Friedrich-Alexander-Universitat
N H R FAU Erlangen-Nirnberg
LY/ )\

Introduction to Parallel Programming with MPI

Dr. Alireza Ghasemi, Dr. Georg Hager

Erlangen National High Performance Computing Center

Collective Operations




Global operations: reduction

= Compute results over distributed data

MPI Reduce (sendbuf, recvbuf, count,
datatype, MPI Op op, root,

= Resultin recvbuf only available on root process

= Perform operation on all count elements
of an array

= |f all ranks need the result, then
use MPI Allreduce ()

= |f the 12 predefined ops are not enough use

rank sendbuf

0 0191216

1T 1 1

511]101]4

comm) ; 1 11 1

2 8131415

L 1T T 1

3 1]0]6]8

L1111

MPI Reduce() ¥ X X ¥

count = 4 g g g g

op = MPI_MAX l l l l

recvbuf slolels
on root

MPI Op create/MPI Op free to create own ones

Introduction to Parallel Programming with MPI

11.04.2024



Global operations — predefined operators

Name Operation Name Operation

MPI SUM Sum MPI PROD Product

MPI MAX Maximum MPI MIN Minimum

MPI LAND Logical AND MPI BAND Bit-AND

MPI LOR Logical OR MPI BOR Bit-OR

MPI LXOR Logical XOR MPI BXOR Bit-XOR

MPI MAXLOC Maximum+Position MPI MINLOC Minimum+Position

= Define own operations with MPI Op create/MPI Op free

= MPI assumes that the operations are associative
—> be careful with floating-point operations

Introduction to Parallel Programming with MPI 11.04.2024



“In-place” buffer specification

Override local input buffer with a result

MPI Reduce MPI Allreduce
int partial _sum = .., total_ sum; int partial _sum = .., total_ sum;
MPI Reduce (&partial_sum, &total sum, MPI AllReduce (&partial_ sum, &total_ sum,
1, MPI_INT, 1, MPI_INT,
MPI SUM, root, comm); MPI_SUM, comm) ;
int partial _sum = .., total_ sum; int partial _sum = .., total_ sum;
if (rank == root) {
total sum = partial sum; total _sum = partial sum;
MPI Reduce (MPI IN PLACE, &total sum, MPI AllReduce (MPI_IN PLACE, &total_ sum,
1, MPI_INT, 1, MPI_INT,
MPI_ SUM, root, comm); MPI_SUM, comm) ;
}
else {
MPI Reduce (&partial_ sum, &total sum,
1, MPI_INT,
MPI SUM, root, comm);
}

Introduction to Parallel Programming with MPI 11.04.2024



MPI IN PLACE cheat sheet

Function

MPI GATHER

MPI GATHERV

MPI SCATTER

MPI SCATTERV

MPI ALLGATHER

MPI ALLGATHERV

MPI ALLTOALL

MPI ALLTOALLV

MPI REDUCE

MPI ALLREDUCE

MPL_IN_P
LACE
argument

send buffer

send buffer

receive
buffer

receive
buffer

send buffer

send buffer

send buffer

send buffer

send buffer

send buffer

@

rank(s)

root

root

root

root

all

all

all

all

root

all

Comment [MPI 3.0]

Recv value at root already in the correct place in receive buffer.

Recv value at root already in the correct place in receive buffer.

Root-th segment of send buffer is not moved.

Root-th segment of send buffer is not moved.

Input data at the correct place were process would receive its own contribution.

Input data at the correct place were process would receive its own contribution.

Data to be sent is taken from receive buffer and replaced by received data, data
sent/received must be of the same type map specified in receive count/receive type.

Data to be sent is taken from receive buffer and replaced by received data. Data
sent/received must be of the same type map specified in receive count/receive type.
The same amount of data and data type is exchanged between two processes.

Data taken from receive buffer, replaced with output data.

Data taken from receive buffer, replaced with output data.

Introduction to Parallel Programming with MPI

11.04.2024



Summary of MPI collective communication

MPI (blocking) collectives
= All ranks in communicator must call the function

= Communication and synchronization
= Barrier, broadcast, scatter, gather, and combinations thereof

Global operations
= Reduce, allreduce, some more...

In-place buffer specification MPI_IN PLACE
= Save some space if need be

Introduction to Parallel Programming with MPI 11.04.2024



Quiz:

1) Do you recommend an application developer to use MPI_ Bcast
followed by operations on the root process rather than using
MPI Reduce? Why?

a) Yes b) No

2) Is the argument recvbuf in MPI_Reduce significant on every

process calling it?
a) Yes b) No

3) Forusingin an MPI_Reduce call, what is the requirement for an
operation to be defined with MPI Op create/MPI Op free by

an MPI application developer?

Introduction to Parallel Programming with MPI 11.04.2024



