
Introduction to Parallel Programming with MPI

Dr. Alireza Ghasemi, Dr. Georg Hager

Erlangen National High Performance Computing Center

MPI Point-to-Point Communication: Blocking

09.04.2025 2Introduction to Parallel Programming with MPI

Blocking communication

▪ Definition: a blocking communication does not return until the message

data and envelope have been safely stored away so that the sender is free

to modify the send buffer after return.

▪ The term blocking may be confusing. Indeed based on the definition

above, one can infer:

▪ The call to a send procedure does not obstruct the flow of the program at that

line of the code up to the completion of the communication. Therefore, a

blocking sender may return when the transmission of the message may be:

▪ not yet started

▪ ongoing

▪ completed (less likely)

09.04.2025 3Introduction to Parallel Programming with MPI

Point-to-Point Communication

▪ Procedure (C/C++ binding, Fortran binding, Fortran 2008 binding)

▪ Message data

▪ Buffer (address)

▪ Datatype (basic or derived?)

▪ Count (number of elements, not bytes)

▪ Message envelope

▪ Source

▪ Destination

▪ Tag

It is a communication between two processes where a sender (source

process) sends message to a receiver (destination process).

09.04.2025 4Introduction to Parallel Programming with MPI

Basic Datatypes (C/C++)

MPI datatype C datatype

MPI_INT int

MPI_UNSIGNED unsigned int

MPI_FLOAT float

MPI_DOUBLE double

MPI_C_COMPLEX float _Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_C_BOOL _Bool

MPI_CHAR char

MPI_BYTE -----

MPI_PACKED -----

and many more -> https://www.mpi-forum.org/docs/

09.04.2025 5Introduction to Parallel Programming with MPI

Basic Datatypes (Fortran)

MPI datatype Fortran datatype

MPI_INTEGER integer

MPI_REAL real(kind=4)

MPI_DOUBLE_PRECISION real(kind=8)

MPI_COMPLEX complex(kind=4)

MPI_DOUBLE_COMPLEX complex(kind=8)

MPI_LOGICAL logical

MPI_CHARACTER character(len=1)

MPI_BYTE -----

MPI_PACKED -----

09.04.2025 6Introduction to Parallel Programming with MPI

The Ping-Pong example

▪ Consider two processes with ranks 0 and 1

▪ Rank 0 sends a message to rank 1

▪ Rank 1 receives it and sends it back to rank 0

▪ The operation can be repeated several times.

rank 0 rank 1

ping

pong

ping

pong

09.04.2025 7Introduction to Parallel Programming with MPI

The Ping-Pong example

▪ In this example, the ping-pong is done only once.

▪ The code in C (or Fortran) will be shown to you. Then, think about the

following questions:

1. Does rank 0 receive the initial value of rank 1, if not, how can it be done?

2. If we add a loop enclosing the data transfer lines of the program and repeat

the operation, would the program run without any problem?

3. Does the program have a deadlock problem? If not, can the problem be

introduced to the program only by rearranging the orders of send/receive?

A deadlock is a scenario in which a process is trying to exchange data to another process but

there is no match, e.g. it is ready to send a data but the other process is not and will not be

prepared to accept or the opposite case, i.e. the process is waiting to receive but the other is not

sending and will not send a matching message.

09.04.2025 8Introduction to Parallel Programming with MPI

Single-round ping-pong in C
#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv) {

int ierr, irank, nrank;

MPI_Status status;

double d=0.0;

ierr=MPI_Init(&argc,&argv);

ierr=MPI_Comm_rank(MPI_COMM_WORLD,&irank);

ierr=MPI_Comm_size(MPI_COMM_WORLD,&nrank);

if(irank==0) d=100.0;

if(irank==1) d=200.0;

printf("BEFORE: nrank,irank,d = %5d%5d%8.1f\n",nrank,irank,d);

if(irank==0) {

MPI_Send(&d,1,MPI_DOUBLE,1,11,MPI_COMM_WORLD);

MPI_Recv(&d,1,MPI_DOUBLE,1,22,MPI_COMM_WORLD,&status);

}

else if(irank==1) {

MPI_Recv(&d,1,MPI_DOUBLE,0,11,MPI_COMM_WORLD,&status);

MPI_Send(&d,1,MPI_DOUBLE,0,22,MPI_COMM_WORLD);

}

printf("AFTER: nrank,irank,d = %5d%5d%8.1f\n",nrank,irank,d);

ierr=MPI_Finalize();

}

09.04.2025 9Introduction to Parallel Programming with MPI

Single-round ping-pong in Fortran

program pingpong

use mpi_f08

implicit none

integer:: irank, nrank, ierr

real(kind=8):: d=0.d0

type(MPI_STATUS):: status

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD,irank,ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD,nrank,ierr)

if(irank==0) d=100.d0

if(irank==1) d=200.d0

write(*,'(a,2i5,f8.1)') 'BEFORE: nrank,irank,d = ',nrank,irank,d

if(irank==0) then

call MPI_SEND(d,1,MPI_DOUBLE_PRECISION,1,11,MPI_COMM_WORLD,ierr)

call MPI_RECV(d,1,MPI_DOUBLE_PRECISION,1,22,MPI_COMM_WORLD,status,ierr)

elseif(irank==1) then

call MPI_RECV(d,1,MPI_DOUBLE_PRECISION,0,11,MPI_COMM_WORLD,status,ierr)

call MPI_SEND(d,1,MPI_DOUBLE_PRECISION,0,22,MPI_COMM_WORLD,ierr)

endif

write(*,'(a,2i5,f8.1)') 'AFTER: nrank,irank,d = ',nrank,irank,d

call MPI_FINALIZE(ierr)

end program pingpong

09.04.2025 10Introduction to Parallel Programming with MPI

Inspection on question 3 of exercise 1

▪ Let’s consider two changes in the solution code of exercise 1:

1. Both processes call first MPI_SEND and then MPI_RECV

2. The buffer is not a scalar but an array whose length is determined at run

time as an argument:

mpirun –n 2 ./a.out 10 # OK

mpirun –n 2 ./a.out 100 # OK

mpirun –n 2 ./a.out 1000 # OK

mpirun –n 2 ./a.out 10000 # OK

mpirun –n 2 ./a.out ???????? # at some array length DEADLOCK occurs

09.04.2025 11Introduction to Parallel Programming with MPI

Communication modes

▪ There are four send communication modes:

▪ There is only one receive communication mode:

▪ Standard: MPI_Recv

Mode Binding

Synchronous MPI_Ssend

Buffered (asynchronous) MPI_Bsend

Standard MPI_Send

Ready MPI_Rsend

09.04.2025 12Introduction to Parallel Programming with MPI

Synchronous send

▪ It can be started whether or not a matching receive was posted

▪ It will complete successfully only if a matching receive is posted

▪ send buffer can be reused

▪ receiver has reached a certain point in its execution

Tips

• Useful for debugging

• Serialization

• High latency

(synchronization overhead)

• Best bandwidth

Match?

no

Match?

yes

MPI

process A MPI_SSEND (blocking) continues

MPI

completed

process B MPI_RECV (blocking) continues

time

09.04.2025 13Introduction to Parallel Programming with MPI

Standard send

▪ It can be started whether or not a matching receive was posted

▪ It may complete before a matching receive is posted

▪ Send buffer can be reused

▪ The operation is local or nonlocal

MPI

process A MPI_SEND (blocking) Continues

MPI

process B

Match? Buffer?

MPI_RECV (blocking) continues

time

Synchronous?

Tips

• Deadlock may occur

• Minimal transfer time

The standard send is the
standard choice for you!

09.04.2025 14Introduction to Parallel Programming with MPI

Example: Shift operation across a chain of processes

▪ Simplistic send/recv

▪ pairing is not reliable

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

Rank 1Rank 0 Rank 2 Rank 3

circular chain

//my left neighbor

left=(rank-1)%size;

//my right neighbor

right=(rank+1)%size;

MPI_Send(sendbuf,n,type,right,tag,comm);

MPI_Recv(recvbuf,n,type,left,tag,comm,status);

09.04.2025 15Introduction to Parallel Programming with MPI

Point-to-Point Communication MPI_SENDRECV
▪ Syntax: simple combination of send and receive arguments:

MPI_Sendrecv(buffer_send, sendcount, sendtype, dest, sendtag,

buffer_recv, recvcount, recvtype, source, recvtag,

comm, MPI_Status * status)

▪ MPI takes care, thereby no deadlocks occur:
// Rank left from myself
left = (rank – 1 + size) % size;
// Rank right from myself
right = (rank + 1) % size;
MPI_Sendrecv(buffer_send, n, MPI_INT, right, 0,

buffer_recv, n, MPI_INT, left, 0,
MPI_COMM_WORLD, status);

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

10 2 3

09.04.2025 15Introduction to Parallel Programming with MPI

Point-to-Point Communication MPI_SENDRECV
▪ Syntax: simple combination of send and receive arguments:

MPI_Sendrecv(buffer_send, sendcount, sendtype, dest, sendtag,

buffer_recv, recvcount, recvtype, source, recvtag,

comm, MPI_Status * status)

▪ MPI takes care, thereby no deadlocks occur:
// Rank left from myself
left = (rank – 1 + size) % size;
// Rank right from myself
right = (rank + 1) % size;
MPI_Sendrecv(buffer_send, n, MPI_INT, right, 0,

buffer_recv, n, MPI_INT, left, 0,
MPI_COMM_WORLD, status);

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

send buffer

receive buffer

10 2 3

▪ disjoint send/receive

buffers

▪ can have different

count & data type

▪ blocking call

09.04.2025 16Introduction to Parallel Programming with MPI

Point-to-Point Communication MPI_SENDRECV
▪ useful for open chains/non-circular shifts:

// Rank left from myself.
left = rank – 1; if (left < 0) { left = MPI_PROC_NULL; }
// Rank right from myself.
right = rank + 1; if (right >= size) {right = MPI_PROC_NULL; }
MPI_Sendrecv(buffer_send, n, MPI_INT, right, 0,

buffer_recv, n, MPI_INT, left, 0, MPI_COMM_WORLD, &status);

receive buffer

send buffer send buffer

receive buffer

send buffer

receive buffer

10 2 3

▪ MPI_PROC_NULL as source/destination acts as no-op

▪ send/recv with MPI_PROC_NULL return immediately, buffers are not altered

▪ MPI_Sendrecv matches with simple *send/*recv point-to-point calls

09.04.2025 16Introduction to Parallel Programming with MPI

Point-to-Point Communication MPI_SENDRECV
▪ useful for open chains/non-circular shifts:

// Rank left from myself.
left = rank – 1; if (left < 0) { left = MPI_PROC_NULL; }
// Rank right from myself.
right = rank + 1; if (right >= size) {right = MPI_PROC_NULL; }
MPI_Sendrecv(buffer_send, n, MPI_INT, right, 0,

buffer_recv, n, MPI_INT, left, 0, MPI_COMM_WORLD, &status);

receive buffer

send buffer send buffer

receive buffer

send buffer

receive buffer

10 2 3

▪ MPI_PROC_NULL as source/destination acts as no-op

▪ send/recv with MPI_PROC_NULL return immediately, buffers are not altered

▪ MPI_Sendrecv matches with simple *send/*recv point-to-point calls

09.04.2025 17Introduction to Parallel Programming with MPI

Serialization: Loss of efficiency

time

Send

Recv

Send Recv

Send Recv

3

2

1

0

Rank

▪ Ring shift communication pattern: non-circular shifts

• No concern over deadlock

• Serialization

▪ MPI_Send with rendezvous protocol

▪ MPI_Ssend

09.04.2025 18Introduction to Parallel Programming with MPI

Pattern: ghost cell exchange
Many iterative algorithms require exchange of domain boundary layers

09.04.2025 18Introduction to Parallel Programming with MPI

Pattern: ghost cell exchange
Many iterative algorithms require exchange of domain boundary layers

2D domain distributed to ranks

(here 4 x 3), each rank gets

one tile

09.04.2025 18Introduction to Parallel Programming with MPI

Pattern: ghost cell exchange
Many iterative algorithms require exchange of domain boundary layers

2D domain distributed to ranks

(here 4 x 3), each rank gets

one tile

Each rank’s tile is surrounded

by ghost cells, representing the

cells of the neighbors

ghost cells

09.04.2025 18Introduction to Parallel Programming with MPI

Pattern: ghost cell exchange
Many iterative algorithms require exchange of domain boundary layers

2D domain distributed to ranks

(here 4 x 3), each rank gets

one tile

Each rank’s tile is surrounded

by ghost cells, representing the

cells of the neighbors

ghost cells

After each sweep over a tile, perform

ghost cell exchange, i.e., update

ghost cells with new values of

neighbor cells

09.04.2025 18Introduction to Parallel Programming with MPI

Pattern: ghost cell exchange
Many iterative algorithms require exchange of domain boundary layers

2D domain distributed to ranks

(here 4 x 3), each rank gets

one tile

Each rank’s tile is surrounded

by ghost cells, representing the

cells of the neighbors

ghost cells

After each sweep over a tile, perform

ghost cell exchange, i.e., update

ghost cells with new values of

neighbor cells

Possible implementation:
1. copy new data into contiguous send buffer

2. send to corresponding neighbor receive new data from same neighbor

3. copy new data into ghost cells

09.04.2025 18Introduction to Parallel Programming with MPI

Pattern: ghost cell exchange
Many iterative algorithms require exchange of domain boundary layers

ji

2D domain distributed to ranks

(here 4 x 3), each rank gets

one tile

Each rank’s tile is surrounded

by ghost cells, representing the

cells of the neighbors

ghost cells

After each sweep over a tile, perform

ghost cell exchange, i.e., update

ghost cells with new values of

neighbor cells

Possible implementation:
1. copy new data into contiguous send buffer

2. send to corresponding neighbor receive new data from same neighbor

3. copy new data into ghost cells

09.04.2025 18Introduction to Parallel Programming with MPI

Pattern: ghost cell exchange
Many iterative algorithms require exchange of domain boundary layers

ji

sb sb

rbrb

2D domain distributed to ranks

(here 4 x 3), each rank gets

one tile

Each rank’s tile is surrounded

by ghost cells, representing the

cells of the neighbors

ghost cells

After each sweep over a tile, perform

ghost cell exchange, i.e., update

ghost cells with new values of

neighbor cells

Possible implementation:
1. copy new data into contiguous send buffer

2. send to corresponding neighbor receive new data from same neighbor

3. copy new data into ghost cells

09.04.2025 18Introduction to Parallel Programming with MPI

Pattern: ghost cell exchange
Many iterative algorithms require exchange of domain boundary layers

ji

sb sb

rbrb

2D domain distributed to ranks

(here 4 x 3), each rank gets

one tile

Each rank’s tile is surrounded

by ghost cells, representing the

cells of the neighbors

ghost cells

After each sweep over a tile, perform

ghost cell exchange, i.e., update

ghost cells with new values of

neighbor cells

Possible implementation:
1. copy new data into contiguous send buffer

2. send to corresponding neighbor receive new data from same neighbor

3. copy new data into ghost cells

09.04.2025 18Introduction to Parallel Programming with MPI

Pattern: ghost cell exchange
Many iterative algorithms require exchange of domain boundary layers

ji

sb sb

rbrb

2D domain distributed to ranks

(here 4 x 3), each rank gets

one tile

Each rank’s tile is surrounded

by ghost cells, representing the

cells of the neighbors

ghost cells

After each sweep over a tile, perform

ghost cell exchange, i.e., update

ghost cells with new values of

neighbor cells

Possible implementation:
1. copy new data into contiguous send buffer

2. send to corresponding neighbor receive new data from same neighbor

3. copy new data into ghost cells

MPI_Sendrecv(

sb, …, i,

rb, …, i, …)

MPI_Sendrecv(

sb, …, j,

rb, …, j, …)

step 2 step 2

09.04.2025 18Introduction to Parallel Programming with MPI

Pattern: ghost cell exchange
Many iterative algorithms require exchange of domain boundary layers

ji

sb sb

rbrb

2D domain distributed to ranks

(here 4 x 3), each rank gets

one tile

Each rank’s tile is surrounded

by ghost cells, representing the

cells of the neighbors

ghost cells

After each sweep over a tile, perform

ghost cell exchange, i.e., update

ghost cells with new values of

neighbor cells

Possible implementation:
1. copy new data into contiguous send buffer

2. send to corresponding neighbor receive new data from same neighbor

3. copy new data into ghost cells

MPI_Sendrecv(

sb, …, i,

rb, …, i, …)

MPI_Sendrecv(

sb, …, j,

rb, …, j, …)

step 2 step 2

09.04.2025 19Introduction to Parallel Programming with MPI

Combined send and recv

▪ MPI_Sendrecv combines a blocking send and receive into a single API call.

▪ Deadlocks are still possible if envelope does not match.

▪ Send and receive buffers must not overlap:

▪ For specific cases: MPI_Sendrecv_replace

09.04.2025 20Introduction to Parallel Programming with MPI

MPI_Sendrecv

▪ C/C++ binding:

▪ sendbuf: address of the first entry of the buffer to be sent

▪ sendcount: number of elements to be sent

▪ sendtype: type of the send data

▪ recvbuf, recvcount, recvtype: similarly for the receiving data

▪ dest: rank of the destination process within the communicator comm

▪ sendtag and recvtag: can have different values!

int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

int dest, int sendtag,

void *recvbuf, int recvcount, MPI_Datatype recvtype,

int source, int recvtag, MPI_Comm comm, MPI_Status *status)

09.04.2025 21Introduction to Parallel Programming with MPI

Exercise 3:

1. Laplace equation in 1D: with Dirichlet BC

▪ Analytical solution is available, namely

2. Discretization and using the Jacobi method leads to stencil algorithm:

3. Domain decomposition: each domain needs the boundary values

▪ should be supplied by the neighboring processes of both sides

▪ leads to a double shift operation

𝑑2𝑉

𝑑𝑥2
= 0

𝑉𝑖 =
𝑉𝑖+1 + 𝑉𝑖−1

2

𝑉 𝑥 |𝑥=0 = 0 , 𝑉 𝑥 |𝑥=1 = 1

𝑉 𝑥 = 𝑥

09.04.2025 22Introduction to Parallel Programming with MPI

Miscellaneous points

▪ Predefined macros:

▪ Wild cards: MPI_ANY_SOURCE, MPI_ANY_TAG

▪ MPI standard: MPI_VERSION, MPI_SUBVERSION

▪ Others: MPI_SUCCESS, MPI_PROC_NULL, …

▪ MPI_Status: can be avoid MPI_STATUS_IGNORE

▪ It is a structure in C/C++: MPI_SOURCE, MPI_TAG, MPI_ERROR, …

▪ In Fortran:

▪ It used to be an integer array of size MPI_STATUS_SIZE.

▪ Now a derived-type is available as well.

▪ Some other C/C++ and Fortran bindings: MPI_Probe, MPI_Get_count,

…

09.04.2025 23Introduction to Parallel Programming with MPI

Quiz:
1. How many different MPI point-to-point send modes exist?

a. 1 b. 2 c. 3 d. 4

09.04.2025 23Introduction to Parallel Programming with MPI

Quiz:
1. How many different MPI point-to-point send modes exist?

a. 1 b. 2 c. 3 d. 4

Answer: d.

09.04.2025 23Introduction to Parallel Programming with MPI

Quiz:
1. How many different MPI point-to-point send modes exist?

a. 1 b. 2 c. 3 d. 4

2. If you send two messages 𝑚1 and 𝑚2 from rank 𝑖 to rank 𝑗 using PtP bindings,

is it possible that the transfer of 𝑚2 overtakes, i.e., be received before 𝑚1?

Answer: d.

09.04.2025 23Introduction to Parallel Programming with MPI

Quiz:
1. How many different MPI point-to-point send modes exist?

a. 1 b. 2 c. 3 d. 4

2. If you send two messages 𝑚1 and 𝑚2 from rank 𝑖 to rank 𝑗 using PtP bindings,

is it possible that the transfer of 𝑚2 overtakes, i.e., be received before 𝑚1?

Answer: d.

Answer: No, messages in PtP communication were in the past subject to nonovertaking rule.

In recent MPI standards, it is the default behavior but it can be overridden.

09.04.2025 23Introduction to Parallel Programming with MPI

Quiz:
1. How many different MPI point-to-point send modes exist?

a. 1 b. 2 c. 3 d. 4

3. What are the major risks of synchronous send?

Is any of the same risks a concern also for the standard send?

2. If you send two messages 𝑚1 and 𝑚2 from rank 𝑖 to rank 𝑗 using PtP bindings,

is it possible that the transfer of 𝑚2 overtakes, i.e., be received before 𝑚1?

Answer: d.

Answer: No, messages in PtP communication were in the past subject to nonovertaking rule.

In recent MPI standards, it is the default behavior but it can be overridden.

09.04.2025 23Introduction to Parallel Programming with MPI

Quiz:
1. How many different MPI point-to-point send modes exist?

a. 1 b. 2 c. 3 d. 4

3. What are the major risks of synchronous send?

Is any of the same risks a concern also for the standard send?

2. If you send two messages 𝑚1 and 𝑚2 from rank 𝑖 to rank 𝑗 using PtP bindings,

is it possible that the transfer of 𝑚2 overtakes, i.e., be received before 𝑚1?

Answer: d.

Answer: No, messages in PtP communication were in the past subject to nonovertaking rule.

In recent MPI standards, it is the default behavior but it can be overridden.

Answer: (i) Deadlock, (ii) high latency. Both can be of concern for standard send.

09.04.2025 23Introduction to Parallel Programming with MPI

Quiz:
1. How many different MPI point-to-point send modes exist?

a. 1 b. 2 c. 3 d. 4

3. What are the major risks of synchronous send?

Is any of the same risks a concern also for the standard send?

2. If you send two messages 𝑚1 and 𝑚2 from rank 𝑖 to rank 𝑗 using PtP bindings,

is it possible that the transfer of 𝑚2 overtakes, i.e., be received before 𝑚1?

4. Does the receive process have to know the rank of the send process and the

tag of the message?

Answer: d.

Answer: No, messages in PtP communication were in the past subject to nonovertaking rule.

In recent MPI standards, it is the default behavior but it can be overridden.

Answer: (i) Deadlock, (ii) high latency. Both can be of concern for standard send.

09.04.2025 23Introduction to Parallel Programming with MPI

Quiz:
1. How many different MPI point-to-point send modes exist?

a. 1 b. 2 c. 3 d. 4

3. What are the major risks of synchronous send?

Is any of the same risks a concern also for the standard send?

2. If you send two messages 𝑚1 and 𝑚2 from rank 𝑖 to rank 𝑗 using PtP bindings,

is it possible that the transfer of 𝑚2 overtakes, i.e., be received before 𝑚1?

4. Does the receive process have to know the rank of the send process and the

tag of the message?

Answer: d.

Answer: No, messages in PtP communication were in the past subject to nonovertaking rule.

In recent MPI standards, it is the default behavior but it can be overridden.

Answer: (i) Deadlock, (ii) high latency. Both can be of concern for standard send.

Answer: No, it is not necessary. One can use wild cards such as MPI_ANY_SOURCE and

MPI_ANY_TAG.

