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Distributed-memory 

architecture:

Each process(or) can only 

access its dedicated address 

space.

No global shared address 

space

Data exchange and 
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processes is done by explicitly 
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communication network 

Message passing library:

▪ Should be flexible, efficient and portable

▪ Hide communication hardware and software 

layers from application developer

Message
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The message passing paradigm

▪ Widely accepted standard in HPC / numerical simulation: 

Message Passing Interface (MPI)

▪ Process-based approach: All variables are local! 

▪ Same program on each processor/machine (SPMD)

▪ The program is written in a sequential language (Fortran/C[++]), but not 

restricted only to these two programming languages

▪ Data exchange between processes: Send/receive messages via MPI 

library calls

▪ No automatic workload distribution
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The MPI standard

▪ MPI forum – defines MPI standard / library subroutine interfaces  

▪ Latest standard in use: MPI 3.1 (2015), 868 pages

▪ MPI-4.1 was approved by the MPI Forum on 02.11.2023

▪ Members (approx. 60) of MPI standard forum

▪ Application developers

▪ Research institutes & computing centers

▪ Manufacturers of supercomputers & software designers

▪
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The MPI standard

▪ MPI forum – defines MPI standard / library subroutine interfaces  

▪ Latest standard in use: MPI 3.1 (2015), 868 pages

▪ MPI-4.1 was approved by the MPI Forum on 02.11.2023

▪ Members (approx. 60) of MPI standard forum

▪ Application developers

▪ Research institutes & computing centers

▪ Manufacturers of supercomputers & software designers

▪ Successful free implementations (MPICH, mvapich, 

OpenMPI) and vendor libraries (Intel, Cray, HP,…)

▪ Documents: http://www.mpi-forum.org/

http://www.mpi-forum.org/


09.04.2025 5Introduction to Parallel Programming with MPI

MPI goals and scope

▪ Portability is main goal: architecture- and 

hardware-independent code Application

MPI

Drivers

IB, Eth, shmem,…

Hard-

ware



09.04.2025 5Introduction to Parallel Programming with MPI

MPI goals and scope

▪ Portability is main goal: architecture- and 

hardware-independent code

▪ Fortran and C interfaces (C++ 

deprecated)

▪ Features for supporting parallel 

libraries

▪ Support for heterogeneous 

environments (e.g., clusters with 

compute nodes of different 

architectures)

Application

MPI

Drivers

IB, Eth, shmem,…

Hard-

ware
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Parallel execution in MPI

▪ Processes run throughout program execution

▪ MPI startup mechanism:

▪ launches tasks/processes

▪ think of executing multiple copies of a program

▪ establishes communication context 

(“communicator”)

▪ MPI Point-to-point communication:

▪ between pairs of tasks/processes

▪ MPI Collective communication:

▪ between all processes or a subgroup

▪ barrier, reductions, scatter/gather

▪ Clean shutdown by MPI

+

Program startup

Program shutdown
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World communicator and rank

▪ Entities must be in a group/community 

to be able to communicate.

▪ Communicator is a handle

▪ MPI_Init():

• MPI_COMM_WORLD

• all processes

▪ MPI_COMM_WORLD

• Fortran and C[++]

0 1

2

3 4
56

7

MPI_COMM_WORLD

Process rank
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Initialization and finalization

▪ Startup command of an MPI application is implementation dependent

▪ First call in an MPI program: initialization of parallel machine

int MPI_Init(int *argc, char ***argv);

▪ Last call: clean shutdown of parallel machine

int MPI_Finalize();

Only “master” process is guaranteed to continue after finalize

▪ Stdout/stderr of each MPI process

▪ usually redirected to console where program was started

▪ many options possible, depending on implementation
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Communicator and rank

▪ Communicator defines a set of processes (MPI_COMM_WORLD: all)

▪ rank: an integer identifying each process within a communicator

• Obtain rank:
int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

• rank = 0,1,2,…, (number of processes in communicator – 1)

• Not unique: one process may have distinct ranks in different communicators

▪ Obtain number of processes in communicator: 
int size;

MPI_Comm_size(MPI_COMM_WORLD, &size);
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int rank, size;

MPI_Init(&argc, &argv);
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MPI “Hello World!” in Fortran

program hello

use mpi

implicit none

integer:: rank, size, ierr

!include "mpif.h"

call MPI_INIT(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD,size,ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierr)

write(*,'(2(a,i))') &

"Hello World! I am ",rank," of ",size

call MPI_FINALIZE(ierr)

end program hello
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Compiling and running the code

▪ Compiling/linking

▪ Headers and libs must be found by 

compiler

▪ Most implementations provide 

wrapper scripts, e.g.,

▪ mpif77 / mpif90

▪ mpicc / mpiCC

▪ Behave like normal compilers/linkers 

▪ Running

▪ Details are implementation specific

▪ Startup wrappers: mpirun, mpiexec, 

aprun, poe

▪ Job scheduler wrappers: srun

$ mpiCC -o hello hello.cc

$ mpirun -np 3 ./hello

Hello World! I am 2 of 3

Hello World! I am 1 of 3

Hello World! I am 0 of 3

$ mpirun -np 1 ./hello :

-np 1 ./hello : -np 1 

./hello

Hello World! I am 1 of 3

Hello World! I am 0 of 3

Hello World! I am 2 of 3
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Point-to-Point Communication

▪ Procedure (C/C++ binding, Fortran binding, Fortran 2008 binding)

▪ Message data

▪ Buffer (address)

▪ Datatype (basic or derived?)

▪ Count (number of elements, not bytes)

▪ Message envelope

▪ Source

▪ Destination

▪ Tag

It is a communication between two processes where a sender (source 

process) sends message to a receiver (destination process).
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Point-to-point communication: message envelope

▪ Which process is sending the message?

▪ Where is the data on the sending process?

▪ What kind of data is being sent?

▪ How much data is there?

▪ Which process is receiving the 

message?

▪ Where should the data be left on the receiving process?

▪ How much data is the receiving process prepared to accept?

▪ Sender and receiver must pass their information to MPI separately

Message
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MPI point-to-point communication

▪ Processes communicate by sending and receiving messages

▪ MPI message: array of elements of a particular type

▪ Data types

▪ Basic

▪ MPI derived types

rank 𝑖 rank 𝑗

sender receiver
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MPI_SEND

▪ C/C++ binding:

#include <mpi.h>

int MPI_Send(const void *buf, int count, MPI_Datatype

datatype, int dest,int tag, MPI_Comm comm)

▪ buf: address of the first entry of the buffer to be sent

▪ count: number of elements to be sent (note that it is not bytes!)

▪ datatype: type of the data

▪ dest: rank of the destination process within the communicator comm

▪ tag: nonnegative integer which is additional transferred with the message

▪ Usage: the program can categorize the messages to identify one set to another.
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MPI_SEND

▪ Fortran binding:

use MPI or the older form: include ’mpif.h’

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM,IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

▪ Fortran 2008 binding:

use MPI_F08

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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MPI_RECV

▪ C/C++ binding:

#include <mpi.h>

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source,int tag, MPI_Comm comm,

MPI_Status *status)

▪ buf: address of the first entry of the buffer in which the data will be stored

▪ Must be large enough otherwise an overflow error occurs!

▪ count: The length of the received message must be less than or equal to the length 

of the receive buffer. The count argument indicates the maximum length of a 
message; the actual length of the message can be determined with MPI_Get_count.

▪ source: rank of the source (sender) process within the communicator comm

▪ status: contains information about the received message, to be explained!
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MPI_RECV

▪ Fortran binding:

use MPI or the older form: include ’mpif.h’

MPI_RECV(BUF,COUNT,DATATYPE, SOURCE,TAG,COMM,STATUS,IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

▪ Fortran 2008 binding:

use MPI_F08

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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Quiz:
1. Which of the following is correct?

a. There is a mechanism for automatic workload distribution in MPI

b. MPI allows for data transfer through a communication network

c. In MPI, workload can be split among processes according to their ranks

d. To execute an application, the MPI standard prescribes a startup procedure
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Exercise 1: MPI “Hello World!” in C

#include <mpi.h>

int main(char argc, char **argv) {

int irank, nrank;

MPI_FIXME(FIXME,FIXME);

MPI_Comm_FIXME(MPI_COMM_WORLD, &nrank);

MPI_Comm_rank(FIXME, FIXME);

printf(“Hello World! I am %d of %d\n”, irank, nrak);

MPI_FIXME();

}
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Exercise 2: calculating 𝜋 using Monte Carlo method

In this exercise you practice:

1. Workload distribution

2. Eliminating repetition of work done by processes

3. Collecting results of all processes 

Question: Can we improve the accuracy by increasing the number random 

points, i.e. 𝒏𝒏 > 𝟏𝟎𝟗 ?


