
Introduction to Parallel Programming with MPI

Dr. Alireza Ghasemi, Dr. Georg Hager

Erlangen National High Performance Computing Center

Blocking Collective Communication

Collectives in MPI

Collectives: operations including all ranks of a communicator

All ranks must call the function!

▪

▪

▪

▪

▪

09.04.2025Introduction to Parallel Programming with MPI 2

Collectives in MPI

Collectives: operations including all ranks of a communicator

All ranks must call the function!

▪ Blocking variants: buffer can be reused after return

▪ Nonblocking variants (since MPI 3.0):
buffer can be used after completion (MPI_Wait*/MPI_Test*)

▪

▪

▪

09.04.2025Introduction to Parallel Programming with MPI 2

Collectives in MPI

Collectives: operations including all ranks of a communicator

All ranks must call the function!

▪ Blocking variants: buffer can be reused after return

▪ Nonblocking variants (since MPI 3.0):
buffer can be used after completion (MPI_Wait*/MPI_Test*)

▪ May or may not synchronize the processes

▪ Cannot interfere with point-to-point communication

▪ Completely separate modes of operation!

09.04.2025Introduction to Parallel Programming with MPI 2

09.04.2025 3Introduction to Parallel Programming with MPI

Collectives in MPI

▪ Rules for all collectives

▪ Data type matching

▪ No tags

▪ Count must be exact, i.e., there is only one message length, buffer must be

large enough

▪

▪

▪

▪

▪

▪

09.04.2025 3Introduction to Parallel Programming with MPI

Collectives in MPI

▪ Rules for all collectives

▪ Data type matching

▪ No tags

▪ Count must be exact, i.e., there is only one message length, buffer must be

large enough

▪ Types:

▪ Synchronization (barrier)

▪ Data movement (broadcast, scatter, gather, all-to-all)

▪ Collective computation (reduction, scan)

▪ Combinations of data movement and computation (reduction + broadcast)

▪

09.04.2025 3Introduction to Parallel Programming with MPI

Collectives in MPI

▪ Rules for all collectives

▪ Data type matching

▪ No tags

▪ Count must be exact, i.e., there is only one message length, buffer must be

large enough

▪ Types:

▪ Synchronization (barrier)

▪ Data movement (broadcast, scatter, gather, all-to-all)

▪ Collective computation (reduction, scan)

▪ Combinations of data movement and computation (reduction + broadcast)

▪ General assumption: MPI does a better job at collectives than you trying to

emulate them with a collection of point-to-point calls

09.04.2025 4Introduction to Parallel Programming with MPI

Barrier

▪ Explicit synchronization of all ranks from specified
communicator

MPI_Barrier(comm);

▪ Ranks only return from call after every rank has called
the function

▪ MPI_Barrier: rarely needed

▪ Debugging

09.04.2025 4Introduction to Parallel Programming with MPI

Barrier

▪ Explicit synchronization of all ranks from specified
communicator

MPI_Barrier(comm);

▪ Ranks only return from call after every rank has called
the function

▪ MPI_Barrier: rarely needed

▪ Debugging

09.04.2025 5Introduction to Parallel Programming with MPI

Broadcast

▪ Send buffer contents from one rank (“root”) to all ranks

MPI_Bcast(buf, count, datatype, int root, comm);

▪ no restrictions on which rank is root – often rank 0

1 2 3buffer

count = 3

int
0 1 2 3rank

root

09.04.2025 5Introduction to Parallel Programming with MPI

Broadcast

▪ Send buffer contents from one rank (“root”) to all ranks

MPI_Bcast(buf, count, datatype, int root, comm);

▪ no restrictions on which rank is root – often rank 0

1 2 3buffer

count = 3

MPI_Bcast(buffer, 3, MPI_INT, 1, MPI_COMM_WORLD)

int

1 2 3 1 2 3 1 2 3 1 2 3buffer

0 1 2 3rank
root

Before →

After →

09.04.2025 6Introduction to Parallel Programming with MPI

Scatter

sendbuf

MPI_Scatter(sendbuf, 2, MPI_INT, recvbuf, 2, MPI_INT,

root, MPI_COMM_WORLD)

int
0 1 2rank

root

recvbuf

1 2 3 4 5 6

09.04.2025 6Introduction to Parallel Programming with MPI

Scatter

sendbuf

MPI_Scatter(sendbuf, 2, MPI_INT, recvbuf, 2, MPI_INT,

root, MPI_COMM_WORLD)

int
0 1 2rank

root

recvbuf

sendbuf

recvbuf

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

09.04.2025 7Introduction to Parallel Programming with MPI

Scatter

▪ Send every i-th chunk of an array to the i-th rank

MPI_Scatter(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,

root, comm);

▪ Root and comm must be the same on all processes

▪ Type signature of send and receive variables must match

▪ Usually, sendcount = recvcount because sendtype = recvtype

▪ This is the length of the chunk

▪ sendbuf is ignored on non-root ranks because there is nothing to send

09.04.2025 8Introduction to Parallel Programming with MPI

Gather

recvbuf

MPI_Gather(sendbuf, 2, MPI_INT, recvbuf, 2, MPI_INT,

root, MPI_COMM_WORLD)

int
0 1 2rank root

sendbuf 1 2 3 4 5 6

09.04.2025 8Introduction to Parallel Programming with MPI

Gather

recvbuf

MPI_Gather(sendbuf, 2, MPI_INT, recvbuf, 2, MPI_INT,

root, MPI_COMM_WORLD)

int
0 1 2rank root

sendbuf

recvbuf

sendbuf

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

09.04.2025 9Introduction to Parallel Programming with MPI

Gather

▪ Receive a message from each rank and place i-th rank’s message at i-th

position in receive buffer

MPI_Gather(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,

root, comm)

▪ Root and comm must be the same on all processes

▪ Type signature of send and receive variables must match

▪ Usually, sendcount = recvcount because sendtype = recvtype

▪ recvbuf is ignored on non-root ranks because there is nothing to receive

09.04.2025 10Introduction to Parallel Programming with MPI

Scatterv

displs

MPI_Scatterv() with root = 1

0 1 2 3

rank

sendbuf

sendcounts

recvbuf

recvcount

1 2 3 4 5 6 7

2 1 3 1

5 4 1 0

12 3 1

0 1 2 3 4 5 6index

09.04.2025 10Introduction to Parallel Programming with MPI

Scatterv

displs

MPI_Scatterv() with root = 1

0 1 2 3

rank

sendbuf

sendcounts

recvbuf

recvcount

1 2 3 4 5 6 7

2 1 3 1

5 4 1 0

12 3 1

576 2 3 14

12 3 1

recvbuf

recvcount

0 1 2 3 4 5 6index

09.04.2025 11Introduction to Parallel Programming with MPI

Scatterv: more flexible scatter

▪ Send chunks of different sizes to different ranks

MPI_Scatterv(

sendbuf, int sendcounts[], int displs[], sendtype,

recvbuf, recvcount, recvtype, root, comm)

sendcounts[]: array specifying the number of elements to send to

each rank: send sendcounts[i] elements to rank i

displs[]: integer array specifying the displacements in

sendbuf from which to take the outgoing data to

each rank, specified in number of elements

09.04.2025 12Introduction to Parallel Programming with MPI

Gatherv: more flexible gather

▪ Receive segments of different sizes from different ranks

MPI_Gatherv(

sendbuf, sendcount, sendtype,

recvbuf, int recvcounts[], int displs[], recvtype,

root, comm)

recvcounts[]: array specifying the number of elements to receive

from each rank: receive recvcounts[i] elements from rank i

displs[]: integer array specifying the displacements where

received data from specific rank is put in recvbuf,

in units of elements:

09.04.2025 13Introduction to Parallel Programming with MPI

Allgather

0 1 2rank

sendbuf

recvbuf

a b c d e f

09.04.2025 13Introduction to Parallel Programming with MPI

Allgather

MPI_Allgather() (no root required)

0 1 2rank

sendbuf

recvbuf

recvbuf

a b c d e f

a c eb d f a c eb d fa c eb d f

In this example: sendcount=recvcount=2

09.04.2025 14Introduction to Parallel Programming with MPI

Allgather

▪ Combination of gather and broadcast

MPI_Allgather(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,

comm);

▪ Also available: MPI_Allgatherv() (cf. MPI_Gatherv())

▪ Why not just use gather followed by a broadcast instead?

▪ MPI library has more options for optimization

▪ General assumption: Combined collectives are faster than using separate ones

09.04.2025 15Introduction to Parallel Programming with MPI

Alltoall

sendcount

0 1 2 3rank

sendbuf

recvbuf

recvcount 11 11

11 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

09.04.2025 15Introduction to Parallel Programming with MPI

Alltoall

sendcount

MPI_Alltoall() (no root required)

0 1 2 3rank

sendbuf

recvbuf

recvcount 11 11

11 11

0 4 8 12recvbuf 1 5 9 13 2 6 10 14 3 7 11 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

09.04.2025 16Introduction to Parallel Programming with MPI

Alltoall

▪ MPI_Alltoall: For all ranks, send i-th chunk to i-th rank

MPI_Alltoall(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,

comm)

▪ MPI_Alltoallv: Allows different number of elements to be

send/received by each rank

▪ MPI_Alltoallw: Allows also different data types and displacements in

bytes

09.04.2025 17Introduction to Parallel Programming with MPI

Summary of MPI Collective Communications

▪ MPI (blocking) collectives

• All ranks in communicator must call the function

▪ Communication and synchronization

• Barrier, broadcast, scatter, gather, and combinations thereof

▪ In-place buffer specification MPI_IN_PLACE

• Save some space if needed

09.04.2025 18Introduction to Parallel Programming with MPI

Quiz:
1. Why should one use collective communication rather than emulating by a set

of point-to-point calls?

09.04.2025 18Introduction to Parallel Programming with MPI

Quiz:
1. Why should one use collective communication rather than emulating by a set

of point-to-point calls?

Answer: Implementations are optimized for efficiency, and are also adapted to the hardware

environment at hand (not guaranteed, however). You don’t want to redo the work of countless

MPI researchers.

09.04.2025 18Introduction to Parallel Programming with MPI

Quiz:
1. Why should one use collective communication rather than emulating by a set

of point-to-point calls?

2. Can MPI collective communications interfere with point-to-point calls?

a. Yes b. No

Answer: Implementations are optimized for efficiency, and are also adapted to the hardware

environment at hand (not guaranteed, however). You don’t want to redo the work of countless

MPI researchers.

09.04.2025 18Introduction to Parallel Programming with MPI

Quiz:
1. Why should one use collective communication rather than emulating by a set

of point-to-point calls?

2. Can MPI collective communications interfere with point-to-point calls?

a. Yes b. No

Answer: Implementations are optimized for efficiency, and are also adapted to the hardware

environment at hand (not guaranteed, however). You don’t want to redo the work of countless

MPI researchers.

Answer: b., because they are completely separate modes of operation.

09.04.2025 18Introduction to Parallel Programming with MPI

Quiz:
1. Why should one use collective communication rather than emulating by a set

of point-to-point calls?

2. Can MPI collective communications interfere with point-to-point calls?

a. Yes b. No

3. For a collective communication, it is not necessary every process of a

communicator to call it?

a. Correct b. Incorrect

Answer: Implementations are optimized for efficiency, and are also adapted to the hardware

environment at hand (not guaranteed, however). You don’t want to redo the work of countless

MPI researchers.

Answer: b., because they are completely separate modes of operation.

09.04.2025 18Introduction to Parallel Programming with MPI

Quiz:
1. Why should one use collective communication rather than emulating by a set

of point-to-point calls?

2. Can MPI collective communications interfere with point-to-point calls?

a. Yes b. No

3. For a collective communication, it is not necessary every process of a

communicator to call it?

a. Correct b. Incorrect

Answer: Implementations are optimized for efficiency, and are also adapted to the hardware

environment at hand (not guaranteed, however). You don’t want to redo the work of countless

MPI researchers.

Answer: b., because they are completely separate modes of operation.

Answer: b., it is necessary.

09.04.2025 19Introduction to Parallel Programming with MPI

Quiz:
4. To send an identical piece of data to all other processes in a communicator,

which collective call should be used?

a. MPI_Gather

b. MPI_Bcast

c. MPI_Scatter

d. MPI_Alltoall

09.04.2025 19Introduction to Parallel Programming with MPI

Quiz:
4. To send an identical piece of data to all other processes in a communicator,

which collective call should be used?

a. MPI_Gather

b. MPI_Bcast

c. MPI_Scatter

d. MPI_Alltoall

Answer: b.

09.04.2025 19Introduction to Parallel Programming with MPI

Quiz:
4. To send an identical piece of data to all other processes in a communicator,

which collective call should be used?

a. MPI_Gather

b. MPI_Bcast

c. MPI_Scatter

d. MPI_Alltoall

5. Which of the following collective calls is similar to the process of transposing a

matrix in mathematics?

a. MPI_Gather

b. MPI_Bcast

c. MPI_Scatter

d. MPI_Alltoall

Answer: b.

09.04.2025 19Introduction to Parallel Programming with MPI

Quiz:
4. To send an identical piece of data to all other processes in a communicator,

which collective call should be used?

a. MPI_Gather

b. MPI_Bcast

c. MPI_Scatter

d. MPI_Alltoall

5. Which of the following collective calls is similar to the process of transposing a

matrix in mathematics?

a. MPI_Gather

b. MPI_Bcast

c. MPI_Scatter

d. MPI_Alltoall

Answer: b.

Answer: d.

