
Introduction to Parallel Programming with MPI

Dr. Alireza Ghasemi, Dr. Georg Hager

Erlangen National High Performance Computing Center

MPI: Essential Preliminaries

09.04.2025 2Introduction to Parallel Programming with MPI

The message passing paradigm

Distributed-memory

architecture:

Each process(or) can only

access its dedicated address

space.

No global shared address

space

Data exchange and

communication between

processes is done by explicitly

passing messages through a

communication network

09.04.2025 2Introduction to Parallel Programming with MPI

The message passing paradigm

Distributed-memory

architecture:

Each process(or) can only

access its dedicated address

space.

No global shared address

space

Data exchange and

communication between

processes is done by explicitly

passing messages through a

communication network

Message

09.04.2025 2Introduction to Parallel Programming with MPI

The message passing paradigm

Distributed-memory

architecture:

Each process(or) can only

access its dedicated address

space.

No global shared address

space

Data exchange and

communication between

processes is done by explicitly

passing messages through a

communication network

Message passing library:

▪ Should be flexible, efficient and portable

▪ Hide communication hardware and software

layers from application developer

Message

09.04.2025 3Introduction to Parallel Programming with MPI

The message passing paradigm

▪ Widely accepted standard in HPC / numerical simulation:

Message Passing Interface (MPI)

▪

▪

▪

▪

▪

09.04.2025 3Introduction to Parallel Programming with MPI

The message passing paradigm

▪ Widely accepted standard in HPC / numerical simulation:

Message Passing Interface (MPI)

▪ Process-based approach: All variables are local!

▪ Same program on each processor/machine (SPMD)

▪

▪

▪

09.04.2025 3Introduction to Parallel Programming with MPI

The message passing paradigm

▪ Widely accepted standard in HPC / numerical simulation:

Message Passing Interface (MPI)

▪ Process-based approach: All variables are local!

▪ Same program on each processor/machine (SPMD)

▪ The program is written in a sequential language (Fortran/C[++]), but not

restricted only to these two programming languages

▪ Data exchange between processes: Send/receive messages via MPI

library calls

▪ No automatic workload distribution

09.04.2025 4Introduction to Parallel Programming with MPI

The MPI standard

▪ MPI forum – defines MPI standard / library subroutine interfaces

▪ Latest standard in use: MPI 3.1 (2015), 868 pages

▪ MPI-4.1 was approved by the MPI Forum on 02.11.2023

▪ Members (approx. 60) of MPI standard forum

▪ Application developers

▪ Research institutes & computing centers

▪ Manufacturers of supercomputers & software designers

▪

▪

http://www.mpi-forum.org/

09.04.2025 4Introduction to Parallel Programming with MPI

The MPI standard

▪ MPI forum – defines MPI standard / library subroutine interfaces

▪ Latest standard in use: MPI 3.1 (2015), 868 pages

▪ MPI-4.1 was approved by the MPI Forum on 02.11.2023

▪ Members (approx. 60) of MPI standard forum

▪ Application developers

▪ Research institutes & computing centers

▪ Manufacturers of supercomputers & software designers

▪ Successful free implementations (MPICH, mvapich,

OpenMPI) and vendor libraries (Intel, Cray, HP,…)

▪ Documents: http://www.mpi-forum.org/

http://www.mpi-forum.org/

09.04.2025 5Introduction to Parallel Programming with MPI

MPI goals and scope

▪ Portability is main goal: architecture- and

hardware-independent code Application

MPI

Drivers

IB, Eth, shmem,…

Hard-

ware

09.04.2025 5Introduction to Parallel Programming with MPI

MPI goals and scope

▪ Portability is main goal: architecture- and

hardware-independent code

▪ Fortran and C interfaces (C++

deprecated)

▪ Features for supporting parallel

libraries

▪ Support for heterogeneous

environments (e.g., clusters with

compute nodes of different

architectures)

Application

MPI

Drivers

IB, Eth, shmem,…

Hard-

ware

09.04.2025 6Introduction to Parallel Programming with MPI

Parallel execution in MPI

▪ Processes run throughout program execution

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

+

Program startup

Program shutdown

09.04.2025 6Introduction to Parallel Programming with MPI

Parallel execution in MPI

▪ Processes run throughout program execution

▪ MPI startup mechanism:

▪ launches tasks/processes

▪ think of executing multiple copies of a program

▪ establishes communication context

(“communicator”)

▪

▪

▪

▪

▪

▪

+

Program startup

Program shutdown

09.04.2025 6Introduction to Parallel Programming with MPI

Parallel execution in MPI

▪ Processes run throughout program execution

▪ MPI startup mechanism:

▪ launches tasks/processes

▪ think of executing multiple copies of a program

▪ establishes communication context

(“communicator”)

▪ MPI Point-to-point communication:

▪ between pairs of tasks/processes

▪

▪

▪

▪

+

Program startup

Program shutdown

09.04.2025 6Introduction to Parallel Programming with MPI

Parallel execution in MPI

▪ Processes run throughout program execution

▪ MPI startup mechanism:

▪ launches tasks/processes

▪ think of executing multiple copies of a program

▪ establishes communication context

(“communicator”)

▪ MPI Point-to-point communication:

▪ between pairs of tasks/processes

▪ MPI Collective communication:

▪ between all processes or a subgroup

▪ barrier, reductions, scatter/gather

▪

+

Program startup

Program shutdown

09.04.2025 6Introduction to Parallel Programming with MPI

Parallel execution in MPI

▪ Processes run throughout program execution

▪ MPI startup mechanism:

▪ launches tasks/processes

▪ think of executing multiple copies of a program

▪ establishes communication context

(“communicator”)

▪ MPI Point-to-point communication:

▪ between pairs of tasks/processes

▪ MPI Collective communication:

▪ between all processes or a subgroup

▪ barrier, reductions, scatter/gather

▪ Clean shutdown by MPI

+

Program startup

Program shutdown

09.04.2025 7Introduction to Parallel Programming with MPI

World communicator and rank

▪ Entities must be in a group/community

to be able to communicate.

▪ Communicator is a handle

▪ MPI_Init():

• MPI_COMM_WORLD

• all processes

▪ MPI_COMM_WORLD

• Fortran and C[++]

0 1

2

3 4
56

7

MPI_COMM_WORLD

Process rank

09.04.2025 8Introduction to Parallel Programming with MPI

Initialization and finalization

▪ Startup command of an MPI application is implementation dependent

▪

▪

▪

▪

▪

09.04.2025 8Introduction to Parallel Programming with MPI

Initialization and finalization

▪ Startup command of an MPI application is implementation dependent

▪ First call in an MPI program: initialization of parallel machine

int MPI_Init(int *argc, char ***argv);

▪

▪

▪

▪

09.04.2025 8Introduction to Parallel Programming with MPI

Initialization and finalization

▪ Startup command of an MPI application is implementation dependent

▪ First call in an MPI program: initialization of parallel machine

int MPI_Init(int *argc, char ***argv);

▪ Last call: clean shutdown of parallel machine

int MPI_Finalize();

Only “master” process is guaranteed to continue after finalize

▪

▪

▪

09.04.2025 8Introduction to Parallel Programming with MPI

Initialization and finalization

▪ Startup command of an MPI application is implementation dependent

▪ First call in an MPI program: initialization of parallel machine

int MPI_Init(int *argc, char ***argv);

▪ Last call: clean shutdown of parallel machine

int MPI_Finalize();

Only “master” process is guaranteed to continue after finalize

▪ Stdout/stderr of each MPI process

▪ usually redirected to console where program was started

▪ many options possible, depending on implementation

09.04.2025 9Introduction to Parallel Programming with MPI

Communicator and rank

▪ Communicator defines a set of processes (MPI_COMM_WORLD: all)

▪

•

•

•

▪

09.04.2025 9Introduction to Parallel Programming with MPI

Communicator and rank

▪ Communicator defines a set of processes (MPI_COMM_WORLD: all)

▪ rank: an integer identifying each process within a communicator

• Obtain rank:
int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

• rank = 0,1,2,…, (number of processes in communicator – 1)

• Not unique: one process may have distinct ranks in different communicators

▪

09.04.2025 9Introduction to Parallel Programming with MPI

Communicator and rank

▪ Communicator defines a set of processes (MPI_COMM_WORLD: all)

▪ rank: an integer identifying each process within a communicator

• Obtain rank:
int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

• rank = 0,1,2,…, (number of processes in communicator – 1)

• Not unique: one process may have distinct ranks in different communicators

▪ Obtain number of processes in communicator:
int size;

MPI_Comm_size(MPI_COMM_WORLD, &size);

09.04.2025 10Introduction to Parallel Programming with MPI

MPI “Hello World!” in C

#include <mpi.h>

int main(char argc, char **argv) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf(“Hello World! I am %d of %d\n”, rank, size);

MPI_Finalize();

}

09.04.2025 10Introduction to Parallel Programming with MPI

MPI “Hello World!” in C

#include <mpi.h>

int main(char argc, char **argv) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf(“Hello World! I am %d of %d\n”, rank, size);

MPI_Finalize();

}

Never forget that

these are pointers to

the original variables!

09.04.2025 10Introduction to Parallel Programming with MPI

MPI “Hello World!” in C

#include <mpi.h>

int main(char argc, char **argv) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf(“Hello World! I am %d of %d\n”, rank, size);

MPI_Finalize();

}

Never forget that

these are pointers to

the original variables!

Communicator

required for (almost)

all MPI calls

09.04.2025 11Introduction to Parallel Programming with MPI

MPI “Hello World!” in Fortran

program hello

use mpi

implicit none

integer:: rank, size, ierr

!include "mpif.h"

call MPI_INIT(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD,size,ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierr)

write(*,'(2(a,i))') &

"Hello World! I am ",rank," of ",size

call MPI_FINALIZE(ierr)

end program hello

09.04.2025 11Introduction to Parallel Programming with MPI

MPI “Hello World!” in Fortran

program hello

use mpi

implicit none

integer:: rank, size, ierr

!include "mpif.h"

call MPI_INIT(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD,size,ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierr)

write(*,'(2(a,i))') &

"Hello World! I am ",rank," of ",size

call MPI_FINALIZE(ierr)

end program hello

By default, Fortran

arguments are

passed by reference!

09.04.2025 11Introduction to Parallel Programming with MPI

MPI “Hello World!” in Fortran

program hello

use mpi

implicit none

integer:: rank, size, ierr

!include "mpif.h"

call MPI_INIT(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD,size,ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierr)

write(*,'(2(a,i))') &

"Hello World! I am ",rank," of ",size

call MPI_FINALIZE(ierr)

end program hello

By default, Fortran

arguments are

passed by reference!

Communicator

required for (almost)

all MPI calls

09.04.2025 12Introduction to Parallel Programming with MPI

Compiling and running the code

▪ Compiling/linking

▪ Headers and libs must be found by

compiler

▪ Most implementations provide

wrapper scripts, e.g.,

▪ mpif77 / mpif90

▪ mpicc / mpiCC

▪ Behave like normal compilers/linkers

▪

▪

▪

▪

09.04.2025 12Introduction to Parallel Programming with MPI

Compiling and running the code

▪ Compiling/linking

▪ Headers and libs must be found by

compiler

▪ Most implementations provide

wrapper scripts, e.g.,

▪ mpif77 / mpif90

▪ mpicc / mpiCC

▪ Behave like normal compilers/linkers

▪ Running

▪ Details are implementation specific

▪ Startup wrappers: mpirun, mpiexec,

aprun, poe

▪ Job scheduler wrappers: srun

09.04.2025 12Introduction to Parallel Programming with MPI

Compiling and running the code

▪ Compiling/linking

▪ Headers and libs must be found by

compiler

▪ Most implementations provide

wrapper scripts, e.g.,

▪ mpif77 / mpif90

▪ mpicc / mpiCC

▪ Behave like normal compilers/linkers

▪ Running

▪ Details are implementation specific

▪ Startup wrappers: mpirun, mpiexec,

aprun, poe

▪ Job scheduler wrappers: srun

$ mpiCC -o hello hello.cc

$ mpirun -np 3 ./hello

Hello World! I am 2 of 3

Hello World! I am 1 of 3

Hello World! I am 0 of 3

09.04.2025 12Introduction to Parallel Programming with MPI

Compiling and running the code

▪ Compiling/linking

▪ Headers and libs must be found by

compiler

▪ Most implementations provide

wrapper scripts, e.g.,

▪ mpif77 / mpif90

▪ mpicc / mpiCC

▪ Behave like normal compilers/linkers

▪ Running

▪ Details are implementation specific

▪ Startup wrappers: mpirun, mpiexec,

aprun, poe

▪ Job scheduler wrappers: srun

$ mpiCC -o hello hello.cc

$ mpirun -np 3 ./hello

Hello World! I am 2 of 3

Hello World! I am 1 of 3

Hello World! I am 0 of 3

$ mpirun -np 1 ./hello :

-np 1 ./hello : -np 1

./hello

Hello World! I am 1 of 3

Hello World! I am 0 of 3

Hello World! I am 2 of 3

09.04.2025 13Introduction to Parallel Programming with MPI

Point-to-Point Communication

▪ Procedure (C/C++ binding, Fortran binding, Fortran 2008 binding)

▪ Message data

▪ Buffer (address)

▪ Datatype (basic or derived?)

▪ Count (number of elements, not bytes)

▪ Message envelope

▪ Source

▪ Destination

▪ Tag

It is a communication between two processes where a sender (source

process) sends message to a receiver (destination process).

09.04.2025 14Introduction to Parallel Programming with MPI

Point-to-point communication: message envelope

▪ Which process is sending the message?

▪ Where is the data on the sending process?

▪ What kind of data is being sent?

▪ How much data is there?

▪ Which process is receiving the

message?

▪ Where should the data be left on the receiving process?

▪ How much data is the receiving process prepared to accept?

▪ Sender and receiver must pass their information to MPI separately

Message

09.04.2025 15Introduction to Parallel Programming with MPI

MPI point-to-point communication

▪ Processes communicate by sending and receiving messages

▪ MPI message: array of elements of a particular type

▪ Data types

▪ Basic

▪ MPI derived types

rank 𝑖 rank 𝑗

sender receiver

09.04.2025 15Introduction to Parallel Programming with MPI

MPI point-to-point communication

▪ Processes communicate by sending and receiving messages

▪ MPI message: array of elements of a particular type

▪ Data types

▪ Basic

▪ MPI derived types

rank 𝑖 rank 𝑗

sender receiver

09.04.2025 16Introduction to Parallel Programming with MPI

MPI_SEND

▪ C/C++ binding:

#include <mpi.h>

int MPI_Send(const void *buf, int count, MPI_Datatype

datatype, int dest,int tag, MPI_Comm comm)

▪ buf: address of the first entry of the buffer to be sent

▪ count: number of elements to be sent (note that it is not bytes!)

▪ datatype: type of the data

▪ dest: rank of the destination process within the communicator comm

▪ tag: nonnegative integer which is additional transferred with the message

▪ Usage: the program can categorize the messages to identify one set to another.

09.04.2025 17Introduction to Parallel Programming with MPI

MPI_SEND

▪ Fortran binding:

use MPI or the older form: include ’mpif.h’

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM,IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

▪ Fortran 2008 binding:

use MPI_F08

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

09.04.2025 18Introduction to Parallel Programming with MPI

MPI_RECV

▪ C/C++ binding:

#include <mpi.h>

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source,int tag, MPI_Comm comm,

MPI_Status *status)

▪ buf: address of the first entry of the buffer in which the data will be stored

▪ Must be large enough otherwise an overflow error occurs!

▪ count: The length of the received message must be less than or equal to the length

of the receive buffer. The count argument indicates the maximum length of a
message; the actual length of the message can be determined with MPI_Get_count.

▪ source: rank of the source (sender) process within the communicator comm

▪ status: contains information about the received message, to be explained!

09.04.2025 19Introduction to Parallel Programming with MPI

MPI_RECV

▪ Fortran binding:

use MPI or the older form: include ’mpif.h’

MPI_RECV(BUF,COUNT,DATATYPE, SOURCE,TAG,COMM,STATUS,IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

▪ Fortran 2008 binding:

use MPI_F08

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

09.04.2025 20Introduction to Parallel Programming with MPI

Quiz:
1. Which of the following is correct?

a. There is a mechanism for automatic workload distribution in MPI

b. MPI allows for data transfer through a communication network

c. In MPI, workload can be split among processes according to their ranks

d. To execute an application, the MPI standard prescribes a startup procedure

09.04.2025 20Introduction to Parallel Programming with MPI

Quiz:
1. Which of the following is correct?

a. There is a mechanism for automatic workload distribution in MPI

b. MPI allows for data transfer through a communication network

c. In MPI, workload can be split among processes according to their ranks

d. To execute an application, the MPI standard prescribes a startup procedure

Answer: b. and c.

09.04.2025 20Introduction to Parallel Programming with MPI

Quiz:
1. Which of the following is correct?

a. There is a mechanism for automatic workload distribution in MPI

b. MPI allows for data transfer through a communication network

c. In MPI, workload can be split among processes according to their ranks

d. To execute an application, the MPI standard prescribes a startup procedure

2. Is the rank of a process within a communicator unique?

a. Yes b. No

Answer: b. and c.

09.04.2025 20Introduction to Parallel Programming with MPI

Quiz:
1. Which of the following is correct?

a. There is a mechanism for automatic workload distribution in MPI

b. MPI allows for data transfer through a communication network

c. In MPI, workload can be split among processes according to their ranks

d. To execute an application, the MPI standard prescribes a startup procedure

2. Is the rank of a process within a communicator unique?

a. Yes b. No

Answer: b. and c.

Answer: a.

09.04.2025 20Introduction to Parallel Programming with MPI

Quiz:
1. Which of the following is correct?

a. There is a mechanism for automatic workload distribution in MPI

b. MPI allows for data transfer through a communication network

c. In MPI, workload can be split among processes according to their ranks

d. To execute an application, the MPI standard prescribes a startup procedure

3. Does count in MPI_Send and MPI_Recv determine the number of bytes in

the point-to-point communication?

a. Yes b. No

2. Is the rank of a process within a communicator unique?

a. Yes b. No

Answer: b. and c.

Answer: a.

09.04.2025 20Introduction to Parallel Programming with MPI

Quiz:
1. Which of the following is correct?

a. There is a mechanism for automatic workload distribution in MPI

b. MPI allows for data transfer through a communication network

c. In MPI, workload can be split among processes according to their ranks

d. To execute an application, the MPI standard prescribes a startup procedure

3. Does count in MPI_Send and MPI_Recv determine the number of bytes in

the point-to-point communication?

a. Yes b. No

2. Is the rank of a process within a communicator unique?

a. Yes b. No

Answer: b. and c.

Answer: a.

Answer: b.

09.04.2025 21Introduction to Parallel Programming with MPI

Exercise 1: MPI “Hello World!” in C

#include <mpi.h>

int main(char argc, char **argv) {

int irank, nrank;

MPI_FIXME(FIXME,FIXME);

MPI_Comm_FIXME(MPI_COMM_WORLD, &nrank);

MPI_Comm_rank(FIXME, FIXME);

printf(“Hello World! I am %d of %d\n”, irank, nrak);

MPI_FIXME();

}

09.04.2025 21Introduction to Parallel Programming with MPI

Exercise 1: MPI “Hello World!” in C

#include <mpi.h>

int main(char argc, char **argv) {

int irank, nrank;

MPI_FIXME(FIXME,FIXME);

MPI_Comm_FIXME(MPI_COMM_WORLD, &nrank);

MPI_Comm_rank(FIXME, FIXME);

printf(“Hello World! I am %d of %d\n”, irank, nrak);

MPI_FIXME();

}

Never forget that

these are pointers to

the original variables!

09.04.2025 21Introduction to Parallel Programming with MPI

Exercise 1: MPI “Hello World!” in C

#include <mpi.h>

int main(char argc, char **argv) {

int irank, nrank;

MPI_FIXME(FIXME,FIXME);

MPI_Comm_FIXME(MPI_COMM_WORLD, &nrank);

MPI_Comm_rank(FIXME, FIXME);

printf(“Hello World! I am %d of %d\n”, irank, nrak);

MPI_FIXME();

}

Never forget that

these are pointers to

the original variables!

Communicator

required for (almost)

all MPI calls

09.04.2025 22Introduction to Parallel Programming with MPI

Exercise 2: calculating 𝜋 using Monte Carlo method

In this exercise you practice:

1. Workload distribution

2. Eliminating repetition of work done by processes

3. Collecting results of all processes

Question: Can we improve the accuracy by increasing the number random

points, i.e. 𝒏𝒏 > 𝟏𝟎𝟗 ?

