:;r‘;ly 90 '\3\ Ou \ with C++11 methods
—halo_1sided_put_alloc. mem_20.f90 ,,/“—
é‘ —A—halo_1sided_put_win_alloc_20.f90 » 19 ug \

—¥—halo_1sided_put_20.f90

2000,00
p
Low latency pt-to-pt

synchronization _ Medium bandwidth point—to-]
((Example 1] (Example 4 2 S R PPN point and neighbor alltoall

( High bandwidth direct
= \ shared memory store

1000,00

f High latency

MPl Win fence —ILow bandwidth with MPI_Put]

0,00

16 64 256 1.024 4.096 16.384  65.536  262.144 1.048.576 4.194.304 16.777.216
Message size [bytes]

On Cray XE6 Hermit at HLRS with aprun —n 32 —d 1 —ss, best values out of 6 repetitions, modules PrgEnv-cray/4.1.40 and cray-mpich2/6.2.1 o
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Programming models
- MPI + MPI1-3.0 shared memory

Shared memory problems

General considerations & uses cases
Re-cap: MPI_Comm_split & one-sided communication
How-to
Exercise: MPI_Bcast
Quiz 1
MPI memory models & synchronization
> Shared memory problems
Advantages & disadvantages, conclusions
Quiz 2
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Shared memory problems (1/2)

= Race conditions
= as with OpenMP or any other shared memory programming models

= Data-Race: Two processes access the same shared variable and
at least one process modifies the variable and
the accesses are concurrent, i.e. unsynchronized,
l.e., it is not defined which access is first

= The outcome of a program depends on the detailed timing of the accesses

= This is often caused by unintended access to the same variable,
or missing memory fences
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Shared memory problems (2/2)

= Cache-line false-sharing

= As with OpenMP or any other shared memory programming models
= The cache-line is the smallest entity usually accessible in memory

a[0]++ a[1]++ Several processes are accessing shared data

through the same cache-line.

This cache-line has to be moved between
these processes (cache coherence protocol).

« This is very time-consuming.
A y \

Process a Process b

cache-line

memory
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Programming models
- MPI + MPI1-3.0 shared memory

Advantages & disadvantages, conclusions

General considerations & uses cases
Re-cap: MPI_Comm_split & one-sided communication
How-to
Exercise: MPI_Bcast
Quiz 1
MPI memory models & synchronization
Shared memory problems
> Advantages & disadvantages, conclusions
Quiz 2
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Questions addressed In this tutorial
Where we

are?

What is the performance impact of system topology?

How do | map my programming model on the system to my advantage?
= How do | do the split into MPI1+X?

= Where do my processes/threads run? How do | take control?

= Where is my data?

oL ) i Fastest accesses between MPI
= How can | minimize communication overhead?

processes on a shared memory

How does hybrid programming help with typical HPC problems?

= Can it reduce communication overhead?

= Can it reduce replicated data? MPI-3 shared memory as a real alternative to OpenMP
shared memory, especially when OpenMP hard to be used

How can | leverage multiple accelerators?
= What are typical challenges?
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MPI+MPI1-3.0 shared mem: Main advantages

= A new method for reducing memory consumption for replicated data

= To allow only one replication per shared-memory island

Interesting method for direct access to neighbor data (without halos!)

A new method for communicating between MPI processes within each
shared-memory node

On some platforms significantly better bandwidth than with send/recv

Library calls need not be “thread safe” because we do not have threads
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MPI+MPI-3.0 shared mem: Main challenges

= Synchronization is defined, but still under discussion:

= The meaning of the assertions for shared memory
is still undefined as of MPI 4.0

= Similar problems as with all shared memory
(e.qg., pthreads, OpenMP,...)

= Race conditions, false sharing, memory fences

= Does not reduce the number of MPI processes
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MPI+MPI-3.0 shared mem: Conclusions

= Add-on feature for pure MPI communication

= Opportunity for reducing communication within shared-memory nodes

= Opportunity for reducing memory consumption (halos & replicated data)

Further reading on shared memory synchronization
» Wikipedia: Memory barrier. https://en.wikipedia.org/wiki/Memory barrier
* Wikipedia: Runtime memory ordering
https://en.wikipedia.org/wiki/Memory ordering#Runtime _memory_ordering
(and courtesy to Dave Goodell):
* Paul E. McKenney (ed.).
Is Parallel Programming Hard, And, If So, What Can You Do About It?
First Edition, Linux Technology Center, IBM Beaverton, March 10, 2014.
https://kernel.org/publ/linux/kernel/people/paulmck/perfbook/perfbook-el.pdf

On compiler optimization problems (courtesy to Bill Gropp):

» Hans-J. Boehm. Threads Cannot be Implemented as a Library.
HP Laboratories Palo Alto, report HPL-2004-2092004, 2004.
https://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf

+ Sarita V. Adve, Hans-J. Boehm:

You don’t know Jack About Shared Variables or Memory Models.
https://queue.acm.org/detail.cfm?id=2088916
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Quiz on Shared Memory Model & Synchronization

put,acc et
A. Which MPI memory model applies to MPI shared memory? \ ;

MPI_WIN_SEPARATE or MPI_WIN_UNIFIED ? Pw
B. “Public and private copies are . ... ? ... . synchronized core Joag | Figure: Courtesy
without additional RMA calls.” e Torsen Hoeler

C. Which process-to-process synchronization methods can be used that, e.g., a store to a shared memory variable gets visible
to another [ProCess (within the processes of the shared memory window)?

D. That such a store gets visible in another process after the synchronization is named here as “write-read-rule”.
Which other rules are implied by such synchronizations and what do they mean?

E. How can you define a race-condition and
which problems arise from cache-line false-sharing?
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Programming models

- Optimized node-to-node communication
(for pure MPI & hybrid MPI+X with several MPI processes per node)

General considerations
The topology problem
The topology problem: How-to / Virtual Toplogies
Rank renumbering for optimization

The Topology Problem: Unstructured Grids

Quiz

Real world examples

Scalability

Advantages & disadvantages, conclusions
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Optimized node-to-node communication

When can/should we optimize the node-to-node communication?

If you have

= several MPI processes on each (ccNuma) node of the cluster, e.g.

- with pure MPI programming, or

- with hybrid MPI + OpenMP, but still several MPI processes per node, which is common,
= and your MPI communication is expensive

- due to hardware and power costs, and/or

- due to human costs for waiting too long for the simulation results

then you can reduce your MPlI communication costs
= by minimizing your node-to-node communication
= through an optimized mapping of your communication pattern to your hardware topology,

= |.e., by using optimized locations for your MPI processes on your cluster hardware topology
(automatically on the nodes of a given batch job)

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - Optimized node-to-node comm. - General considerations 217/280




Programming models

- Optimized node-to-node communication
(for pure MPI & hybrid MPI+X with several MPI processes per node)

The Topology Problem

General considerations
> The topology problem
The topology problem: How-to / Virtual Toplogies
Rank renumbering for optimization
The Topology Problem: Unstructured Grids
Quiz
Real world examples
Scalability
Advantages & disadvantages, conclusions
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Re-numbering on a cluster of SMPs (cores / CPUs / nodes)

= Example:
= 2-dim 6000 x 8080 data mesh points

Process coordinate, direction 3
»

: < oo
= To be parallelized on 48 cores 1] | T PR R S SO N
- o |
= Minimal communication df-7-roarea e
IS
= Subdomains as quadratic as possible Sf-1" o TrTaT T
> minimal circumference S|b----r-a--r-a--r-a--
> minimal halo communication @ P
irtual 2-di id6x8 § e hihbb e i e Indexes as in a math matrix, first index is vertical
= Virtual 2-dim process gria: o X av| ! ! ! ! ! ! ! (i.e., not horizontal as in a x,y-diagram)

with 1000 x 1010 mesh points/core
= Hardware example: 48 cores:

= 4 compute nodes

= each node with 2 CPUs [——3 PEBD

= each CPU with 6 cores  [LL. i

= How to locate the MPI processes
on the hardware?

Non-optimal communications: "¢y Optimized placement:

= Using sequential ranks in MPI_COMM_WORLD <€ 26 node-to-node (outter)

< Only 14 node-to-node

. Optimized p|acement —\ <> 20 CPU-to-CPU (mlddl% <> Only 12 CPU-to-CPU
. <> 36 core-to-core (inner) < < 56 core-to-core

= - See next slides and example code = and

>

pE2EL2E2824 MM

>

4o b > >
e SRe
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Hierarchical Cartesian Domain Decomposition

Primary and main
optimization goal:
Example: g Whole communication Virtal
24 SMP nodes from gach node to all of location of an
its neighbors must be MPI process
X minimized! within an
32 cores/node SMP node
Per node: Al T
maximal 7' v processes
8+8+8+8+16+167= ’ d of an SMP
* P node
48 or 64" > —#
connections >
to neighbor ] -
nodes v .
“with cyclic communication Segoqd apd minor
optimization goal:
Whole intra-node
t\é\ggll;);; communication must be Ax4x2 = 32 cores/node
B _—
optimization:
96pconnections 16x2x1 = 32 cores/node
to other nodes => 2 or 1.6 times more

inter-node communication
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Levels of communication & data access

il

= Three levels:
= Between the SMP nodes

= Between the sockets inside of shared-memory node
= Between the cores of a socket

Quad-core|
CI;U

Socket 2

Quad-core
CPU

(XXX Y]

Shared-memory node SMP node

il

Quad-core|
CTU

Socket 2

Quad-core|
CPU

I Node Interconnect

= On all levels, the communication time should be minimized:

= With 3-dimensional sub-domains:

- They should be as cubic as possible = minimal surface = minimal communication

Outer surface corresponds to the
data communicated to the :>

,~ neighbor nodes in all 6 directions
4

Inner surfaces correspond to the data communicated :>
or accessed between the cores inside of a node

- “as cubic as possible” may be qualified
due to different communication bandwidth in each direction
caused by sending (fast) non-strided or (slow) strided data

Major
optimization goal

Least important
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| evels of communication & data access

= Major goal: minimize inter-node communication time

>Minimize sum of all outer subdomain surfaces

>Whole node subdomain shape as cubic? as possible—

= Secondary goal: minimize intra-node communication time

>Minimize sum of all inner subdomain surfaces/@

>Inner subdomain shape as cubic?) as possible

Next slides:
MPI facilities to map topology to ranks in a communicator
—> Virtual Topologies

1) See the note on communication bandwidth on the previous slide.
The amount of data to be communicated in each direction should
be divided by the expected communication bandwidth.
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Programming models

- Optimized node-to-node communication
(for pure MPI & hybrid MPI+X with several MPI processes per node)

How to - MPI Virtual Topologies

General considerations
The topology problem
> The topology problem: How-to / Virtual Toplogies

Rank renumbering for optimization

The Topology Problem: Unstructured Grids

Quiz

Real world examples

Scalability

Advantages & disadvantages, conclusions

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien) Virtual topology courécgﬁggeggeegggg
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Domain decomposition example

= Global data array
Application data mesh }\

with domain

decomposition

2nd data array coordinate,

K‘S »
1st data array coordinate *)

on
process coordinates

example:
on process

decomposition, e.g.,

A(1:3000,

1:4000,

2"d process coordinate,

1:500)

/l Virtual process grid

4 X 5 =
0..3, 0.4
ic,=0, ic,=3

1st process coordinate

A(2001:3000, 1:1000, 301:400)

60 procgesses

(rank=43)

process coordinates: handled with virtual Cartesian topologies

array decomposition:

handled by the application program directly -

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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Virtual Topologies

= Convenient process naming.

= Naming scheme to fit the communication pattern.
= Simplifies writing of code.

= Can allow MPI to optimize communications.

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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How to use a Virtual Topology

= Creating a topology produces a new communicator.

= MPI provides mapping functions:
= to compute process ranks, based on the topology haming scheme,
= and vice versa.

= Example:
2-dimensional cylinder

Ranks

Cartesian
process
coordinates

2nd process coordinate

| -
t i Dl - — " — " "
1% process coordinate ) ) Figure: similar to x,y-diagrams, first index is horizontal

(i.e., not vertical as in a math matrix)
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Topology Types

= Cartesian Topologies

= each process is connected to its neighbor in a virtual grid,

OmOX
boundaries can be cyclic, or not ‘W)
Lo N ())&

= processes are identified by Cartesian coordinates,
= of course, communication between any two processes is still allowed.

= Graph Topologies
= general graphs,

= two interfaces:
- MPI_GRAPH_CREATE (since MPI-1)
- MPI_DIST_GRAPH_CREATE_ADJACENT &
MPI_DIST _GRAPH_CREATE (new scalable interface since MPI-2.2)

= Not covered here. =

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
Hybrid Programming — MPI+X - Programming models - Optimized node-to-node comm. - How-to: Virtual MPI topologies 227/280




Creating a Cartesian Virtual Topology

int MPI_Cart_create(\MPI_Comm comm_old, int ndims,
int *dims, int *periods, int reorder,
MPI_Comm *comm_cart)

MPI_CART_CREATE(comm_old, ndims, dims, periods,

reorder, comm_cart, ierror)

mpi_fos: TYPE(MPI_Comm) :: comm_old, comm_cart
INTEGER .- ndims, dims(*)
LOGICAL .. periods(*), reorder
INTEGER, OPTIONAL .. lerror
comm_old = MPI_COMM_WORLD
ndims = 2
dims = (4, 3 )
periods = (1, 0 (in C)
periods = (.true., .false. in Fortran)
reorder = see nextslide

e.g., size==12 factorized

with MPI_Dims_create(),
see later the slide ,Typical usage of
MPI_Cart_create & MPI_Dims_create”
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Reordering

= Ranks and Cartesian process coordinates in comm_ cart

= Ranksincomm_old and comm_cart may differ if reorder == non-zero or .TRUE.

= This reordering can allow MPI to optimize communications.
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Typical use of MPI_Dims_create & MPI_Cart_create

#define ndims 3

int i, nnodes, world myrank, cart myrank, dims[ndims], periods[ndims], my coords[ndims]; MPI_ Comm
comm_cart;

MPI Init (NULL,NULL);

MPI Comm size (MPI_COMM WORLD, &numprocs);

MPI Comm rank (MPI COMM WORLD, &world myrank) ; With d
- - - - - Iith reorder

for (i=0; i<ndims; i++) { dims[i]=0; periods[i]=..; }
MPI Dims create (numprocs, ndims, dims); // computes facterization of numprocs
MPI Cart create (MPI_COMM WORLD, ndims, dims, periods,l, &comm cart);

MPI Comm rank (comm cart, &cart myrank);
MPI Cart coords(comm cart, cart myrank, ndims, my coords, ierror)

From now on: = all communication should be based on comm_cart & cart_myrank & my _cords
»= one can setup the sub-domains & read in the application data

@ int MPI_Dims_create(int nnodes, int ndims, int *dims) _
- Array dims must be

Fortran MPI1_DIMS_CREATE(nnodes, ndims, dims, ierror) R A
mpi_fos: INTEGER . nnodes, ndims, dims(*) (other possibilities
INTEGER, OPTIONAL :: ierror ’
see MPI standard)

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien) |E|
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Cartesian Mapping Functions

Mapping

ranks to
virtual process grid coordinates

@ int MPI_Cart_coords(MP|_Comm comm_cart, int rank,
Int maxdims, int *coords)

MPI_CART_COORDS(comm_cart, rank, maxdims, coords, ierror)
mpi_fos: TYPE(MPI_Comm) :: comm_cart
INTEGER .. rank, maxdims, coords(*)
INTEGER, OPTIONAL ;- lerror

Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien)
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Cartesian Mapping Functions

Mapping process grid coordinates to ranks

@ int MP1_Cart_rank(MPI _Comm comm_cart, int *coords, int *rank)

MPI_CART_RANK(comm_cart, coords, rank, ierror)
mpi_fos: TYPE(MPI_Comm) :: comm_cart
INTEGER .. coords(*), rank

INTEGER, OPTIONAL :: ierror
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A process’ own coordinates

(3.2)
S\

MPI_Cart_rank

1
=~ ) |
o) L
—— )

MPI_Cart_coords

0 3
(0,0) (1,0)

= Each process gets its own coordinates with (example in [0 )

call MPI Comm rank (comm cart, my rank, ierror)

¥
call MPI Cart coords(comm cart, my rank, maxdims, my_coords, ierror)
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Ranks of neighboring processes

int MPI_Cart_shift(MPl_Comm comm__cart, int direction, int disp,
int *rank_source, int *rank_dest)

MPI_CART_SHIFT(comm_cart, direction, disp,

rank_source, rank_dest, ierror)

mpi_fos: TYPE(MPI_Comm) :: comm_cart
INTEGER .. direction, disp, rank_source, rank_dest
INTEGER, OPTIONAL .. lerror

= Returns MPI_PROC_NULL if there is no neighbor.

= MPI_PROC_NULL can be used as source or destination rank in each
communication =» Then, this communication will be a no-operation!
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MPI_Cart_shift — example

my_rank in comm_cart is
invisible input argument
to MPI_Cart_shift

direction = 1I

direction =0

call MPI Cart shift (comm cart, direction, disp, rank source, rank dest, ierror)

example on 0 +1 10
process rank={7 or1l +1 6 8
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) Cartesian Partitioning

==
= Cut a virtual process grid up into slices.
= A new communicator is produced for each slice.

= Each slice can then perform its own collective communications.

@ int MPI_Cart_sub(MPI_Comm comm_cart, int *remain_dims,
MPI_Comm *comm_slice)

MPI_CART_SUB(comm_cart, remain_dims, comm_slice, ierror)
mpi_fos: TYPE(MPI_Comm) :: comm_cart
LOGICAL . remain_dims(*)
TYPE(MPI_Comm) :: comm_slice
‘@A@@‘@’ INTEGER, OPTIONAL ;o lerror

— T T

- @ @ o example with
é«m)}_. . '<<3'°>>) remain_dims = ( true, false)
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7 MPI_Cart_sub — Example

<

 Ranks and Cartesian process coordinates incomm_slice

CALL MPI_Cart_sub( comm_cart, remain_dims, comm_slice )
( true, false) Each process gets only
its own sub-communicator
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Sparse Collective Operations on Process Topologies

= Sparse neighbor communication —| New in MPI-3.0
within MPI process topologies (Cartesian and (distributed) graph):
- MPI_()NEIGHBOR_ALLTOALL (V,W)

- MPI_(I)NEIGHBOR_ALLGATHER (V)j = perfect scalable 1?

= |f the topology is the full graph, then neighbor routine is identical to full collective
communication routine
= Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint

= Allows for optimized communication scheduling and scalable resource binding

= Cartesian topology:

= Sequence of buffer segments is communicated with:
- direction=0 source, direction=0 dest, direction=1 source, direction=1 dest, ...
- Defined only for disp=1 (direction, source, dest and disp are defined as in MPI_CART_SHIFT)
= If a source or dest rank is MPI_PROC_NULL then the buffer location is still there but the
content is not touched. =
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Psriodic MPI_NEIGHBOR_ALLTOALL in direction d with 4 processes

Clarified in MPI-4.0

O (@)
— S — = S — = g —'3 o<—:

This figure represents = o] | S| o | S| N AN A3l
one direction d " af | el |L 2| | o | 2| oL 2|
s vali 3 2[5 2|3 gl |3 e gl [ 2B 2|z
Of course, it is valid o SN % o Sl % o SN % s SN
A A [N N (9N N [V N [N N
for any direction = S| |= Sl = 2| |= S = S| |= S S| |
> +| | 3 +1 | S +| 13 +1 |3 +| | 3 +1|> +|13
e (=Y e ol |9 (=Y K= ol |9 (=Y i Ke! ol |9 (=Y | Ke!
N 1> — | O —| 1 > — || —| | > — | O —1 | >
= n{1e i< 1S i< n{1s i< nle
3 +| 2 +13 +]|2 +113 +| € +113 +]2

o = = @ N (] @ (O8] (o8] @ N

IO IO IO

al_ Pl al_ g =] a Pls al:

coord ==0 coord ==1 coord == 2 coord == 3

rank_SOUrCEm )y rgpje—— g0k dest

sendbuf p-200 | +2009— -300 | +3009—
=
recvbuf —2]+100| -300 4 —2]+200] -400 |4~

=9

)-400 | +4008-
+300]-100 [4—

|:| grey array entries are used only if periods[d] == non-zero in C or .TRUE. in Fortran
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rank_source my_ranle rank_dest

send_buf p-200 | +2008 p-300 | +300§ )-400 | +4009-_
recv_buf +100] -300 [4~ —>+200] -400 j4~ —>]+300]-100]

After MPI_NEIGHBOR_ALLTOALL on a Cartesian communicator returned, the content of the
recvbuf is as if the following code is executed:

MPI_Cartdim get(comm, &ndims);
for( /*direction*/ d = 0; d < ndims; d++) {
MPI Cart_shift(comm, /*direction*/ d, /*disp*/ 1, &rank source, &rank dest);
MPI_Sendrecv (sendbuf[d*2+0], sendcount, sendtype, rank_source, /*sendtag*/ d*2,
recvbuf [d*2+1], recvcount, recvtype, rank_dest, /*recvtag*/ d*2,
comm, &status); /* lst communication in direction of displacment -1 */

MPI_Sendrecv (sendbuf[d*2+1], sendcount, sendtype, rank dest, /*sendtag*/ d*2+1,
recvbuf [d*2+0] , recvcount, recvtype, rank source, /*recvtag*/ d*2+1,
comm, &status); /* 2nd communication in direction of displacment +1 */

}

The tags are chosen to guarantee that both communications (i.e., in negative and positive direction)
cannot be mixed up, even if the MPI_SENDRECYV is substituted by nonblocking communication and
the MPI_ISEND and MPI_IRECYV calls are started in any sequence.
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--) Wrong implementations of periodic
£ MPI_NEIGHBOR_ALLTOALL with only 2 and 1 processes

) o »

Ol jg (@) é 1=
S O s ls!
: o | [ [ o | | [ o |
D %) D ) [
Il S| ol ln S|n ol |n S|n
—] | |I— <= ol |— < || | |—
(@] S| | ol |O S| I ol 1O S| |
+ c|lt c || * (=4 N s c||x c|lt
P S S| SR = (2 SR
N e | N (& | I N & N |
= o | IS ol |5 [oX | &= o] |5 o IS
=/ +| |13 E +| 135 1E +| 13
Ko | 1< ol |8 =B = (@] § K= =1} K=
ke | | = —I | O —l 1> =l |15 L
= s i< s < s
3 +[ |2 113 +] 2 113 +[ |2
= = N = =
(=) o
a g/ al: =)

_’
C coord == coord ==1 C coord == 0

5
U

sendbuf p-200[+2009_ Results
required
recvbuf by MPI +100]-100 14

Wrong results with openmpi/4.0.1-gnu-8.3.0 and cray-mpich/7.7.6 with 2 and 1 processes:
recvbuf
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/
f Q“”é
sy

/Communication pattern of MPI_NEIGHBOR_ALLGATHER

’/Clarified in MPI1-4.0

The send_buf is only
one element,
which is sent to the
neighbor processes

in all directions

3006

sendbuf

recvbuf

P 1006

The recv_buf
represents one
direction d.
Of course, this
figure is valid for

any direction

The green recv_buf
elements are
recvbuf[2*d+0]

and
recvbuf[2*d+1

|:| grey array entries are used only if periods[d] == non-zero in C or .TRUE. In Fortran
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Programming models

- Optimized node-to-node communication
(for pure MPI & hybrid MPI+X with several MPI processes per node)

Rank renumbering -
for optimization The topology problerm

The topology problem: How-to / Virtual Toplogies
> Rank renumbering for optimization
The Topology Problem: Unstructured Grids
Quiz
Real world examples
Scalability
Advantages & disadvantages, conclusions
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Rank renumbering for optimization

With «intra-nodeﬂ%fzj’

= \When is it not needed? communication T fr [

> Hybrid MPI+OpenMP with 1, 2, or 3 MPI processes per shared-memory node
= When is it not helpful?

- Dynamic load balancing that changes the process-to-process communication
pattern (typically only with graph topologies)

= When do we need it?

> Communication win with >= 4 MPI processes per shared-memory node

= Example with 6 or 8 MPI processes per shared-memory node:
- Sequential:  6x1x1, 8x1x1, or 32x1x1 topology > 26, 34,~r up to 130 inter-node neighbors in MPI_COMM_WORLD

- Renumbered: 3x2x1, 2x2x2, or 4x4x2 topology > 22, 24,0r u 64 inter-node neighbors in the Cartesian topol.
> 15%, 29%, or up to 51% less communicatiomtime™ 424 24 24 24 24 24 24 &
EACACArArArArAL)

//

= How can we implement it?
> MPI virtual topologies ﬁ j: £
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Rank renumbering for optimization — problems

1. All MPI libraries provide the necessary interfaces © © ©,
but without renumbering in some MPI-libraries ® ® ®

2. The existing MPI-4.1 interfaces are not optimal:

— Application topology awareness:
application-specific data mesh sizes or direction-dependent communication
requirements are not accounted for - next slide

- Hardware topology awareness:
the factorization of the number of processes into several dimensions cannot
leverage hardware topology information - next slide

3. The application must be prepared for rank renumbering
Typical use of

= |deally, data distribution happens after renumbering (see slide (D] MPL Dims_create
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The existing MPI-4.0 interfaces are not optimal: examples

= Application topology awareness
= 2-D example with 12 MPI processes and data mesh size 1800x580

- MPI_Dims_create > 4x3 « data mesh aware - 6x2 processes
4
231 1800 ol PaY 1800 o
™~ | < »|
$194 Izgo
580 580
Boundary of a subdomain = 2(450+194) = 1288 ® Boundary of a subdomain = 2(300+290) = 1180 ©

= Hardware topology awareness

= 2-D example with 25 nodes x 24 cores and data mesh size 3000x3000
- MPI_Dims_create > 25x 24 » Hardware aware - 30 x 20 = (5 nodes x 6 cores) X (5 nodes x 4 cores)

120
Ieoo
125 b T 1l Accumulated
o NN AR oy o EEE communication Accumulated
per node communication
il s el b el per node
e —l— O(10x120+12x125)
= 0(2700) ® 0(4x600) = 0(2400) ©
I600I =]
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Goals of MPI_Dims_create + MPI_Cart_create

= Given: Comm_Old (e.g., MPI_COMM_WORLD), ndims (e.g., 3 dimensions)
= Provide

= a factorization of #processes (of comm_oig) INtO the dimensions dims[i],-; 1gims

= a Cartesian communicator comm_cart

= an optimized reordering of the ranks in comm_old into the ranks of comm_ cart
to minimize the Cartesian communication time, e.g., of

o MPI_Neighbor_alltoall

o Equivalent communication pattern implemented with
- MPI_Sendrecv
- Nonblocking MPI point-to-point communication
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The limits of MPI_Dims_create + MP|_Cart_create

= Not application topology aware

= MPI_Dims_create can only map evenly balanced Cartesian
- Factorization of 48,000 processes into 20 x 40 x 60 processes

(e.g. for a mesh with 200 x 400 x 600 mesh points)
- no chance with current interface

= Only partially hardware topology aware

= MPI_Dims_create without comm arg. - not hardware aware

- An application mesh with 3000x3000 mesh points
on 25 nodes x 24 cores (=600 MPI processes)

o Answer from MPI_Dims_create:

25 x 24 MPI processes

Mapped by most libraries to 25 x 1 nodes
with 120 x 3000 mesh points per node
=>» too much node-to-node communication

~

topologies

Major problems:

*No weights,
no info

*Two separated
interfaces for
two common
tasks:

= Factorization of
#processes

= Mapping of the
processes to the
hardware
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Goals of Cartesian MP|l_Dims+Cart_create

= Remark: On a hierarchical hardware,

= optimized factorization and reordering typically means
minimal node-to-node communication,

= which typically means that the communicating surfaces

of the data on each node is as quadratic as possible
(or the subdomain as cubic as possible)

= The current API, i.e.,
= due to the missing weights
= and the non-hardware aware MPI_Dims_create,

does not allow such an optimized factorization & reordering in many cases.
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The new interface — proposed for MPI-4.1

= MPI_Dims_create_weighted ( )

*IN*/ int nnodes input for application-

. . ’ topology-awareness
¥ IN*/ It ndims,
I¥IN*/ int dim_weights[ndims],
[¥IN*/ int periOdS[ndimS], /*for future use in combination with info /[ - A new courtesy
[*IN*/ M Pl_l nfO info, [* for future use, currently MPI_INFO_NULL */ . function:
FINOUT#  int dims[ndims]); Weighted

’ factorization

= Arguments have same meaning as in MPl_Dims_create
= Goal (in absence of an info argument):

- dimsJi]edim_weights[i] should be as close as possible,

- i.e., the Yo mdims-1) dims][i]sdim_weights][i] as small as possible _
(advice to implementors)
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The new Interface — proposed for MPI-4.1, continued

= MP I_Cart_c reate_Wei g hted(/‘ input for hardware-awareness

[*IN*/
[*IN*/
[*IN*/
[*IN*/
[*IN*/

[*INOUT*/
*OUT*/

MPI_Comm comm_old,

Int
int
int
MPI_Info
int

_ and application-topology-
ndims, awareness

dim_weights[ndims], or MPI_UNWEIGHTED*/
periods[ndims],

info, /* for future use, currently MPI_INFO_NULL */
dims[ndims],

MPI_Comm *comm_cart );

\

J

The new
hardware- &
application-
topology-
aware
interface

= Arguments: see existing MPI_Dims_create & MPI_Cart_create / dim_weights[ndims] = next slide

= Goals: = Choose an ndims-dimensional factorization of #processes of comm_old (= dims)
and an appropriate reordering of the ranks (= comm_ cart),

such that the execution time of a communication step along the virtual process grid is minimal

(e.g., with MPI_NEIGHBOR_ALLTOALL, MPI_SENDRECYV, or nonblockuing MPI_ISEND/IRECV)
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How to specify the dim_weights?

= Given: Comm_0|d (e.g., MPI_COMM_WORLD), ndims (e.g., 3 dimensions)
= This means, the domain decomposition has not yet taken place!

= Goals for dim_weights and the API at all:
= Easy to understand
= Easy to calculate
= Relevant for typical Cartesian communication patterns (MPI_Neighbor_alltoall or similar)

= Rules fit to usual design criteria of MPI
- E.g., reusing MPI_UNWEIGHTED - integer array
- Can be enhanced by vendors for their platforms - additional info argument for further specification

- To provide also the less optimal two stage interface (in addition to the combined routine)
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The dim_weights]i], example with 3 dimensions

eriods[1]=false y periods[0]
- - W 1 :f I
Abbreviations: 1 / alse
d; = dimsJi] 0 .
w; = dim_weights[i] R 5
with g §..
i =0..(ndims-1) . O0- 2
v T
2 U . 1
< 5
0 1
Three dimensions, > @« o >
i.e., ndims=3 w1 (:Wﬂia ~

dodz * ;4 di(=4) Cutting plane orthagenal to dimension 1

The arguments dim_weights|i] i =0::(ndims-1), abbreviated with w;,
should be specified as the accumulated message size (in bytes)
communicated in one communication step through each cutting plane
orthogonal to dimension d; and in each of the two directions?

1) If the communication bandwidth is different in
each direction i, then w; should be divided by 253/280
the expected communication bandwidth.
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The dim_weights[i], example with 3 dimensions, continued

h N
A *2 Global data mesh
J /|
Distributed s
h. | into the 4 ¢ < < .
ox], A o R P Important:
- 2 domains on < . I
d // /d/ each MPI — « The definition of the
» . fgo process dim_weights
1 . . .
ho feg————> @ (= w; in this figure)
2 ! Hé?' do Accumulated communication size t_hrough} wy = gohigy = hy IL; 9: isindependent of the
0 1 d, cutting plane orthogonal to dimension 1 g1 total number of
dimensions  Abbreviations: g; = data mesh size in dimension i, i=0..(ndims-1), w; = dim_weights[i], . processes and its
h; = halo width in dimension i, d; = dims[i] factorization into the
: ot : : : - dimensions
Example for the calculation of the accumulated communication size w; ;¢ » in each dimension. ST
. (= d; in this figure)
Given:
* g; — Thedata mesh sizes g;;-(., express the three dimensions * Result) was
of the total application data mesh. Hj gj
= h; — Thevalue h; represents the halo width in a given direction W;= hi -
when the 2-dimensional side of a subdomain is communicated i
to the neighbor process in that direction.
Output from MPI_Cart/Dims_create_weighted: The dimensions d; ;¢ > D
5]
T — — .
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The new Iinterfaces — a real implementation

Substitute for / enhancement to existing MPI-1

= MPI_Dims_create (size_of _comm_old, ndims, dims[ndims] );

u MPI_Cart_create (Comm_old, ndims, dims[ndims], periods, reorder, *comm_cart);

NEeW: (in MPiitasks/C/Cho/MPIX/)

= MPIX Cart_weighted create (

[*IN*/ MPI_Comm comm_old,
[XIN*/ int ndims,
[¥IN*/ double dim_weights[ndims], ror MPIx_WEIGHTS_EQUAL*
[¥IN¥/ int periods[ndims],
[¥IN*/ MP |_| nfo infO, /* for future use, currently MPI_INFO_NULL */
INOUT#* int dims[ndims],
rouT+  MPI_Comm *comm_cart );
= MPIX Dims weighted create ( int nnodes, int ndims, double dim_weights[ndims],

FOUT* Int dims[ndims] );
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Further Interfaces

= We proposed the algorithm in
= Christoph Niethammer and Rolf Rabenseifner. 2018.
Topology aware Cartesian grid mapping with MPI. EuroMPI 2018.
= https://eurompi2018.bsc.es/ - Program - Poster Session - Abstract+Poster ‘

= https://fs.hlrs.de/projects/par/mpi/EuroMPI12018-Cartesian/—=> All info + slides + software
= http://www.hlrs.de/training/self-study-materials
- Practical > MPI31.tar.gz > MPI/tasks/C/eurompil8/

= More details, see this talk+slides ,Hybrid Programming in HPC — MPI+X”
= Full paper:
= Christoph Niethammer, Rolf Rabenseifner:
An MPI interface for application and hardware aware cartesian topology optimization. EuroMPI 2019.
Proceedings 26th European MPI Users' Group Meeting, Sep. 2019, article No. 6, p. 1-8, https://doi.org/10.1145/3343211.3343217
= MPIX_Dims_weighted_create() is based on the ideas in:

= Jesper Larsson Traff and Felix Donatus Liibbe. 2015. Specification Guideline Violations by MPI Dims Create.
In Proceedings of the 22nd European MPI Users’ Group Meeting (EuroMPI '15). ACM, New York, NY, USA, Article 19, 2 pages.

= Another approach using the existing MPI_Cart_create() interface:

= W.D. Gropp, Using Node [and Socket] Information to Implement MPI Cartesian Topologies, Parallel Computing, 2019. And Proceedings of
the 25th European MPI User' Group Meeting, EuroMPI1'18, ACM, New York, NY, USA, 2018, pp. 18:1-18:9. d0i:10.1145/3236367.3236377.
Slides: http://wgropp.cs.illinois.edu/bib/talks/tdata/2018/nodecart-final. pdf

Here, you get the new

optimized interface
+ implementation + docu.
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7 Remarks
=~

= The portable MPIX routines internally use
MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, ...)
to split comm_old into ccNUMA nodes,

= plus (may be) additionally splitting into NUMA domains.

= With using hyperthreads, it may be helpful
to apply sequential ranking to the hyperthreads,
= |.e., in MPI_COMM_WORLD, ranks 0+1 should be
- the first two hyperthreads
- of the first core
- of the first CPU
- of the first ccNUMA node

= Especially with weights w; based on —, it is important

= that the data of the mesh points is not read in based on (old) ranks in MPI_COMM_WORLD,

= because the domain decomposition must be done based on comm_cart and its dimensions and (new)
ranks
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Questions addressed in this tutorial
Where we

are?

What is the performance impact of system topology? | Communication time
Memory access time

How do | map my programming model on the system to my advantage?
= How do | do the split into MPI+X?
= Where do my processes/threads run? How do | take control?
= Where is my data?
= How can | minimize communication overhead? —{ Through rank reordering

How does hybrid programming help with typical HPC problems?

= Can it reduce communication overhead? rank reordering may still help
- Can it reduce replicated data? If 2 4 MPI processes per SMP node

How can | leverage multiple accelerators?
= What are typical challenges?
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Typical use of MPIX_Cart_weighted_create

#define ndims 3
int i, nnodes, world myrank, cart myrank, dims[ndims], periods[ndims], my coords[ndims];
int global array dim[ndims], halo width[ndims], local array dim[ndims], local array size=1;
double dim weights[ndims], global array size=1.0;
MPI Comm comm cart;
MPI_Init (NULL,NULL) ;
MPI Comm size (MPI_COMM WORLD, &numprocs);
MPI Comm_ rank (MPI_COMM WORLD, &world myrank) ;
for (i=0; i<ndims; i++) {

dims[i]=0; periods[i]=..;

global array dim[i]=..; halo_width[i]=.;

global array size = global array size * (double) (global array dim[i]);

ngj

Weights: w;= h;

} .
for (i=0; i<ndims; i++) : gi

dim weights[i]™= (double) (halo width[i]) * global array size / (double) (global array dim[i]);
}

MPIX Cart weighted create (MPI_COMM WORLD, ndims, dim weights, dims, periods, MPI_INFO NULL, dims, &comm_cart) ;

MPI Comm_ rank (comm cart, &cart myrank) ;
MPI Cart coords(comm_cart, cartimyrank, ndims, my coords, ierror)

: : : : From now on:
for (i=0; i<ndims; i++) { = all communication should be based
local array dim[i] = global array dim[i] / dims[i];
local_array_size = local ar;ay size * local array dim[i]; on comm_cart & cart_myrank & my_cords
} - - - - - - = one can setup the sub-domains
local_data_array = malloc(sizeof(..) * local array size); & read in the application data
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Virtual Cartesian MPI topologies — summary

* Relevant for modern clusters comprising multicore nodes

o _ _ If communication is irrelevant (in €)
= Optimizes only the communication - don't care about reordering
(observe cost/benefit)

= The new (and weighted) optimizing routines are easy to use
for Cartesian problems

* Be aware that the MPI_Cart_... create routines — of course with reorder=true
renumber the communicator
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Programming models

- Optimized node-to-node communication
(for pure MPI & hybrid MPI+X with several MPI processes per node)

The Topology Problem: -
Unstructured Grids The topology problerm

The topology problem: How-to / Virtual Toplogies
Rank renumbering for optimization
> The Topology Problem: Unstructured Grids
Quiz
Real world examples
Scalability
Advantages & disadvantages, conclusions
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Virtual MPI Topologies — unstructured grids

= See paper from Torsten Hofler and references in Bill Gropp’s paper:

= T. Hoefler and M. Snir. 2011. Generic Topology Mapping Strategies for Large-scale Parallel Architectures. In Proceedings of
the 2011 ACM International Conference on Supercomputing (ICS’11). ACM, 75-85.

= Bill Gropp. 2018. Using Node Information to Implement MPI Cartesian Topologies. In Proceedings of the 25nd European MPI
Users’ Group Meeting (EuroMPI ’18), September 23-26, 2018, Barcelona, Spain. ACM, New York, NY, USA, 9 pages.

= Many MPI libraries still do not optimize the graph topologies ...
= a (not too complicated) alternative is shown on next slides

= Additional application problem:
your application may read data in before creating the virtual graph topology

= The re-numbering of the processes may require that you

- send such data from each rank i in old_comm to the process with rank i in the graph_comm
How-to > [Q¢
(recommended)

- or need to re-read such data from file system
(not recommended)
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Hierarchical DD for unstructured grids

= Single-level DD (finest level)

= Analysis of the communication pattern in a first run
(with only a few iterations)

= Optimized rank mapping to the hardware before production run
= E.g., with CrayPAT + CrayApprentice (not verified by us authors)

= Multi-level DD:
= Top-down: Several levels of (Par)Metis .
- unbalanced communication gq
f

= Bottom-up: Low level DD
+ higher level recombination

- based on DD of the grid of subdomains
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Unstructured Grid / Data Mesh

Result of mesh partitioning:
Sort out all mesh elements
into sub-domains

= Mesh partitioning with special load balancing libraries

= Metis (George Karypis, University of Minnesota) / ParMetiS(internally parallel version of Metis)
http://glaros.dtc.umn.edu/gkhome/views/metis/metis.html

= Scotch & PT-Scotch (Francois Pellegrini, LaBRI, France)
https://www.labri.fr/perso/pelegrin/scotch/
= Alternative partitioning via space-filling curves, e.g.,

https://hal.science/hal-01969026/document ¥
https://doi.org/10.1109/IPDPSW.2012.207 2
https://doi.org/10.1016/j.future.2004.05.018 °

Each sub-domain
is stored on one
MPI process

1) Ricard Borrell, Juan Carlos Garcia
Cajas, Daniel Mira, Ahmed Taha,
Seid Koric, et al.. Parallel mesh
partitioning based on space filling
2 curves. Computers and Fluids,

2018, 173, pp.264-272.
f10.1016/j.compfluid.2018.01.040ff.
2 ffhal-01969026f

D. F. Harlacher, H. Klimach, S. Roller, C. Siebert and F. Wolf, "Dynamic Load

Balancing for Unstructured Meshes on Space-Filling Curves," 2012 IEEE 26th

International Parallel and Distributed Processing Symposium Workshops & PhD

Forum, Shanghai, China, 2012, pp. 1661-1669, doi: 10.1109/IPDPSW.2012.207.

3) stefan Schamberger, Jens-Michael Wierum, Partitioning finite element meshes
using space-filling curves, Future Generation Computer Systems, Volume 21,

= Goals: - Same work load in each sub-domain

- Minimizing the maximal number of f
neighbor-connections between sub-domains

Minimizing the total number of
neighbor sub-domains of each sub-domain

The weighted communication graph of the virtual process grid
can be used as input for MPI_Dist_graph_create(_adjacent)

. . . Issue 5, 2005, Pages 759-766, ISSN 0167-739X,
Rolf Rabenseifner (HLRS), Georg Hager (NHR@FAU), Claudia Blaas-Schenner (VSC, TU Wien) https://doi.org/10.1016/j.future.2004.05.018.
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Unstructured Grid / Data Mesh

= Multi-level Domain Decomposition through Recombination

—--- 1

Graph of all
sub-domains

]
1
1
1
1
1
1
1
1
1
1
1
1
(core-sized) :
:
1

Grouped into /

sub-graphs for
each socket

Core-level DD: partitioning of (arge) application’s data grid

. Numa-domain-level DD: recombining of core-domains
. SMP node level DD: recombining of socket-domains
Numbering from core to socket to node

}

__I

as done in MPI_COMM_WORLD (e.g., sequentially)

>

e.g., with Metis / Scotch
or through space-filling curves

* Problem: Recombination must
not calculate patches that are
smaller or larger than the average

* In this example the load-balancer
(e.g., Metis or Scotch)
must combine always
* 6 cores, and
* 4 numa-domains
(i.e., sockets or dies)

« Advantage:
Communication is balanced!

—
-—-=p
]
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Quiz on Virtual topologies

A. Which types of MPI topologies for virtual process grids exist?
B. And for which use cases?

1.

For

2.

For

C. Where are limits for using virtual topologies, i.e., which use cases do not really fit?
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Programming models

- Optimized node-to-node communication
(for pure MPI & hybrid MPI+X with several MPI processes per node)

Real world examples

General considerations
The topology problem
The topology problem: How-to / Virtual Toplogies
Rank renumbering for optimization
The Topology Problem: Unstructured Grids
Quiz

> Real world examples

Scalability

Advantages & disadvantages, conclusions
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Real world examples

. . subdomaini,{boundary condition/ halo
Coupled applications, e.g. — : —
= Computational fluid dynamics (CFD) & structural mechanics = = ;
= e.g., simulating rotators with FLOWer (DLR)
=  Weather/ climate: ocean & atmosphere & land surface

0T
e

RESE N
PEE

.. .___’ .
PEEN

tr T --
T

(X4 T
= e.g., ICON (Blue Marble, DWD, Max Planck Institute for Meteorolgy MPI-MET, DKRZ)  gfr— Ll o
= Multi-physics code m-AlA (Institute of Aerodynamics (AIA), RWTH Aachen) ?i ?i ?i
=  Adaptable Poly-Engineering Simulator (www.APES-suite.org, DLR) Stk >
Each MPI Major design decision
F;{l?gsnsaﬁﬁ/shc)%nrige = Each MPI process runs all codes (e.g. m-AlA) do it=1, itmax/-— subroutine A
e.g. with - Within each simulation step (e.g. time-step): — call A halo-exchange for A
MPI+OpenMP - code A, code B, ... call B one/time-step for A
Same | different data grid for all / each cod call AB exchange |20
Enables a larger - came/ldiierent data grid for all  each code end do ,e.g. using a duplicate of
number of processes |\ data-grids distributed over all MPI processes MPI_COMM_WORLD

Data exchange of the coupling may be within each process, e.g., code A accesses data of B
weather

\ . . .-
= Each MPI process is dedicated to a specific code (e.g. ICON, APES, FLOWer) ¢ L EAEip siE el
-] = a % of all processes (of each node) simulate code A on subdomains = e e T
of the simulation domain A (e.g. ocean flow on a ocean data grid) S [ G ~Te> S By B
ocean . . ; A i
. [ using sub-communicators ¥ = ¥
L b % for code B, ... A(/" for processes of same type -— —— —— /0Cean
Within each node - Additional messages for the coupling 2] using inter-communicators (in icon) WA AP AR = i
several neighboring Additional service processes, e.g., for asynchronous parallel I/O weather = .| nd
MPI processes a
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Programming models

- Optimized node-to-node communication
(for pure MPI & hybrid MPI+X with several MPI processes per node)

Scalability

General considerations
The topology problem
The topology problem: How-to / Virtual Toplogies
Rank renumbering for optimization
The Topology Problem: Unstructured Grids
Quiz
Real world examples

> Scalability

Advantages & disadvantages, conclusions
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To overcome MPI scaling problems

= MPI has a few scaling problems with more than 10,000 MPI processes

= MPI_Alltoall* is not scalable with longer messages Protocol switches
- Irregular Collectives: MPI_....v, e.g. MPI_Gatherv are implementation
- dependent

» Scaling applications should not use MPI_....v routines
= MPI Graph topology (MP1_Graph_create)
» Use scalable interface MPI_Dist_graph_create_adjacent
= Creation of many disjoint sub-communicators
» Creation possible in a single call to MPI_Comm_split or MPI_Comm_create
= MPI internal memory consumption for, e.g.,
» Internal data structures for large communicators
_ Internal communication buffers }—{ Current implementations consider this

= ... see also P. Balaji, et al.: MPIl on a Million Processors.
P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk, R. Thakur, and J. L. Traff: MPI on Millions of Cores.
Parallel Processing Letters, 21(01):45-60, 2011. Originally, Proceedings EuroPVM/MPI 2009.

= Hybrid programming reduces all these problems (due to a smaller number of processes)
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Programming models

- Optimized node-to-node communication
(for pure MPI & hybrid MPI+X with several MPI processes per node)

Advantages & o
disadvantages, conclusions The topology problem

The topology problem: How-to / Virtual Toplogies
Rank renumbering for optimization
The Topology Problem: Unstructured Grids
Quiz
Real world examples
Scalability

> Advantages & disadvantages, conclusions
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Pure MPI communication: Main advantages

= Simplest programming model

Library calls need not to be thread-safe

The hardware is typically prepared for many MPI processes per SMP node

= Only minor problems if pinning is not applied

No first-touch problems as with OpenMP (in hybrid MPI+OpenMP)
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Pure MPI communication: Main disadvantages

Unnecessary communication

Too much memory consumption for

= halo data for communication between MPI processes
on same SMP node

= other replicated data on same SMP node
= MPI buffers due to the higher number of MPI processes

Additional programming costs for minimizing node-to-node communication,
= |.e., for optimizing the communication topology,
= e.g., implementing the multi-level domain-decomposition

No efficient use of hardware-threads (hyper-threads)
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Optimized node-to-node communication: Conclusions

= Recommended when communication costs are significantly too high.
= Minimize node-to-node communication through optimized rank renumbering

= Feasible if communication pattern is persistent throughout entire runtime
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Conclusions
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Major advantages of hybrid MPI+OpenMP

In principle, none of the programming models perfectly fits to
clusters of SMP nodes

Major advantages of MPI+OpenMP:

= Only one level of sub-domain “surface-optimization”:
= SMP nodes, or
= Sockets or NUMA domains
= Second level of parallelization
= Application may scale to more cores
= Smaller number of MPI processes implies: ~
= Reduced size of MPI internal buffer space
= Reduced space for replicated user-data _

Most important arguments
on many-core systems
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Major advantages of hybrid MPI+OpenMP, continued

= Reduced communication overhead
= NoO intra-node communication

= Longer messages between nodes and fewer parallel links may imply better
bandwidth

= “Cheap” load-balancing methods on OpenMP level

= Application developer can split the load-balancing issues between course-
grained MPI and fine-grained OpenMP
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Disadvantages of MPI+OpenMP

Using OpenMP
- may prohibit compiler optimization
- may cause significant loss of computational performance

= Thread fork / join overhead
= On ccNUMA SMP nodes:

= Loss of performance due to missing memory page locality or missing first touch strategy
= E.g., with the MASTERONLY scheme:

One thread produces data
Master thread sends the data with MPI
- data may be internally communicated from one NUMA domain to the other one

= Amdahl’s law for each level of parallelism
= Using MPI-parallel application libraries? -> Are they prepared for hybrid?
= Using thread-local application libraries? - Are they thread-safe?
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MPI1+OpenMP versus MPI+MPI-3.0 shared memory

MPI+3.0 shared memory
= Pro: Thread-safety is not needed for libraries.
= Con: No work-sharing support as with OpenMP directives.

= Pro: Replicated data can be reduced to one copy per node:
May be helpful to save memory, if pure MPI scales in time, but not in memory

= Substituting intra-node communication by shared memory loads or stores has only limited
benefit (and only on some systems),
especially if the communication time is dominated by inter-node communication

= Con: No reduction of MPI ranks
—> no reduction of MPI internal buffer space

= Con: Virtual addresses of a shared memory window may be different in each MPI process
—> No binary pointers
- Ii.e., linked lists must be stored with offsets rather than pointers
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Lessons for pure MPIl and ccNUMA-aware hybrid MPI1+OpenMP

= MPI processes on an SMP node should form a cube
and not a long chain

= Reduces inter-node communication volume

= For structured or Cartesian grids:
= Adequate renumbering of MPI ranks and process coordinates

= For unstructured grids:

= Two levels of domain decomposition
- First fine-grained on the core-level
- Recombining cores to SMP-nodes
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Conclusions

* Future hardware will be more complicated

= Heterogeneous 2> GPU, FPGA, ...
= Node-level ccNUMA is here to stay, but will only be one of your problems

I Higlﬁ—end programming > more complex = many pitfalls
= Medium number of cores = more simple (#¥cores / SMP-node still grows)
= MPI + OpenMP - workhorse on large systems

= Major pros: reduced memory needs and second level of parallelism

= MPI + MPI shared memory = only for special cases and medium #processes
= Pure MPI communication - still viable if it does the job

= OpenMP only = on large ccNUMA nodes (almost gone in HPC)

= Optimized node-to-node communication can help when communication costs are

too high Thank you for your interest o o . 0

Q&A

Please fill out the feedback sheet — Thank you B
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Abstract

MPI+X — Introduction to Hybrid Programming in HPC
Tutorial  (Content levels: 0:00h [=0%] Beginners, 1:30h [=10%] Intermediate, 13:30h [=90%] Advanced)

Authors: Claudia Blaas-Schenner, VSC Research Center, TU Wien, Vienna, Austria
Georg Hager, Erlangen Regional Computing Center (RRZE), University of Erlangen, Germany
Rolf Rabenseifner, High Performance Computing Center (HLRS), University of Stuttgart, Germany

Abstract: Most HPC systems are clusters of shared memory nodes. To use such systems efficiently both memory consumption and communication time has
to be optimized. Therefore, hybrid programming may combine the distributed memory parallelization on the node interconnect (e.g., with MPI) with the shared
memory parallelization inside of each node (e.g., with OpenMP or MPI-3.0 shared memory). This course analyzes the strengths and weaknesses of several
parallel programming models on clusters of SMP nodes. Multi-socket-multi-core systems in highly parallel environments are given special consideration. MPI-
3.0 has introduced a new shared memory programming interface, which can be combined with inter-node MPI communication. It can be used for direct
neighbor accesses similar to OpenMP or for direct halo copies, and enables new hybrid programming models. These models are compared with various hybrid
MPI1+OpenMP approaches and pure MPI. Numerous case studies and micro-benchmarks demonstrate the performance-related aspects of hybrid
programming.
Hands-on sessions are included on all days. Tools for hybrid programming such as thread/process placement support and performance analysis are presented
in a "how-to" section. This course provides scientific training in Computational Science and, in addition, the scientific exchange of the participants among
themselves.
URL: 2022-HY-VSC-Dec https://vsc.ac.at/training/2022/HY-VSC-Dec 2022-HY-LRZ http://www.hlIrs.de/training/2022/HY-LRZ

2022-HY-VSC http://vsc.ac.at/training/2022/HY-VSC

2021-HY-VSC http://vsc.ac.at/training/2021/HY-VSC

2020-HY-VSC http://vsc.ac.at/training/2020/HY-VSC 2020-HY-S http://www.hlrs.de/training/2020/HY-S
2019-HY-G https://www.Irz.de/services/compute/courses/archive/2019/2019-01-28 hhyplw18/
ISC 2017 https://www.isc-hpc.com/agenda2017/sessiondetails23ac.html?t=session&o=510
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Solutions of MPI shared memory exercise: datarep

= Solution files:
= data-rep_sol 2a.c
= data-rep_sol 2d.c
= data-rep_sol 2f.c
= data-rep_sol 3-6.c
= data-rep_sol 7.c
= data-rep_solution.c

= Quiz solution
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Solutions of MPI shared memory exercise: datarep

(a 1-slide-solution-sum mary) MPIl/tasks/C/Chl1/data-rep/data-rep_solution.c

° arr = (arrT iay=! *) malloc(oarrSize * izeof (oarrT p@\\ '%greyzoriginal COde]
MPI Comm split type (MPI COMM WORLD, MPI COMM TYPE SHARED, /*key=*/ 0,
B B B MPI INFO NULL, &comm shm);
MPI Comm size(comm shm, &size shm);
MPI Comm rank (comm shm, &rank shm);
if ( rank shm == 0 ) { individualShmSize = arrSize ; }
else { individualShmSize 0 ; }
MPI Win allocate shared(
(MPI_Aint) (individualShmSize) * (MPI_Aint) (sizeof (arrType)),
sizeof (arrType), MPI INFO NULL, comm shm, &shm buf ptr, &win );
MPI Win shared query( win, 0, &arrSize , &disp unit, &arr );

color=MPI UNDEFINED ; if (rank shm==0) { color = 0; }

MPI Comm split (MPI COMM WORLD, color, /*key=*/ 0, &comm head); )

if (" comm head != MPI COMM NULL ) - !process is head of one of ]
{MPIicaﬁmisize(comm:head:_&sizeihead);MPIicommirank(commihead, &rank head);} 112§ JEEe Smey B EntE

MPI Win fence (/*workaround: no assertions:*/ 0, win) j—= Starting write epoch |

if (rank world==0) for( i=0; i<arrSize; i++) arr[i]=i+it;—== Fillingar by process o

if( comm head != MPI COMM NULL ) {.=={OnWIheheadsofmeshmednmnmnﬂsbndsﬁ"anby_.]
MPI Bcast(arr, arrSize, qerataType, 0, comm head)L<4“.bmammsm@toauhamﬁ

} (instead of MPI_COMM_WORLD [~

MPI Win fence (/*workaround:no assertions:*/0,win) ;<d Starting read epoch by all proc's |

sum=0; for( i=0; i<arrSize; i++) sum+= arr[i]p<=4ReamnganbyaHpmcameﬂ

[ The following slides show a step-by-step solving of this exercise ]
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Solutions of MPI shared memory exercise: datarep

data-rep _base.c

#include <stdlib.h>
#include <stdio.h>
#include <mpi.h>

typedef long arrType ;
#define arrDataType MPI LONG /* !!!!! CAUTTION: MPI Type must fit to arrType rrrrr ox/
static const int arrSize=16*1.6E7 ;

int main (int argc, char *argvl[])
{
int it ;
int rank world, size world;
arrType *arr ;
int 1i;
long long sum ; + During the exercise steps, you may add additional declarations
/

/% ===> 1 <=== */

. ) . . . /
MPI Init(&argc, &argv);

In each process, allocating an array for the replicated
TODO: Allocating only once per shared memory node!
MPI_Comm_rank (MPI_COMM WORLD, &rank_ world) ; This will be done in 3 steps: 2a, 2b-d, 2e-f

MPI_Comm:size(MPI_COMM_WORLD, &size world);

J* ===> 2 <=== %/

arr = (arrType *) malloc(arrSize * sizeof (arrType))
if (arr == NULL)
{ printf ("arr NOT allocated, not enough memory\n");

MPI Abort (MPI_COMM WORLD, O0);
}
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Solutions of MPI shared memory exercise: datarep

data-rep_base.c (continued) |During the exercise,
you should reduce it to 1 time-step

/* ===> 3 <=== */
for( it = 0; it < 37 1t++)

/* only rank world=0 initializes the array arr */
if ( rank_world == 0 )

{ {FiI.Iing the array by one process.
for( i = 0; i < arrSize; i++) Will be unchanged

{ arr[iI i+ it ; }
}

/% ===> 4 <=== %
MPI Bcast( arr, arrSize, arrDataType, 0, MPI_COMM WORLD ) ;

l Steps (3)-(6)
are done
together

[

/* Now, all arrays are filled with the same content. * Broadcasﬁngittozﬂlotherprocesses.
\LTODO: Only one process per SMP node should broadcast!

/* ===> 5 <=== %/

s =0;
for( i = 0; i < arrSize; i++)
{

§

Calculating some numerical result in
. each process. Same result on each
sum+= arr [ i ]

} ’ \’\process that it is easy to verify.
Will be unchanged.

Time step loop

* ===> § <=== */
/*TEST*/ // To minimize the output, we print only from 3 process per SMP node
/*TEST*/ if ( rank world == | | rank world == || rank world == size world - 1)
printf ("it: %i, rank ( world: %i/%i ):\tsum(i=%i...i=%i) = %11d \n",

it, rank world, size world, it, arrSize-1+it, sum );

And printing it out

[* ===> 7 <=== */ _ _
free>(arr)<; Freeing the allocated array. Will be unchanged.
MPI_Finalize(); TODO: We must free the window instead. || agst step!

hl
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Solutions of MPI shared memory exercise: datarep

data-rep_sol 2a.c

MPI Comm comm_ shm;

int size shm, rank shm;

/¥ ===> 2 <=== %/
/* Create --> shared memory islands and --> shared memory window inside */ Sub-communicator for each
shares memory island

|

MPI Comm split type(MPI_COMM WORLD, MPI_ COMM TYPE SHARED, /*key=*/ 0, MPI_ INFO_NULL, &comm_shm) ;
MPI Comm size (comm shm, &size_ shm);

/* -——> comm_shm and -—> win */

MPI Comm rank (comm shm, &rank shm);

/*TEST*/ // To minimize the output, we print only from 3 process per SMP node

/*TEST*/ if ( rank shm == || rank shm == || rank shm == size shm - 1 )
printf ("\t\trank ( world: %i/%$i, shm: %i/%i)\n", rank world, size world, rank shm, size shm);
/*TEST*/ if (rank world==0) printf ("ALL finalize and return !!!.\n"); MPI Finalize(); return 0;
/* TO DO:
* substitute the following malloc
*/
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Solutions of MPI shared memory exercise: datarep

data-rep_sol 2d.c
° M data-rep_sol_2d_30.f90
MPI Win win; -
int individualShmSize ; ! INTEGER*8, DIMENSION (:),ALLOCATABLE :: arr
arrType *shm buf ptr; INTEGER*8, DIMENSION (:) , POINTER :: arr
Jx o===> 1 <=== %/ o

/* output MPI Win shared query */ Tk oy 2 <mme %) similar to C
MPI Aint arrSize ; - See next slide
int disp unit ;

[* ===> 2 <=== */
/* instead of: arr = (arrType *) malloc(arrSize * sizeof (arrType)); */

if ( rank _shm == 0 )
{ individualShmSize = arrSize ; }

else .
{ individualShmSize = 0 Mprowdmg the shared memory as a whole |
MPI Win allocate_shared( PI_Aint) (individualShmSize) * (MPI_Aint) (sizeof (arrType)),

sizeof (arrType) , MPI_INFO NULL, comm shm, &shm buf ptr, &win );
/* shm buf ptr is not used because it is only available in process rank shm==0 */

MPI Win_shared query( win, 0, &arrSize , &disp unit, &arr ); \-[providing the four pointers

/*TEST*/ // To minimize the output, we print only from 3 process per SMP node

/*TEST*/ if ( rank shm == 0 || rank shm == 1 || rank shm == size shm - 1 )
printf ("\t\trank ( world: %i/%i, shm: %i/%i) arrSize %i arrSize %i shm buf ptr=%p arr ptr=%p \n",
rank world, size world, rank shm, size shm, arrSize, (int) (arrSize ), shm buf ptr, arr );
/*TEST*/ if (rank world==0) printf ("ALL finalize and return !!!.\n"); MPI Finalize(); return 0;
/* TO DO: Create communicator comm head with MPI Comm split --> including all the rank shm == 0 processes.
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Solutions of MPI shared memory exercise: datarep

M data-rep_sol_2d f90.c
! ALLOCATABLE

INTEGER*8, DIMENSION(:), arr
INTEGER*8, DIMENSION(:), POINTER :: arr
/¥ ===> 1 <=== */
TYPE (MPI Win) :: win
INTEGER :: individualShmSize
TYPE (C_PTR) :: arr_ptr, shm buf ptr
INTEGER (KIND=MPI ADDRESS KIND) :: arrDataTypeSize, 1lb, ShmByteSize
! /* output MPI Win shared query */
INTEGER (kind=MPI ADDRESS KIND) :: arrSize
INTEGER :: disp unit
/* ===> 2 <=== */

! instead of: ALLOCATE (arr(l:arrSize))
IF ( rank_shm == 0 ) THEN

individualShmSize = arrSize
ELSE

individualShmSize = 0
ENDIF
CALL MPI_Type_get extent (arrDataType,
ShmByteSize = individualShmSize * arrDa
disp _unit = arrDataTypeSize
CALL MPI Win_allocate_shared( ShmByteSize, disp unit, MPI_INFO NULL, comm shm, shm buf ptr, win )

! /* shm buf ptr is not used because it is only available in process rank shm==0 */
CALL MPI_Win_shared query( win, 0, arrSize_, disp_unit, arr_ptr ) ( — .
CALL C_F_POINTER (arr_ptr, arr, (/arrSize/) ) | providing the four pointers

! TEST: To minimize the output, we print only from 3 process per SMP node

IF ( (rank_shm == 0) .OR. (rank_shm == 1) .OR. (rank shm == size_shm - 1) ) THEN
WRITE (*,*) 'rank( world=',rank world,' shm=',rank shm,"')',' arrSize=',arrSize,' arrSize =',arrSize_
ENDIF
IF (rank world == 0) WRITE(*,*) 'ALL finalize and return!!!'; CALL MPI Finalize(); STOP
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Solutions of MPI shared memory exercise: datarep

data-rep_sol_2f.c

int color ;
MPI Comm comm head;
int size head, rank head;

* ===> 2 <=== *

/* Create communicator including all the rank shm = 0 */
/* with the MPI Comm split: in color 0 all the rank shm = 0 ,
* all other ranks are color =1 */

color=MPI_UNDEFINED ;
if (rank_shm==0) color = 0 ;

MPI Comm split(MPI_COMM WORLD, color, /*key=*/ 0, &comm head) ;

rank_head = -1; // only used in the print statements to differentiate unused rank==-1 from used rank==0

if( comm head '= MPI_COMM NULL ) // if( color == 0 ) // rank is element of comm head, i.e., it is head of one of
the islands in comm_shm

{

MPI_Comm size (comm _head, &size head);
MPI Comm_ rank (comm head, &rank head);

}
/*TEST*/ // To minimize the output, we print only from 3 process per SMP node
/*TEST*/ if ( rank shm == || rank shm == || rank shm == size shm - 1 )
printf ("\t\trank ( world: %i/%i, shm: %i/%i, head: %i/%i) arrSize %i arrSize %i shm buf ptr = $p, arr ptr = %p \n",
rank world,size world, rank shm,size shm,rank head,size head, arrSize, (int) (arrSize ), shm buf ptr, arr);
/*TEST*/ if (rank world==0) printf ("ALL finalize and return !!!.\n"); MPI Finalize(); return 0;..
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Solutions of MPI shared memory exercise: datarep

data-rep_sol_3-6.cC (on this slide steps 3-4)

/* ===> 3 <=== */
for( it = 0; it < 3; it++)
{

/* only rank world=0 initializes the array arr */
/* all rank_shm=0 start the write epoch: writing a o their shm */
MPI Win_ fence (/*workaround: no assertions:* , win) ;
if( rank world == ) /* from those rank”shm=0 processes, only rank worlds40 fills arr */
{
for( i = 0; 1 < arrSize;
{ arr[i] = 1 + it ; }
}
/* ===> 4 <=== */

/* Instead of all processes in MPI COMM WORLD, now only the heads
* shared memory islands communicate (using comm_ head) .

* Since we used key=0 in both MPI_Comm split(...), process ra
* - is also rank 0 in comm_head
* - and rank 0 in comm shm in the color it belongs to. */
if( comm head '= MPI_COMM NULL ) // if( color == 0 )
{

MPI_Bcast (arr, arrSize, arrDataType, 0, comm head);

/* with this Bcast, all other rank shm=0 processes write the data into their arr */

}
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Solutions of MPI shared memory exercise: datarep

J
? DT § X

data-rep_sol_3-6.cC (on this slide steps 5-6)

7* ===> 5 === *
MPI Win fence (/*workaround: no assertions:*/ 0, win);
// after the fence all processes start a read epoch

[, ypr——— === = = = =

*/

/* Now, all other ranks in the comm_sm shared memory islands are allowed to access their
/* And all ranks rank sm access the shared mem in order to compute sum */

sum = 0;
for( i = 0; 1 < arrSize; i++)
{
//sum+= *( shm buf ptr - rank shm * shmSize + i ) ; :
sumb= arr [ 1] ; — . (Flnally, each process can
) | read the shared data.

/* ===> 6 <=== */
/*TEST*/ // To minimize the output, we print only from 3 process per SMP node

/*TEST*/ if ( rank shm == || rank shm == || rank shm == size shm - 1 )
printf ("it: %i, rank ( world: %i/%i, shm: %i/%i, head: %i/%i ):\tsum(i=%d...i=%d) = %$11d \n",

it,rank world,size world,rank shm,size shm, rank head,size head,it,arrSize-1+it, sum);

}

/*TEST*/ if (rank world==0) printf ("ALL finalize and return !!!.\n"); MPI Finalize(); return 0;
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Solutions of MPI shared memory exercise: datarep

data-rep_sol 7.c

7* ===> 7 <=== */
MPI_Win_fence(/*workaround: no assertions:*/ 0, win);

// free destroys the shm. fence to guarantee that read epoch has been finished
MPI _Win_ free (&win) ;

data-rep_solution.c Trick: »
- Calculate the minimum through
/¥ ===> 2 <=== %/ calculating the maximum for the negative values

// ADD ON: calculates the minimuny and maximum siffe of size shm
int mm[2], minmax[2]; mm[0] = -size shm ; mm[]/] = size shm ;

if( comm head != MPI COMM NULL )
{

MPI Reduce( mm, minmax, 2, MPI INT, MPI MAX, 0, comm head)
}

’

if( rank world == 0 )
{
printf ("\n\tThe number of shared memory islands is: %i islands \n", size head ) ;
if ( minmax[0] + minmax[l] == )
printf ("\tThe size of all shared memory islands is: %1 processes\n", -minmax[0] ) ;
else
printf ("\tThe size of the shared memory islands is between min = %i and max = %i processes \n",

-minmax[0], minmax[1]);

}

// End of ADD ON. Note that the following algorithm does not require same sizes of the shared memory islands

[* ===> 3 <=== */
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Quiz on Shared Memory

A. Before you call MPI_Win_allocate_shared, what should you do?
MPI_Comm_split_type(comm_old, MPI_COMM_TYPE_SHARED, ..., &comm_sm)
will guarantee that comm_sm contains only processes of the same shared memory island.

If your communicator within your shared memory island consists of 12 MPI processes,
and each process wants to get an own window portion with 10 doubles (each 8 bytes),

which window size must you specify in MPI_Win_allocate_shared?

10 * 8 = 80 bytes
And how long is the totally allocated shared memory?

80 * 12 = 960 bytes

The returned base_ptr, will it be identical on all 12 processes?
No, within each process, the base ptr points to its own portion of the totally allocated shared mem.
If all 12 processes want to have a pointer that points to the beginning of the totally allocated shared memory, which MPI

B.

a.
b.

C.

d.
procedure should you use and with which major argument?

MPI_Win_shared_query with rank =0
e. If you do this, do these 12 pointers have identical values, i.e., are identical addresses?
No, they point to the same physical address, but each MPI process may use different virtual addresses for this.

C. Which is the major method to store data from one process into the shared memory window portion of another process?
Normal assignments (with C/C++ or Fortran) to the correct location, i.e., no calls to MPI_Put/Get.
BE 20

=
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Quiz on Shared Memory Model & Synchronization

A. Which MPI memory model applies to MPI shared memory? put,acc get
MPI_WIN_SEPARATE or Q4PI WIN_UNIFIED > Prooes> /
B. “Public and private copies are eventually synchronized
without additional RMA calls.” store loag | Figure: Courtesy

C. Which process-to-process synchronization methods can be used that, e.g., a store to a shared memory variable gets visible
to another [ProCess (within the processes of the shared memory window)?
= Any MPIl one-sided synchronization (e.g., MPI_Win_fence, ..._post/start, ..., ..._lock/unlock)
= Any (MPI) synchronization together with a pair of MPI_Win_sync
= Any (MPI) synchronization together with a pair of C++11 atomic_thread_fence(order)

D. That such a store gets visible in another process after the synchronization is named here as “write-read-rule”.
Which other rules are implied by such synchronizations and what do they mean?

= Read-write-rule: a load (=read) in one process before the synchronization cannot be affected by a store (=write) in another process
after the synchronization.

= Write-write-rule: a store (=write) in one process before the synchronization cannot overwrite a store (=write) in another process after
the synchronization.
E. How can you define a race-condition and which problems arise from cache-line false-sharing?

= Two processes access the same shared variable and at least one process modifies the variable
and the accesses are concurrent.

= Significant performance problems if two or more processes
often access different portions of the same cache-line.
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Virtual Topologies — data transfer after renumbering

= Additional application problem: your application may read data in
before creating the virtual graph (or Cartesian) topology

= Your result of the domain decomposition may be the sub-domains

= in MPI processes in comm_old with old ranks 0..5 (before reordering).

= Corresponding virtual communication grid Q Is input for the

= creation of the graph (or Cartesian) topology = reordered graph ranks 0..5.

: Re_numbering the processes may old rank 5 old rank 2 old rank 1

(only once) require sending the data  sub-d5 sub-d 2 sub-d 1
graph rank 0 “\graph rank raph rank 2

of each sub-domain i from the sub-d 0 b-d 1 sub-d 2

graph rank

Goal for process reordering:

; HE old rgnk O old ra old rank 3 L
- process with rank i in old_comm = G, ;1i' sub sub-d 3 The green communication
; raph rank 3 aph rank 5
to the process with grapll ran e e edges can have faster

rank i in the graph_comm B SR
# red: data in each process before creating the reordered virtual topology

# green: neighboring subdomains (edges-input with red ranks; shown after reorder)

MPI Comm rank (old comm, &my old rank); MPI Comm group(old comm, &old grp);

MPI Comm rank (graph comm, &my graph rank); MPI Comm group (graph comm, &graph grp); >
MPI Group translate ranks(old grp,1l,&my graph rank,graph grp, &src); 4 ><
MPI Sendrecv(red sub d,..,my old rank, tag, blue sub d,..,src,tag,graph comm,..) ;

# blue: reordered ranks of the virtual topology and data \after the transfer

orjust MPT_ANY SOURCE,

Solution
|
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A. Which types of MPI topologies for virtual process grids exist?
B. And for which use cases?
1. Cartesian topologies

For Cartesian data meshes with identical compute time per mesh element

For any Cartesian process grid with identical compute time per process and numerical epoch,
and its communication mainly on the virtual Cartesian grid between the processes

2. Distributed graph topologies and graph topologies
For applications with unstructured grids

C. Where are limits for using virtual topologies, i.e., which use cases do not really fit?

= Applications with mesh refinements, dynamic load balancing and diffusion of mesh
elements to other processes
- all cases with changing virtual process grids over time;

= Communication pattern not known in advance.
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