Friedrich-Alexander-Universitat
FAU Erlangen-Nirnberg
| LIY// e\

Introduction to Parallel Programming with MPI

Dr. Alireza Ghasemi, Dr. Georg Hager

Erlangen National High Performance Computing Center

MPI Point-to-Point Communication: Nonblocking

Crystalline and Molecular Structures

= Challenges in structure search:
chemistry and material science A

= Local minimization
. Computational cost: variable

= Many local minima

- Exponential increase with respect
to system size

= Global optimization methods
- Deterministic and stochastic walker | w v V

= Parallel computers: — s

= Each MPI process taking care of 4
a walker @

Reaction coordinate

E=E(Ry,Ra,...,Rn)

Energy

Introduction to Parallel Programming with MPI 09.04.2025

Work load imbalance

= Walkers:
- Move and Minimization - Processing and Communication

rank O M.&M. |P.&C. M. & M. P.&C. M. & M. P.&C. M.&M. | P.&C. continues
A: . A

rank 1 |M.&M.| P. &C. Feneeeeaans s M. & M. EP.&C. M.&M.| P.&C. | M.&M. | P.&C.| M.&M. | P.&C. continues
. I osesesssssssssssssand A

Pvi o
rank 2 M. & M. P.&C. | M.&M. P.&C. M. & M. P.&C. continues

»
>

time

= |f blocking PtP communication mode would be used:
- will result in significant loss of resources: idle time and synchronization
- The timelines of walkers would include long idle time of many processes

This is a prime example that blocking PtP communication is inappropriate!

Introduction to Parallel Programming with MPI 09.04.2025

Nonblocking point-to-point communication

= Call to a nonblocking send/recv procedure returns straight away. It avoids
synchronization so that the following opportunities can be exploited:

= Avoiding certain deadlocks = Avoid idle time:
= Truly bidirectional commun. - Overlapping commun. and comput.

I\‘/IPI_ISEND (nonblocking) ¢ — — 4

1
process A - — R1| Computation |R2 — continues
R1vw M : R2vy v :
\\\\\\\\\? \\\\\\\\\i
MPI | |
process B |R1 Computation |R2 continues

MPI_IRECV (blocking)

time

Introduction to Parallel Programming with MPI 09.04.2025

Standard nonblocking send/receive

" MPI Isend(sendbuf, count, datatype, dest, tag,
comm, MPI Request * request) ;

MPI Irecv(recvbuf, count, datatype, source, tag,
comm, MPI Request * request) ;

request:pointer to variable of type MPI Request,
will be associated with the corresponding operation

Introduction to Parallel Programming with MPI 09.04.2025

Standard nonblocking send/receive

" MPI Isend(sendbuf, count, datatype, dest, tag,
comm, MPI Request * request) ;

MPI Irecv(recvbuf, count, datatype, source, tag,
comm, MPI Request * request) ;

request:pointer to variable of type MPI Request,
will be associated with the corresponding operation

= Do not reuse sendbuf/recvbuf before MPI Isend/MPI Irecv has
been completed!!!

= Return of call does not imply completion
= MPI Irecv has no status argument
= obtained later during completion via MPI_Wait*/MPI Test*

Introduction to Parallel Programming with MPI 09.04.2025

Nonblocking send and receive variants

= Completion

= Return of MPI_I* call does not imply completion
= Check for completion viaMPI_Wait* / MPI Test*
= Semantics identical to blocking call after successful completion

nonblocking MPI blocking

type completes when

function MPI function

MPI Isend MPI Send synchronous or depends on type
buffered

MPI Ibsend MPI Bsend buffered buffer has been copied

MPI Issend MPI Ssend synchronous remote starts receive

MP I_I recv MPI_Re cv

-- message was received

Introduction to Parallel Programming with MPI

09.04.2025

Test for completion

Two test modes:

Introduction to Parallel Programming with MPI 09.04.2025

Test for completion

Two test modes:

= Blocking

= MPI Wait*: Wait until the communication has been completed and buffer can
safely be reused

Introduction to Parallel Programming with MPI 09.04.2025

Test for completion

Two test modes:

= Blocking

= MPI Wait*: Wait until the communication has been completed and buffer can
safely be reused

= Nonblocking
= MPI_ Test*: Return true (false) if the communication has (not) completed

Introduction to Parallel Programming with MPI 09.04.2025

Test for completion

Two test modes:

= Blocking

= MPI Wait*: Wait until the communication has been completed and buffer can
safely be reused

= Nonblocking
= MPI_ Test*: Return true (false) if the communication has (not) completed

Despite the naming, the modes both pertain to nonblocking point-to-point
communication!

Introduction to Parallel Programming with MPI 09.04.2025

Test for completion — single request

= Test one communication handle for completion:

MPI Wait (MPI_Request * request,
MPI Status * status);

MPI Test (MPI_Request * request, ,
MPI Status * status);
request: request handle of type MPI_Request

status: status object of type MPI_Status (cf. MPI_Recv)

variable of type int to test for success

Introduction to Parallel Programming with MPI 09.04.2025

Use of wait/test

MPI Wait

MPI Request request;
MPI Status status;

MPI Isend(
send buffer, count, MPI CHAR,
dst, 0, MPI COMM WORLD, &request);

// do some work..
// do not use send buffer
MPI Wait(&request, &status);

// use send buffer

Introduction to Parallel Programming with MPI 09.04.2025

Use of wait/test

MPI Wait MPI Test
MPI Request request; MPI Request request;
MPI Status status; MPI Status status;
int flag;
MPI Isend(MPI Isend(
send buffer, count, MPI CHAR, send buffer, count, MPI CHAR,
dst, 0, MPI COMM WORLD, &request); dst, 0, MPI COMM WORLD, &request);
do {
// do some work.. // do some work..
// do not use send buffer // do not use send buffer
MPI Test (&request, &flag, &status);
MPI Wait(&request, &status); } while ('flag);

// use send buffer // use send buffer

Introduction to Parallel Programming with MPI 09.04.2025

Wait for completion — all requests in a list

= MPI can handle multiple communication requests
= Wait/Test for completion of multiple requests:

MPI Waitall (int count, MPI Request requests|[],
MPI Status statuses][])

MPI Testall (int count, MPI Request requests][],
, MPI Status statuses][]);

= Waits for/Tests if all provided requests have been completed

Introduction to Parallel Programming with MPI 09.04.2025

10

Use of MPT Waitall

MPI Request requests[2]; __ AWH%SOfd
MPI Status statuses[2]; requests an
B statuses

MPI Isend(send buffer, .., &(requests[0]));
MPI Irecv(recv buffer, .., &(requests[l]));

number of elements in

// do some work..
the arrays

MPI Waitall (2, requests, statuses)
// Isend & Irecv have been completed

Introduction to Parallel Programming with MPI 09.04.2025 11

Ghost cell exchange with nonblocking MPI

Ghost cell exchange with nonblocking send/recv with all neighbors at once

Possible implementation:
1. Update cells that need the halo

Introduction to Parallel Programming with MPI 09.04.2025

12

Ghost cell exchange with nonblocking MPI

Ghost cell exchange with nonblocking send/recv with all neighbors at once

Possible implementation:
1. Update cells that need the halo
2. Copy new data into contiguous send buffers

Introduction to Parallel Programming with MPI 09.04.2025

12

Ghost cell exchange with nonblocking MPI

Ghost cell exchange with nonblocking send/recv with all neighbors at once

Possible implementation:

1. Update cells that need the halo

2. Copy new data into contiguous send buffers

3. Start nonblocking receives/sends from/to
corresponding neighbors

Introduction to Parallel Programming with MPI 09.04.2025 12

Ghost cell exchange with nonblocking MPI

Ghost cell exchange with nonblocking send/recv with all neighbors at once

Possible implementation:

1. Update cells that need the halo

2. Copy new data into contiguous send buffers

3. Start nonblocking receives/sends from/to
corresponding neighbors

4. Update local cells that do not need halo cells
for boundary conditions (“bulk update”)

Introduction to Parallel Programming with MPI 09.04.2025 12

Ghost cell exchange with nonblocking MPI

Ghost cell exchange with nonblocking send/recv with all neighbors at once

Possible implementation:
1. Update cells that need the halo

2. Copy new data into contiguous send buffers

3. Start nonblocking receives/sends from/to
corresponding neighbors

4. Update local cells that do not need halo cells

for boundary conditions (“bulk update”)
5. Wait with MPI_Waitall for all obtained

requests to complete

Introduction to Parallel Programming with MPI

09.04.2025

12

Ghost cell exchange with nonblocking MPI

Ghost cell exchange with nonblocking send/recv with all neighbors at once

Possible implementation:

1. Update cells that need the halo

2. Copy new data into contiguous send buffers

3. Start nonblocking receives/sends from/to
corresponding neighbors

4. Update local cells that do not need halo cells
for boundary conditions (“bulk update”)

5. Wait with MPI_Waitall for all obtained
requests to complete

6. Copy received halo data into ghost cells

Introduction to Parallel Programming with MPI

09.04.2025

12

Ghost cell exchange with nonblocking MPI

Ghost cell exchange with nonblocking send/recv with all neighbors at once

6.

Possible implementation:

. Update cells that need the halo

. Copy new data into contiguous send buffers
. Start nonblocking receives/sends from/to

corresponding neighbors

Update local cells that do not need halo cells
for boundary conditions (“bulk update”)

Wait with MPI_Waitall for all obtained
requests to complete

Copy received halo data into ghost cells

Opportunity to overlap communication (steps 3-5) with bulk update

Introduction to Parallel Programming with MPI

09.04.2025

12

Ghost cell exchange with nonblocking MPI

Ghost cell exchange with nonblocking send/recv with all neighbors at once

Possible implementation:
1. Update cells that need the halo
2. Copy new data into contiguous send buffers

3. Start nonblocking receives/sends from/to
corresponding neighbors
4. Update local cells that do not need halo cells

for boundary conditions (“bulk update™)

5. Wait with MPI_Waitall for all obtained

requests to complete
6. Copy received halo data into ghost cells

Opportunity to overlap communication (steps 3-5) with bulk update

(MPI implementation permitting)

Introduction to Parallel Programming with MPI

09.04.2025

12

Wait for completion — one or several requests out of a list

Wait for/Test if exactly one request among many has been completed

" MPI Waitany(int count, MPI Request requests][],
int * idx, MPI Status * status);

MPI Testany(int count, MPI Request requests|[],
int * idx, int * flag,
MPI Status * status);

Introduction to Parallel Programming with MPI 09.04.2025

13

Wait for completion — one or several requests out of a list

Wait for/Test if exactly one request among many has been completed

" MPI Waitany(int count, MPI Request requests][],
int * idx, MPI Status * status);

MPI Testany(int count, MPI Request requests|[],
int * idx, int * flag,
MPI Status * status);

Wait for/Test if at least one request among many has been completed

" MPI Waitsome (int incount, MPI_ Request requests[], int * outcount,
int indices[], MPI_ Status statuses|[]);

MPI Testsome (int incount, MPI Request requests[], int * outcount,
int indices[], MPI Status statuses[]);

Introduction to Parallel Programming with MPI 09.04.2025 13

Use of MPI Testany

MPI Request requests[2];
MPI Status status;
int finished = 0;

= completed requests are

automatically set to
MPI Irecv(recv_buffer, .., &(requests[l])); MPI_REQUEST NULL

do { = completed requests:

t
// do some work.. ’///,//”// requests| 1

MPI Testany (2, requests, & , &flag, &status);
if (flag) { ++finished; }
} while (finished < 2);

MPI Isend(send buffer, .., &(requests[0]));

Introduction to Parallel Programming with MPI 09.04.2025

Pitfalls with nonblocking MPIl and compiler optimizations

= Fortran:
MPI IRECV(recvbuf, ..., request, ierror)
MPI WAIT (request, status, ierror)
write (*,*) recvbuf

= may be compiled as
MPI IRECV(recvbuf, ..., request, ierror)
registerA = recvbuf
MPI WAIT (request, status, ierror)
write (*,*) registerA

= |.e., old data is written instead of received data!
= Workarounds:

= recvbuf may be allocated in a common block, or

= calling MPI_GET_ ADDRESS (recvbuf, iaddr dummy, ierror)
after MPI_WAIT

= asynchronous attribute

Introduction to Parallel Programming with MPI 09.04.2025

Pitfalls with nonblocking MPIl and compiler optimizations

= Fortran:
MPI IRECV(recvbuf, ..., request, ierror)
MPI WAIT (request, status, ierror)
write (*,*) recvbuf

- A
" may SgE %%”;‘p"edbasf . iersor | MPImight modify recvbuf
r ..., request, ierr
- _ecv o Ei after MPI_IRECV returns,
registerA = recvbuf > — .
MPI WAIT (request, status, ierror) pUtthe(x"np”erhaer)

= |.e., old data is written instead of received data!

= Workarounds:
= recvbuf may be allocated in a common block, or

= calling MPI_GET_ ADDRESS (recvbuf, iaddr dummy, ierror)
after MPI_WAIT

= asynchronous attribute

Introduction to Parallel Programming with MPI 09.04.2025 15

Nonblocking point-to-point communication

= Standard nonblocking send/recv MPI Isend()/MPI Irecv ()

= Return of call does not imply completion of operation

- Use MPI Wait* () /MPI Test* () tocheck for completion using request
handles

= All outstanding requests must be completed!

= Potentials
= Overlapping of communication with work (not guaranteed by MPI standard)
= Overlapping send and receive
= Avoiding synchronization and reducing idle times

= Caveat: Compiler does not know about asynchronous modification of data

Introduction to Parallel Programming with MPI 09.04.2025 17

Quiz:

1.

a.

Every nonblocking send or receive requires a subsequent MPI_Wait* or
MPI_Test* call?

Correct b. Incorrect

Introduction to Parallel Programming with MPI 09.04.2025

18

Quiz:

1. Every nonblocking send or receive requires a subsequent MPIl_Wait* or
MPI_Test* call?
a. Correct b. Incorrect
Answer: a.

Introduction to Parallel Programming with MPI 09.04.2025

18

Quiz:

1. Every nonblocking send or receive requires a subsequent MPIl_Wait* or
MPI_Test* call?

a. Correct b. Incorrect
Answer: a.

2. Can MPI_Isend be matched with blocking receive (MP|_Recv)?
a. Yes b. No

Introduction to Parallel Programming with MPI 09.04.2025

18

Quiz:

1. Every nonblocking send or receive requires a subsequent MPIl_Wait* or
MPI_Test* call?

a. Correct b. Incorrect
Answer: a.

2. Can MPI_Isend be matched with blocking receive (MP|_Recv)?

a. Yes b. No
Answer: a.

Introduction to Parallel Programming with MPI 09.04.2025

18

Quiz:

1. Every nonblocking send or receive requires a subsequent MPIl_Wait* or
MPI_Test* call?

a. Correct b. Incorrect
Answer: a.

2. Can MPI_Isend be matched with blocking receive (MP|_Recv)?

a. Yes b. No
Answer: a.

3. Which one is not a certain benefit of using nonblocking MPI point-to-point calls?
a. Overlapping send and receive
b. Avoiding idle times
c. Overlapping of communication with work

Introduction to Parallel Programming with MPI 09.04.2025

18

Quiz:

1. Every nonblocking send or receive requires a subsequent MPIl_Wait* or
MPI_Test* call?

a. Correct b. Incorrect
Answer: a.

2. Can MPI_Isend be matched with blocking receive (MP|_Recv)?

a. Yes b. No
Answer: a.

3. Which one is not a certain benefit of using nonblocking MPI point-to-point calls?
a. Overlapping send and receive
b. Avoiding idle times
c. Overlapping of communication with work

Answer: C.

Introduction to Parallel Programming with MPI 09.04.2025

18

