
Introduction to Parallel Programming with MPI

Dr. Alireza Ghasemi, Dr. Georg Hager

Erlangen National High Performance Computing Center

Nonblocking Collectives

Nonblocking Collectives in MPI

Similar to blocking collectives: nonblocking collective calls including all ranks

of a communicator

All ranks must call the function!

▪ Nonblocking variants (since MPI 3.0):
buffer can be used after completion (MPI_Wait*/MPI_Test*)

▪ Local: not synchronization

▪ Multiple outstanding collective communications on same communicator

▪ Cannot interfere with point-to-point communication

• Completely separate modes of operation!

▪ Cannot interfere with blocking collective communication

• Such interference was allowed in point-to-point communication

12.04.2024Introduction to Parallel Programming with MPI 2

12.04.2024 3Introduction to Parallel Programming with MPI

Collectives in MPI

▪ Rules for all collectives

▪ Data type matching

▪ No tags

▪ Count must be exact, i.e., there is only one message length, buffer must be

large enough

▪ Types:

▪ Synchronization (barrier)

▪ Data movement (broadcast, scatter, gather, all to all)

▪ Collective computation (reduction, scan)

▪ Combinations of data movement and computation (reduction + broadcast)

▪ General assumption: MPI does a better job at collectives than you trying to

emulate them with point-to-point calls

12.04.2024 4Introduction to Parallel Programming with MPI

Barrier

▪ Nonblocking synchronization

MPI_Ibarrier(MPI_Comm comm,MPI_Request *request)

▪ Must be followed by an MPI_Wait

▪ Calling process enters the barrier, no synchronization happens

▪ Synchronization may happen asynchronously

▪ Overlapping synchronization with work: reducing idle time

▪ Comarison:

1) MPI_Ibarrier Work MPI_Wait

2) Work MPI_Barrier
idle times before and after Work differ on each process and their sum!

12.04.2024 5Introduction to Parallel Programming with MPI

Collectives: Blocking vs. Nonblocking

▪ Broadcast:

• MPI_Bcast(buf,count,datatype,root,comm);

• MPI_Ibcast(buf,count,datatype,root,comm,request);

▪ Scatter:

• MPI_Scatter(sendbuf,sendcount,sendtype,recvbuf,recvcount,

recvtype,root,comm);

• MPI_Iscatter(sendbuf,sendcount,sendtype,recvbuf,recvcount,

recvtype,root,comm,request);

▪ Gather:

• MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,

recvtype,root,comm);

• MPI_Igather(sendbuf,sendcount,sendtype,recvbuf,recvcount,

recvtype,root,comm,request);

12.04.2024 6Introduction to Parallel Programming with MPI

Collectives: Blocking vs. Nonblocking

▪ Similarly many blocking collective calls have nonblocking analogues:

• MPI_Iallgather, MPI_Ialltoall, MPI_Ireduce,…

Remarks for MPI_Ireduce:

▪ Both send and receive buffers can be used only after completion!

▪ Similar to nonblocking point-to-point calls, MPI_Wait* or MPI_Test*

must be used to halt or examine for the completion a request, respectively

▪ root (if available) and comm must be the same on all processes

▪ Type signature of send and receive variables must match

12.04.2024 7Introduction to Parallel Programming with MPI

Nonblocking reduction on all ranks

MPI_Iallreduce(sendbuf,recvbuf,count,datatype,op,

comm,request);

▪ No root

▪ sendbuf,recvbuf can be reued after completion:

requires MPI_Wait or MPI_Test

▪ Recvbuf is significant on all processes

12.04.2024 8Introduction to Parallel Programming with MPI

Quiz:

1) Nonblocking collective are useful when there exist multiple collective

calls on the same communicator so overlapping different collective calls.

a) Correct b) Incorrect

2) Nonblocking collectives can interfere with blocking collectives.

a) Correct b) Incorrect

