
Introduction to Parallel Programming with MPI

Dr. Alireza Ghasemi, Dr. Georg Hager

Erlangen National High Performance Computing Center

MPI Point-to-Point Communication: Nonblocking

11.04.2024 2Introduction to Parallel Programming with MPI

Nonblocking point-to-point communication

▪ Avoiding certain deadlocks

▪ Truly bidirectional commun.

▪ Avoid idle time:

▪ Overlapping commun. and comput.

▪ Call to a nonblocking send/recv procedure returns straight away. It avoids

synchronization so that the following opportunities can be exploited:

MPI

process A

MPI_ISEND (nonblocking)

MPI

process B

MPI_IRECV (blocking)

continues

time

R1 Computation R2

R1 R2

continues

R1 R2Computation

11.04.2024 3Introduction to Parallel Programming with MPI

Standard nonblocking send/receive

▪ MPI_Isend(sendbuf, count, datatype, dest, tag,

comm, MPI_Request * request);

MPI_Irecv(recvbuf, count, datatype, source, tag,

comm, MPI_Request * request);

request: pointer to variable of type MPI_Request,

will be associated with the corresponding operation

▪ Do not reuse sendbuf/recvbuf before MPI_Isend/MPI_Irecv has
been completed

▪ Return of call does not imply completion

▪ MPI_Irecv has no status argument
▪ obtained later during completion via MPI_Wait*/MPI_Test*

11.04.2024 4Introduction to Parallel Programming with MPI

Nonblocking send and receive variants

▪ Completion

▪ Return of MPI_I* call does not imply completion

▪ Check for completion via MPI_Wait* / MPI_Test*

▪ Semantics identical to blocking call after successful completion

nonblocking MPI

function

blocking

MPI function
type completes when

MPI_Isend MPI_Send synchronous or

buffered

depends on type

MPI_Ibsend MPI_Bsend buffered buffer has been copied

MPI_Issend MPI_Ssend synchronous remote starts receive

MPI_Irecv MPI_Recv -- message was received

11.04.2024 5Introduction to Parallel Programming with MPI

Test for completion

Two test modes:

▪ Blocking

▪ MPI_Wait*: Wait until the communication has been completed and buffer can

safely be reused

▪ Nonblocking

▪ MPI_Test*: Return true (false) if the communication has (not) completed

Despite the naming, the modes both pertain to nonblocking point-to-point

communication!

11.04.2024 6Introduction to Parallel Programming with MPI

Test for completion – single request

▪ Test one communication handle for completion:

MPI_Wait(MPI_Request * request,

MPI_Status * status);

MPI_Test(MPI_Request * request, int * flag,

MPI_Status * status);

request: request handle of type MPI_Request

status: status object of type MPI_Status (cf. MPI_Recv)

flag: variable of type int to test for success

11.04.2024 7Introduction to Parallel Programming with MPI

Use of wait/test

MPI_Request request;

MPI_Status status;

MPI_Isend(

send_buffer, count, MPI_CHAR,

dst, 0, MPI_COMM_WORLD, &request);

// do some work…

// do not use send_buffer

MPI_Wait(&request, &status);

// use send_buffer

MPI_Request request;

MPI_Status status;

int flag;

MPI_Isend(

send_buffer, count, MPI_CHAR,

dst, 0, MPI_COMM_WORLD, &request);

do {

// do some work…

// do not use send_buffer

MPI_Test(&request, &flag, &status);

} while (!flag);

// use send_buffer

MPI_Wait MPI_Test

11.04.2024 8Introduction to Parallel Programming with MPI

Wait for completion – all requests in a list

▪ MPI can handle multiple communication requests

▪ Wait/Test for completion of multiple requests:

MPI_Waitall(int count, MPI_Request requests[],

MPI_Status statuses[]);

MPI_Testall(int count, MPI_Request requests[],

int *flag, MPI_Status statuses[]);

▪ Waits for/Tests if all provided requests have been completed

11.04.2024 9Introduction to Parallel Programming with MPI

Use of MPI_Waitall

MPI_Request requests[2];

MPI_Status statuses[2];

MPI_Isend(send_buffer, …, &(requests[0]));

MPI_Irecv(recv_buffer, …, &(requests[1]));

// do some work…

MPI_Waitall(2, requests, statuses)

// Isend & Irecv have been completed

Arrays of

requests and

statuses

number of elements in

the arrays

11.04.2024 10Introduction to Parallel Programming with MPI

Ghost cell exchange with nonblocking MPI

Possible implementation:

1. Update cells that need the halo

2. Copy new data into contiguous send buffers

3. Start nonblocking receives/sends from/to

corresponding neighbors

4. Update local cells that do not need halo cells

for boundary conditions (“bulk update”)

5. Wait with MPI_Waitall for all obtained

requests to complete

6. Copy received halo data into ghost cells

Opportunity to overlap communication (steps 3-5) with bulk update

(MPI implementation permitting)

Ghost cell exchange with nonblocking send/recv with all neighbors at once

11.04.2024 11Introduction to Parallel Programming with MPI

Wait for completion – one or several requests out of a list

Wait for/Test if exactly one request among many has been completed

▪ MPI_Waitany(int count, MPI_Request requests[],

int * idx, MPI_Status * status);

MPI_Testany(int count, MPI_Request requests[],

int * idx, int * flag,

MPI_Status * status);

Wait for/Test if at least one request among many has been completed

▪ MPI_Waitsome(int incount, MPI_Request requests[], int * outcount,

int indices[], MPI_Status statuses[]);

MPI_Testsome(int incount, MPI_Request requests[], int * outcount,

int indices[], MPI_Status statuses[]);

11.04.2024 12Introduction to Parallel Programming with MPI

Use of MPI_Testany

MPI_Request requests[2];

MPI_Status status;

int finished = 0;

MPI_Isend(send_buffer, …, &(requests[0]));

MPI_Irecv(recv_buffer, …, &(requests[1]));

do {

// do some work…

MPI_Testany(2, requests, &idx, &flag, &status);

if (flag) { ++finished; }

} while (finished < 2);

▪ completed requests are

automatically set to
MPI_REQUEST_NULL

▪ completed requests:
requests[idx]

11.04.2024 13Introduction to Parallel Programming with MPI

Pitfalls with nonblocking MPI and compiler optimizations

▪ Fortran:
MPI_IRECV(recvbuf, ..., request, ierror)

MPI_WAIT(request, status, ierror)

write (*,*) recvbuf

▪ may be compiled as
MPI_IRECV(recvbuf, ..., request, ierror)

registerA = recvbuf

MPI_WAIT(request, status, ierror)

write (*,*) registerA

▪ i.e., old data is written instead of received data!

▪ Workarounds:

▪ recvbuf may be allocated in a common block, or

▪ calling MPI_GET_ADDRESS(recvbuf, iaddr_dummy, ierror)

after MPI_WAIT

▪ asynchronous attribute

MPI might modify recvbuf

after MPI_IRECV returns,

but the compiler has no

idea about this

11.04.2024 15Introduction to Parallel Programming with MPI

Nonblocking point-to-point communication

▪ Standard nonblocking send/recv MPI_Isend()/MPI_Irecv()

▪ Return of call does not imply completion of operation

▪ Use MPI_Wait*() / MPI_Test*() to check for completion using request

handles

▪ All outstanding requests must be completed!

▪ Potentials

▪ Overlapping of communication with work (not guaranteed by MPI standard)

▪ Overlapping send and receive

▪ Avoiding synchronization and reducing idle times

▪ Caveat: Compiler does not know about asynchronous modification of data

11.04.2024 16Introduction to Parallel Programming with MPI

Quiz:

1. Every nonblocking send or receive requires a subsequent MPI_Wait* or

MPI_Test* call?

a) Correct b) Incorrect

2. Can MPI_Isend be matched with blocking receive (MPI_Recv)?

a) Yes b) No

3. Which one is not a potential use case of nonblocking point-to-point

communication in MPI?

a) Overlapping send and receive

b) Avoiding every possible idle times

c) Overlapping of communication with work

