Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg
| LIY// e\

Introduction to Parallel Programming with MPI

Dr. Alireza Ghasemi, Dr. Georg Hager

Erlangen National High Performance Computing Center

MPI: Essential Preliminaries

The message passing paradigm

Distributed-memory

architecture: P P P P P
cC C C cC C

Each process(or) can only ' R B BB

access its dedicated address M M M M M

space.

No global shared address
space

Communication network

Data exchange and
communication between
processes is done by explicitly
passing messages through a
communication network

Introduction to Parallel Programming with MPI 09.04.2025

The message passing paradigm

Distributed-memory

architecture: P P P P P
cC C C cC C

Each process(or) can only R B B B

access its dedicated address ! Message M M I M

space.)) U —

No global shared address
space

Communication network

Data exchange and
communication between
processes is done by explicitly
passing messages through a
communication network

Introduction to Parallel Programming with MPI 09.04.2025

The message passing paradigm

Distributed-memory

architecture: P P P P P
cC C C cC C

Each process(or) can only R B B B

access its dedicated address ! Message M M I M

space.)) U —

No global shared address
space

Communication network

Data exchange and Message passing library:
communication between
processes is done by explicitly
passing messages through a = Hide communication hardware and software
communication network layers from application developer

= Should be flexible, efficient and portable

Introduction to Parallel Programming with MPI 09.04.2025 2

The message passing paradigm

= Widely accepted standard in HPC / numerical simulation:
Message Passing Interface (MPI)

Introduction to Parallel Programming with MPI 09.04.2025

The message passing paradigm

= Widely accepted standard in HPC / numerical simulation:
Message Passing Interface (MPI)

= Process-based approach: All variables are local!
= Same program on each processor/machine (SPMD)

Introduction to Parallel Programming with MPI 09.04.2025

The message passing paradigm

= Widely accepted standard in HPC / numerical simulation:
Message Passing Interface (MPI)

» Process-based approach: All variables are local!
= Same program on each processor/machine (SPMD)

= The program is written in a sequential language (Fortran/C[++]), but not
restricted only to these two programming languages

= Data exchange between processes: Send/receive messages via MPI
library calls

= No automatic workload distribution

Introduction to Parallel Programming with MPI 09.04.2025

The MPI standard

= MPI forum — defines MPI standard / library subroutine interfaces

= | atest standard in use: MPI1 3.1 (2015), 868 pages
= MPI-4.1 was approved by the MPI| Forum on 02.11.2023

= Members (approx. 60) of MPI standard forum
= Application developers
= Research institutes & computing centers
= Manufacturers of supercomputers & software designers

Introduction to Parallel Programming with MPI 09.04.2025 4

http://www.mpi-forum.org/

The MPI standard

= MPI forum — defines MPI standard / library subroutine interfaces

= | atest standard in use: MPI1 3.1 (2015), 868 pages
= MPI-4.1 was approved by the MPI| Forum on 02.11.2023

= Members (approx. 60) of MPI standard forum
= Application developers
= Research institutes & computing centers
= Manufacturers of supercomputers & software designers

= Successful free implementations (MPICH, mvapich,
OpenMPI) and vendor libraries (Intel, Cray, HP,...)

= Documents: http://www.mpi-forum.org/

Introduction to Parallel Programming with MPI 09.04.2025 4

http://www.mpi-forum.org/

MPI| goals and scope

= Portability is main goal: architecture- and
hardware-independent code Application

MPI

Introduction to Parallel Programming with MPI 09.04.2025 5

MPI| goals and scope

= Portability is main goal: architecture- and

hardware-independent code Application
MPI
» Fortran and C interfaces (C++
deprecated)
= Features for supporting parallel
libraries

= Support for heterogeneous
environments (e.g., clusters with
compute nodes of different
architectures)

Introduction to Parallel Programming with MPI 09.04.2025

Parallel execution in MPI

= Processes run throughout program execution
Program startup

YV V.V V'Y
Program shutdown

Introduction to Parallel Programming with MPI 09.04.2025

Parallel execution in MPI

\4

Program startup

\4

Program shutdown

\4

\ 4

\4

= Processes run throughout program execution
= MPI startup mechanism:

= launches tasks/processes
= think of executing multiple copies of a program

= establishes communication context
(“communicator”)

Introduction to Parallel Programming with MPI

09.04.2025

Parallel execution in MPI

\4

Program startup

\4

Program shutdown

\4

\ 4

—

\4

= Processes run throughout program execution

= MPI startup mechanism:

= launches tasks/processes
= think of executing multiple copies of a program

= establishes communication context
(“communicator”)

= MPI Point-to-point communication:
= between pairs of tasks/processes

Introduction to Parallel Programming with MPI

09.04.2025

Parallel execution in MPI

\4

Program startup

\4

Program shutdown

\4

\ 4

\4

Processes run throughout program execution

MPI startup mechanism:

= launches tasks/processes
= think of executing multiple copies of a program

= establishes communication context
(“communicator”)

MPI Point-to-point communication:
= between pairs of tasks/processes
MPI| Collective communication:

= between all processes or a subgroup
= barrier, reductions, scatter/gather

Introduction to Parallel Programming with MPI

09.04.2025

Parallel execution in MPI

\4

Program startup

\4

Program shutdown

\4

\ 4

\4

= Processes run throughout program execution

MPI startup mechanism:

= launches tasks/processes
= think of executing multiple copies of a program

= establishes communication context
(“communicator”)

MPI Point-to-point communication:
= between pairs of tasks/processes
MPI| Collective communication:

= between all processes or a subgroup
= barrier, reductions, scatter/gather

Clean shutdown by MPI

Introduction to Parallel Programming with MPI

09.04.2025

World communicator and rank

= Entities must be in a group/community
to be able to communicate.

= Communicator is a handle
" MPI Init():

- MPI_COMM_WORLD

- all processes
= MPI_COMM_WORLD

- Fortran and C[++]

MPI_COMM WORLD

Process rank

Introduction to Parallel Programming with MPI 09.04.2025 7

Initialization and finalization

= Startup command of an MPI application is implementation dependent

Introduction to Parallel Programming with MPI 09.04.2025

Initialization and finalization

= Startup command of an MPI application is implementation dependent

= First call in an MPI program: initialization of parallel machine

int MPI Init(int *argc, char ***argv);

Introduction to Parallel Programming with MPI 09.04.2025

Initialization and finalization

= Startup command of an MPI application is implementation dependent

= First call in an MPI program: initialization of parallel machine

int MPI Init(int *argc, char ***argv);

= [ast call: clean shutdown of parallel machine

int MPI Finalize();

Only “master” process is guaranteed to continue after finalize

Introduction to Parallel Programming with MPI 09.04.2025

Initialization and finalization

= Startup command of an MPI application is implementation dependent

= First call in an MPI program: initialization of parallel machine

int MPI Init(int *argc, char ***argv);

= [ast call: clean shutdown of parallel machine

int MPI Finalize();

Only “master” process is guaranteed to continue after finalize

= Stdout/stderr of each MPI process
= usually redirected to console where program was started
= many options possible, depending on implementation

Introduction to Parallel Programming with MPI 09.04.2025

Communicator and rank

= Communicator defines a set of processes (MPI COMM WORLD: all)

Introduction to Parallel Programming with MPI 09.04.2025

Communicator and rank

= Communicator defines a set of processes (MPI COMM WORLD: all)

= rank: an integer identifying each process within a communicator
« Obtain rank:

int rank;
MPI Comm rank (MPI _COMM WORLD, &rank);

« rank = 0,1,2,..., (humber of processes in communicator — 1)
* Not unique: one process may have distinct ranks in different communicators

Introduction to Parallel Programming with MPI 09.04.2025

Communicator and rank

= Communicator defines a set of processes (MPI COMM WORLD: all)

= rank: an integer identifying each process within a communicator
« Obtain rank:

int rank;
MPI Comm rank (MPI _COMM WORLD, &rank);

« rank = 0,1,2,..., (humber of processes in communicator — 1)
* Not unique: one process may have distinct ranks in different communicators

= Obtain number of processes in communicator:
int size;
MPI Comm size (MPI_COMM WORLD, é&size);

Introduction to Parallel Programming with MPI 09.04.2025

MPI “Hello World!" in C

#include <mpi.h>

int main(char argc, char **argv) ({
int rank, size;

MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD, é&size);
MPI Comm rank (MPI _COMM WORLD, é&rank);

printf (“Hello World! I am %d of %d\n”, rank, size);

MPI Finalize();

Introduction to Parallel Programming with MPI 09.04.2025

MPI “Hello World!" in C

#include <mpi.h>

int main(char argc, char **argv) ({

int rank, size;: Never forget that

these are pointers to
the original variables!
MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD, é&size);

MPI Comm rank (MPI _COMM WORLD, é&rank);

printf (“Hello World! I am %d of %d\n”, rank, size);

MPI Finalize();

Introduction to Parallel Programming with MPI 09.04.2025

10

MPI “Hello World!" in C

#include <mpi.h>

int main(char argc, char **argv) ({

int rank, size:; Never forget that

these are pointers to
the original variables!
MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD, é&size);
MPI Comm rank (MPI_COMM WORLD, é&rank);

printf (“Hello World! I $d of %d\n”, rank, size);
MPI Finalize(); Communicator

required for (almost)
} all MPI calls

Introduction to Parallel Programming with MPI 09.04.2025

10

MPI “Hello World!” in Fortran

program hello

use mpi
implicit none
integer:: rank, size, ilerr

'include "mpif.h"
call MPI INIT (ierr)
call MPI _coMmM SIZE(MPI COMM WORLD, size,lierr)
call MPI COMM RANK (MPI_COMM WORLD,rank,ierr)
write (*, '(2(a i))') &

"Hello World! I am ",rank," of ",6size

call MPI_FINALIZE (ierr)
end program hello

Introduction to Parallel Programming with MPI 09.04.2025

11

MPI “Hello World!” in Fortran

program hello

use mpi By default, Fortran
implicit none arguments are

. . i passed by reference!
integer:: rank, size, ilerr

'include "mpif.h"
call MPI INIT (ierr)
call MPI _coMmM SIZE(MPI COMM WORLD, size,lierr)
call MPI COMM RANK(MPI COMM WORLD,rank,ierr)
write(¥*, '(2(a i))') &

"Hello World! I am ",rank," of ",6size

call MPI_FINALIZE (ierr)
end program hello

Introduction to Parallel Programming with MPI 09.04.2025

11

MPI “Hello World!” in Fortran

program hello

use mpi By default, Fortran
implicit none arguments are

. . i passed by reference!
integer:: rank, size, ilerr

'include "mpif.h"
call MPI INIT (ierr)
call MPI _coMmM SIZE(MPI COMM WORLD, size,lierr)
call MPI COMM RANK(MPI COMM WORLD,rank,ierr)
write(¥*, '(2(a i))') &

"Hello World! I am ",rank,™of ",size

call MPI_FINALIZE (ierr) Communicator

required for (almost
end program hello qm”wmémg)

Introduction to Parallel Programming with MPI 09.04.2025

11

Compiling and running the code

= Compiling/linking
= Headers and libs must be found by
compiler

= Most implementations provide
wrapper scripts, e.g.,
- mpif77 /mpif90
- mpicc/mpiCC
= Behave like normal compilers/linkers

Introduction to Parallel Programming with MPI

09.04.2025

12

Compiling and running the code

= Compiling/linking
= Headers and libs must be found by
compiler
= Most implementations provide
wrapper scripts, e.g.,
- mpif77 /mpif90
- mpicc/mpiCC
= Behave like normal compilers/linkers
= Running
= Details are implementation specific
= Startup wrappers: mpirun, mpiexec,
aprun, poe
- Job scheduler wrappers: srun

Introduction to Parallel Programming with MPI

09.04.2025

12

Compiling and running the code

= Compiling/linking
= Headers and libs must be found by
compiler
= Most implementations provide
wrapper scripts, e.g.,
- mpif77 /mpif90
- mpicc/mpiCC
= Behave like normal compilers/linkers
= Running
= Details are implementation specific
= Startup wrappers: mpirun, mpiexec,
aprun, poe
- Job scheduler wrappers: srun

$ mpiCC -o hello hello.

$ mpirun -np 3 ./hello
Hello World! I am 2 of
Hello World! I am 1 of
Hello World! I am 0 of

ccC

w w

Introduction to Parallel Programming with MPI

09.04.2025

12

Compiling and running the code

= Compiling/linking
= Headers and libs must be found by
compiler
= Most implementations provide
wrapper scripts, e.g.,
- mpif77 /mpif90
- mpicc/mpiCC
= Behave like normal compilers/linkers
= Running
= Details are implementation specific
= Startup wrappers: mpirun, mpiexec,
aprun, poe

- Job scheduler wrappers: srun

$ mpiCC -o hello hello.

$ mpirun -np 3 ./hello
I am 2 of
I am 1 of
I am 0 of

Hello World!
Hello World!
Hello World!

$ mpirun -np 1
-np 1 ./hello

./hello

Hello World!
Hello World!
Hello World!

./hello

-np 1
I am 1 of
I am 0 of
I am 2 of

ccC

w w

w w

Introduction to Parallel Programming with MPI

09.04.2025

12

Point-to-Point Communication

It is a communication between two processes where a sender (source
process) sends message to a receiver (destination process).

= Procedure (C/C++ binding, Fortran binding, Fortran 2008 binding)

= Message data

= Buffer (address)

= Datatype (basic or derived?)

= Count (number of elements, not bytes)
= Message envelope

= Source

= Destination

= Tag

Introduction to Parallel Programming with MPI 09.04.2025

13

Point-to-point communication: message envelope

= Which process is sending the message? P P P P P
= Where is the data on the sending process? c c c c c
= What kind of data is being sent? ml (m]| [m] [|
- How much data is there? Message [—— —— :

= Which process is receiving the
message”?

= Where should the data be left on the receiving process?
= How much data is the receiving process prepared to accept?

Communication netvrork

= Sender and receiver must pass their information to MPI| separately

Introduction to Parallel Programming with MPI 09.04.2025

MPI point-to-point communication

= Processes communicate by sending and receiving messages
= MPI message: array of elements of a particular type

rank j

sender receiver

= Data types
= Basic
= MPI derived types

Introduction to Parallel Programming with MPI 09.04.2025

15

MPI point-to-point communication

= Processes communicate by sending and receiving messages
= MPI message: array of elements of a particular type

rank j

sender receiver

= Data types
= Basic
= MPI derived types

Introduction to Parallel Programming with MPI 09.04.2025

15

MPI_SEND

C/C++ binding:

#include <mpi.h>
int MPI_Send(const void *buf, int count, MPI Datatype
datatype, int dest,int tag, MPI Comm comm)

buf: address of the first entry of the buffer to be sent

count: number of elements to be sent (note that it is not bytes!)
datatype: type of the data

dest: rank of the destination process within the communicator comm

tag: nonnegative integer which is additional transferred with the message
= Usage: the program can categorize the messages to identify one set to another.

Introduction to Parallel Programming with MPI 09.04.2025 16

MPI_SEND

= Fortran binding:

use MPI or the older form: include 'mpif.h’

MPI_ SEND (BUF, COUNT, DATATYPE, DEST, TAG, COMM,IERROR)
<type> BUF (*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

= Fortran 2008 binding:

use MPI FO08
MPI Send(buf, count, datatype, dest, tag, comm, ierror)

TYPE (*) , DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT (IN) :: count, dest, tag
TYPE (MPI Datatype), INTENT (IN) :: datatype
TYPE (MPI Comm) , INTENT (IN) :: comm

INTEGER, OPTIONAL, INTENT (OUT) :: ierror

Introduction to Parallel Programming with MPI 09.04.2025

MPI_RECV

C/C++ binding:

#include <mpi.h>

int MPI Recv(void *buf, int count, MPI Datatype datatype,
int source,int tag, MPI Comm comm,
MPI Status *status)

= buf: address of the first entry of the buffer in which the data will be stored

= Must be large enough otherwise an overflow error occurs!

= count: The length of the received message must be less than or equal to the length

of the receive buffer. The count argument indicates the maximum length of a
message; the actual length of the message can be determined with MPI_Get count.

» source: rank of the source (sender) process within the communicator comm
= status: contains information about the received message, to be explained!

Introduction to Parallel Programming with MPI 09.04.2025 18

MPI_RECV

= Fortran binding:

use MPI or the older form: include ’'mpif.h’

MPI RECV (BUF,COUNT,DATATYPE, SOURCE, TAG,COMM,STATUS,6 IERROR)
<type> BUF (*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM
INTEGER STATUS (MPI_STATUS SIZE), IERROR

= Fortran 2008 binding:

use MPI FO08
MPI Send(buf, count, datatype, dest, tag, comm, ierror)

TYPE (*) , DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT (IN) :: count, dest, tag
TYPE (MPI Datatype), INTENT (IN) :: datatype
TYPE (MPI Comm) , INTENT (IN) :: comm

INTEGER, OPTIONAL, INTENT (OUT) :: ierror

Introduction to Parallel Programming with MPI 09.04.2025

Quiz:

1.

Which of the following is correct?

There is a mechanism for automatic workload distribution in MPI

MPI allows for data transfer through a communication network

In MPI, workload can be split among processes according to their ranks

To execute an application, the MPI| standard prescribes a startup procedure

a0 oo

Introduction to Parallel Programming with MPI 09.04.2025

20

Quiz:

1.

Which of the following is correct?

a. There is a mechanism for automatic workload distribution in MPI

b. MPI allows for data transfer through a communication network

C. In MPI, workload can be split among processes according to their ranks

d. To execute an application, the MPI standard prescribes a startup procedure

Answer: b. and c.

Introduction to Parallel Programming with MPI 09.04.2025

20

Quiz:

1. Which of the following is correct?
a. There is a mechanism for automatic workload distribution in MPI
b. MPI allows for data transfer through a communication network
C. In MPI, workload can be split among processes according to their ranks

d. To execute an application, the MPI standard prescribes a startup procedure
Answer: b. and c.

2. Is the rank of a process within a communicator unique?
a. Yes b. No

Introduction to Parallel Programming with MPI 09.04.2025

20

Quiz:

1. Which of the following is correct?

a. There is a mechanism for automatic workload distribution in MPI

b. MPI allows for data transfer through a communication network

C. In MPI, workload can be split among processes according to their ranks

d. To execute an application, the MPI standard prescribes a startup procedure
Answer: b. and c.

2. Is the rank of a process within a communicator unique?

a. Yes b. No
Answer: a.

Introduction to Parallel Programming with MPI 09.04.2025

20

Quiz:

1. Which of the following is correct?
a. There is a mechanism for automatic workload distribution in MPI
b. MPI allows for data transfer through a communication network
C. In MPI, workload can be split among processes according to their ranks

d. To execute an application, the MPI standard prescribes a startup procedure
Answer: b. and c.

2. Is the rank of a process within a communicator unique?

a. Yes b. No
Answer: a.

3. Does count in MPI_Send and MPI_Recv determine the number of bytes in
the point-to-point communication?
a. Yes b. No

Introduction to Parallel Programming with MPI 09.04.2025 20

Quiz:

1. Which of the following is correct?
a. There is a mechanism for automatic workload distribution in MPI
b. MPI allows for data transfer through a communication network
C. In MPI, workload can be split among processes according to their ranks

d. To execute an application, the MPI standard prescribes a startup procedure
Answer: b. and c.

2. Is the rank of a process within a communicator unique?

a. Yes b. No
Answer: a.

3. Does count in MPI_Send and MPI_Recv determine the number of bytes in
the point-to-point communication?
a. Yes b. No

Answer: b.

Introduction to Parallel Programming with MPI 09.04.2025 20

Exercise 1: MPI “Hello World!” in C

#include <mpi.h>

int main (char argc, char **argv) ({
int irank, nrank;

MPI FIXME (FIXME, FIXME)
MPI Comm FIXME (MPI COMM WORLD, é&nrank);
MPI Comm rank (FIXME, FIXME);

printf (“Hello World! I am %d of %d\n”, irank, nrak);

MPI FIXME () ;

Introduction to Parallel Programming with MPI 09.04.2025

21

Exercise 1: MPI “Hello World!” in C

#include <mpi.h>

int main (char argc, char **argv) ({

int irank, nrank; Never forget that

these are pointers to

the original variables!
MPI FIXME (FIXME, FIXME)

MPI_Comm_FIXME (MPI_COMM_WORLD , &nrank) ;
MPI_Comm_rank (FIXME, FIXME) ;
printf (“Hello World! I am %d of %d\n”, irank, nrak);

MPI FIXME () ;

Introduction to Parallel Programming with MPI 09.04.2025

21

Exercise 1: MPI “Hello World!” in C

#include <mpi.h>

int main (char argc, char **argv) ({

int irank, nrank; Never forget that

these are pointers to

the original variables!
MPI FIXME (FIXME, FIXME)

MPI Comm FIXME (MPI COMM WORLD, é&nrank);
MPI Comm rank (FIXME, FIXME);

printf (“Hello World! am %d of %d\n”, irank, nrak);

MPI FIXME () ; Communicator
o ’ required for (almost)

} all MPI calls

Introduction to Parallel Programming with MPI 09.04.2025

21

Exercise 2: calculating m using Monte Carlo method

In this exercise you practice:

1. Workload distribution

2. Eliminating repetition of work done by processes
3. Collecting results of all processes

Question: Can we improve the accuracy by increasing the number random
points, i.e. nn > 10° ?

Introduction to Parallel Programming with MPI 09.04.2025

22

