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Blocking Collective Communication



Collectives in MPI

Collectives: operations including all ranks of a communicator

All ranks must call the function!

▪

▪

▪

▪

▪

09.04.2025Introduction to Parallel Programming with MPI 2



Collectives in MPI

Collectives: operations including all ranks of a communicator

All ranks must call the function!

▪ Blocking variants: buffer can be reused after return

▪ Nonblocking variants (since MPI 3.0): 
buffer can be used after completion (MPI_Wait*/MPI_Test*)

▪

▪

▪

09.04.2025Introduction to Parallel Programming with MPI 2



Collectives in MPI

Collectives: operations including all ranks of a communicator

All ranks must call the function!

▪ Blocking variants: buffer can be reused after return

▪ Nonblocking variants (since MPI 3.0): 
buffer can be used after completion (MPI_Wait*/MPI_Test*)

▪ May or may not synchronize the processes

▪ Cannot interfere with point-to-point communication

▪ Completely separate modes of operation!
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▪ Rules for all collectives

▪ Data type matching

▪ No tags
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Collectives in MPI

▪ Rules for all collectives

▪ Data type matching

▪ No tags

▪ Count must be exact, i.e., there is only one message length, buffer must be 

large enough

▪ Types: 

▪ Synchronization (barrier)

▪ Data movement (broadcast, scatter, gather, all-to-all)

▪ Collective computation (reduction, scan)

▪ Combinations of data movement and computation (reduction + broadcast) 

▪ General assumption: MPI does a better job at collectives than you trying to 

emulate them with a collection of point-to-point calls
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Barrier

▪ Explicit synchronization of all ranks from specified 
communicator

MPI_Barrier(comm);

▪ Ranks only return from call after every rank has called 
the function

▪ MPI_Barrier: rarely needed

▪ Debugging
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Broadcast

▪ Send buffer contents from one rank (“root”) to all ranks

MPI_Bcast(buf, count, datatype, int root, comm);

▪ no restrictions on which rank is root – often rank 0

1 2 3buffer

count = 3

int
0 1 2 3rank

root
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Broadcast

▪ Send buffer contents from one rank (“root”) to all ranks

MPI_Bcast(buf, count, datatype, int root, comm);

▪ no restrictions on which rank is root – often rank 0

1 2 3buffer

count = 3

MPI_Bcast(buffer, 3, MPI_INT, 1, MPI_COMM_WORLD)

int

1 2 3 1 2 3 1 2 3 1 2 3buffer

0 1 2 3rank
root

Before →

After →
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Scatter

sendbuf

MPI_Scatter(sendbuf, 2, MPI_INT, recvbuf, 2, MPI_INT, 

root, MPI_COMM_WORLD)

int
0 1 2rank

root

recvbuf

1 2 3 4 5 6
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Scatter

sendbuf

MPI_Scatter(sendbuf, 2, MPI_INT, recvbuf, 2, MPI_INT, 

root, MPI_COMM_WORLD)

int
0 1 2rank

root

recvbuf
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Scatter

▪ Send every i-th chunk of an array to the i-th rank

MPI_Scatter(sendbuf, sendcount, sendtype, 

recvbuf, recvcount, recvtype, 

root, comm);

▪ Root and comm must be the same on all processes

▪ Type signature of send and receive variables must match

▪ Usually, sendcount = recvcount because sendtype = recvtype

▪ This is the length of the chunk

▪ sendbuf is ignored on non-root ranks because there is nothing to send



09.04.2025 8Introduction to Parallel Programming with MPI

Gather

recvbuf

MPI_Gather(sendbuf, 2, MPI_INT, recvbuf, 2, MPI_INT, 

root, MPI_COMM_WORLD)

int
0 1 2rank root

sendbuf 1 2 3 4 5 6
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Gather

recvbuf

MPI_Gather(sendbuf, 2, MPI_INT, recvbuf, 2, MPI_INT, 

root, MPI_COMM_WORLD)

int
0 1 2rank root

sendbuf

recvbuf

sendbuf

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6
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Gather

▪ Receive a message from each rank and place i-th rank’s message at i-th

position in receive buffer

MPI_Gather(sendbuf, sendcount, sendtype, 

recvbuf, recvcount, recvtype, 

root, comm)

▪ Root and comm must be the same on all processes

▪ Type signature of send and receive variables must match

▪ Usually, sendcount = recvcount because sendtype = recvtype

▪ recvbuf is ignored on non-root ranks because there is nothing to receive
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Scatterv

displs

MPI_Scatterv() with root = 1

0 1 2 3

rank

sendbuf

sendcounts

recvbuf

recvcount

1 2 3 4 5 6 7

2 1 3 1

5 4 1 0

12 3 1

0 1 2 3 4 5 6index
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Scatterv

displs

MPI_Scatterv() with root = 1

0 1 2 3

rank

sendbuf

sendcounts

recvbuf

recvcount

1 2 3 4 5 6 7

2 1 3 1

5 4 1 0

12 3 1

576 2 3 14

12 3 1

recvbuf

recvcount

0 1 2 3 4 5 6index
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Scatterv: more flexible scatter

▪ Send chunks of different sizes to different ranks

MPI_Scatterv(

sendbuf, int sendcounts[], int displs[], sendtype, 

recvbuf, recvcount, recvtype, root, comm)

sendcounts[]: array specifying the number of elements to send to 

each rank: send sendcounts[i] elements to rank i

displs[]:   integer array specifying the displacements in     

sendbuf from which to take the outgoing data to 

each rank, specified in number of elements
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Gatherv: more flexible gather

▪ Receive segments of different sizes from different ranks

MPI_Gatherv(

sendbuf, sendcount, sendtype, 

recvbuf, int recvcounts[], int displs[], recvtype, 

root, comm)

recvcounts[]: array specifying the number of elements to receive 

from each rank: receive recvcounts[i] elements from rank i

displs[]:    integer array specifying the displacements where

received data from specific rank is put in recvbuf, 

in units of elements:
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Allgather

0 1 2rank

sendbuf

recvbuf

a b c d e f
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Allgather

MPI_Allgather() (no root required)

0 1 2rank

sendbuf

recvbuf

recvbuf

a b c d e f

a c eb d f a c eb d fa c eb d f

In this example: sendcount=recvcount=2
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Allgather

▪ Combination of gather and broadcast

MPI_Allgather(sendbuf, sendcount, sendtype, 

recvbuf, recvcount, recvtype, 

comm);

▪ Also available: MPI_Allgatherv() (cf. MPI_Gatherv())

▪ Why not just use gather followed by a broadcast instead?

▪ MPI library has more options for optimization

▪ General assumption: Combined collectives are faster than using separate ones
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Alltoall

sendcount

0 1 2 3rank

sendbuf

recvbuf

recvcount 11 11

11 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



09.04.2025 15Introduction to Parallel Programming with MPI

Alltoall

sendcount

MPI_Alltoall() (no root required)

0 1 2 3rank

sendbuf

recvbuf

recvcount 11 11

11 11

0 4 8 12recvbuf 1 5 9 13 2 6 10 14 3 7 11 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Alltoall

▪ MPI_Alltoall: For all ranks, send i-th chunk to i-th rank

MPI_Alltoall(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype, 

comm)

▪ MPI_Alltoallv: Allows different number of elements to be 

send/received by each rank

▪ MPI_Alltoallw: Allows also different data types and displacements in 

bytes
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Summary of MPI Collective Communications

▪ MPI (blocking) collectives

• All ranks in communicator must call the function

▪ Communication and synchronization

• Barrier, broadcast, scatter, gather, and combinations thereof

▪ In-place buffer specification MPI_IN_PLACE

• Save some space if needed
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of point-to-point calls?
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Quiz:
1. Why should one use collective communication rather than emulating by a set 

of point-to-point calls?

2. Can MPI collective communications interfere with point-to-point calls?

a. Yes                                               b.      No

3. For a collective communication, it is not necessary every process of a 

communicator to call it?

a. Correct                                    b.     Incorrect

Answer: Implementations are optimized for efficiency, and are also adapted to the hardware 

environment at hand (not guaranteed, however). You don’t want to redo the work of countless 

MPI researchers.

Answer: b., because they are completely separate modes of operation.

Answer: b., it is necessary.
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Quiz:
4. To send an identical piece of data to all other processes in a communicator, 

which collective call should be used?

a. MPI_Gather

b. MPI_Bcast

c. MPI_Scatter

d. MPI_Alltoall
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Quiz:
4. To send an identical piece of data to all other processes in a communicator, 

which collective call should be used?

a. MPI_Gather

b. MPI_Bcast

c. MPI_Scatter

d. MPI_Alltoall

5. Which of the following collective calls is similar to the process of transposing a 

matrix in mathematics?

a. MPI_Gather

b. MPI_Bcast

c. MPI_Scatter

d. MPI_Alltoall

Answer: b.

Answer: d.


