
Introduction to Parallel Programming with MPI

Dr. Alireza Ghasemi, Dr. Georg Hager

Erlangen National High Performance Computing Center

Collective Operations

Global operations: reduction

▪ Compute results over distributed data

MPI_Reduce(sendbuf, recvbuf, count,

datatype, MPI_Op op, root, comm);

▪ Result in recvbuf only available on root process

▪ Perform operation on all count elements

of an array

▪ If all ranks need the result, then
use MPI_Allreduce()

▪ If the 12 predefined ops are not enough use
MPI_Op_create/MPI_Op_free to create own ones

0

1

2

3

rank sendbuf

8 9 6 8
recvbuf

on root

MPI_Reduce()

count = 4

op = MPI_MAX

0 9 2 6

5 1 0 4

8 3 4 5

1 0 6 8

m
a

x
()

m
a

x
()

m
a

x
()

m
a

x
()

11.04.2024Introduction to Parallel Programming with MPI 2

11.04.2024 3Introduction to Parallel Programming with MPI

Global operations – predefined operators

Name Operation Name Operation

MPI_SUM Sum MPI_PROD Product

MPI_MAX Maximum MPI_MIN Minimum

MPI_LAND Logical AND MPI_BAND Bit-AND

MPI_LOR Logical OR MPI_BOR Bit-OR

MPI_LXOR Logical XOR MPI_BXOR Bit-XOR

MPI_MAXLOC Maximum+Position MPI_MINLOC Minimum+Position

▪ Define own operations with MPI_Op_create/MPI_Op_free

▪ MPI assumes that the operations are associative

→ be careful with floating-point operations

11.04.2024 4Introduction to Parallel Programming with MPI

“In-place” buffer specification

Override local input buffer with a result

int partial_sum = …, total_sum;

MPI_AllReduce(&partial_sum, &total_sum,

1, MPI_INT,

MPI_SUM, comm);

int partial_sum = …, total_sum;

total_sum = partial_sum;

MPI_AllReduce(MPI_IN_PLACE, &total_sum,

1, MPI_INT,

MPI_SUM, comm);

int partial_sum = …, total_sum;

MPI_Reduce(&partial_sum, &total_sum,

1, MPI_INT,

MPI_SUM, root, comm);

int partial_sum = …, total_sum;

if (rank == root) {

total_sum = partial_sum;

MPI_Reduce(MPI_IN_PLACE, &total_sum,

1, MPI_INT,

MPI_SUM, root, comm);

}

else {

MPI_Reduce(&partial_sum, &total_sum,

1, MPI_INT,

MPI_SUM, root, comm);

}

MPI_Reduce MPI_Allreduce

11.04.2024 5Introduction to Parallel Programming with MPI

MPI_IN_PLACE cheat sheet

Function

MPI_IN_P

LACE

argument

@

rank(s)
Comment [MPI 3.0]

MPI_GATHER send buffer root Recv value at root already in the correct place in receive buffer.

MPI_GATHERV send buffer root Recv value at root already in the correct place in receive buffer.

MPI_SCATTER
receive

buffer
root Root-th segment of send buffer is not moved.

MPI_SCATTERV
receive

buffer
root Root-th segment of send buffer is not moved.

MPI_ALLGATHER send buffer all Input data at the correct place were process would receive its own contribution.

MPI_ALLGATHERV send buffer all Input data at the correct place were process would receive its own contribution.

MPI_ALLTOALL send buffer all
Data to be sent is taken from receive buffer and replaced by received data, data

sent/received must be of the same type map specified in receive count/receive type.

MPI_ALLTOALLV send buffer all

Data to be sent is taken from receive buffer and replaced by received data. Data

sent/received must be of the same type map specified in receive count/receive type.

The same amount of data and data type is exchanged between two processes.

MPI_REDUCE send buffer root Data taken from receive buffer, replaced with output data.

MPI_ALLREDUCE send buffer all Data taken from receive buffer, replaced with output data.

11.04.2024 6Introduction to Parallel Programming with MPI

Summary of MPI collective communication

▪ MPI (blocking) collectives

▪ All ranks in communicator must call the function

▪ Communication and synchronization

▪ Barrier, broadcast, scatter, gather, and combinations thereof

▪ Global operations

▪ Reduce, allreduce, some more…

▪ In-place buffer specification MPI_IN_PLACE

▪ Save some space if need be

11.04.2024 7Introduction to Parallel Programming with MPI

Quiz:

1) Do you recommend an application developer to use MPI_Bcast

followed by operations on the root process rather than using

MPI_Reduce? Why?
a) Yes b) No

2) Is the argument recvbuf in MPI_Reduce significant on every

process calling it?
a) Yes b) No

3) For using in an MPI_Reduce call, what is the requirement for an

operation to be defined with MPI_Op_create/MPI_Op_free by

an MPI application developer?

